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We develop a first-principle GW+T approach to calculate excited electron lifetimes in metals that includes
evaluation of the lowest self-energy term of the many-body perturbation theory in GW approximation and
higher terms in the T-matrix approximation. The method is applied to studies of the electron lifetimes in Pd, Ta,
and Al. We find that the T-matrix contribution to the lifetime is more important in Al than in Ta and Pd and
relate this to the static screened potential. The inclusion of the T-matrix greatly improves agreement between
experimental and theoretical results in Ta and Al.
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I. INTRODUCTION

In the last decade the de-excitation processes of photo-
excited electrons in metals have been the subject of many
experimental and theoretical works. The dynamics of hot
electrons is fundamental for many physical phenomena such
as chemical reactions on surfaces, transport, and molecular-
surface interactions. The knowledge of relaxation times of
electron excitations, and consequently the escape depth-
length of excited electrons is important for the interpretation
of photoemission spectra, Auger spectra, and low-energy
electron diffraction.

Among the experimental methods developed for the stud-
ies of excited electron lifetimes the most powerful is time-
resolved two-photon photoemission spectroscopy
�TR-2PPE�1 which allows the measurements directly in a
time domain. A series of TR-2PPE experiments have been
performed for nonmagnetic metals,2–8 ferromagnetic met-
als,9,10 and high-Tc superconductors.11

The key factor that influences the relaxation times in TR-
2PPE experiments is the inelastic electron-electron scatter-
ing. Another process which increases the relaxation time is
the effect of refilling the excited state with the cascade elec-
trons from higher excited states. One more process that leads
to the increase of the relaxation time is the Auger decay of
the electrons filling excited holes. In contrast, the transport
effect results in the reduction of the relaxation time due to
the diffusion of electrons from irradiated spots on surface
into a bulk. All such processes have been studied in Al,12 in
Ag and Au,13 they are strongly material dependent and are
not investigated yet in detail.

A number of theoretical methods have also been devel-
oped for the evaluation of lifetimes, such as semiempirical
methods based on the scattering theory10,14–16 and first-
principle approaches17 based on the self-energy formalism of
many-body perturbation theory �MBPT�.18 First-principle
evaluations of lifetimes have been performed for a variety
of metallic systems including simple metals,19–23

noble,19,20,22–26 and transition metals.21,23,27–29 Most of theo-
retical results have been obtained by means of the Hedin’s
GW approach of the MBPT.30 The GW approach includes the

lowest term of the expansion of self-energy in the powers of
a screened potential W. Normally the calculations of the
screened potential are performed in the GW approach within
the random-phase approximation �RPA�. Hence, the long-
range screening, important for the quasi-particle energy, is
properly accounted for. It follows, however, from a number
of calculations31 that the GW approach has shortcomings in
describing the satellite structure in the photoemission spectra
of strongly correlated systems. This structure is due to a
short-range hole-hole interactions relating to the high order
diagrams not included in the GW method.

In addition, numerous comparisons between experimental
relaxation times and lifetimes obtained from the GW self-
energy calculations have shown that, although generally the
calculated lifetimes are in agreement with the trends derived
from experiments, sometimes significant discrepancies are
encountered. Therefore, it is important to investigate the con-
tributions of higher terms not included in the GW approxi-
mation.

As follows from Hedin’s formalism,18,30–33 a natural way
to improve the theory of lifetimes would be to go beyond the
GW approach by including high-order self-energy terms.
However, for real solids the calculations of all such terms are
not feasible now, and normally one considers only the terms
important for a problem discussed. For systems with strong
electron correlation such terms are first of all the terms de-
scribing short-range correlation within the T-matrix formal-
ism. Much research, based on the T-matrix approach and
model band-structures, has been done for the self-energy and
spectral properties of ferromagnetic metals.34–37 In Ref. 38
the electron self-energy have been evaluated for ferromag-
netic Fe, Co, and Ni with matrix elements adjusted to the
experimental mean free path. First-principle evaluations
based on the T-matrix theory have also been performed for
magnon dispersions in Fe and Ni.39 In Ref. 40 an ab initio
method for the self-energy with electron-electron and hole-
hole scattering has been developed and applied to the study
of the photo-emission satellites in Ni.

The self-energy in the T-matrix approach is determined
not only by multiple electron-electron and hole-hole scatter-
ing, but also by electron-hole scattering. So the approach
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might be important for any system with a rather high density
of states above and below the Fermi level. In this paper we
expose in detail a combined first-principle GW+T method
which includes the GW term and the T-matrix terms and
takes into account multiple electron-electron, hole-hole, and
electron-hole scattering. We show the common features of
the GW and T-matrix approaches and implement the method
using the LMTO band-structure calculation method. A brief
description of the theory together with an application to fer-
romagnetic Fe and Ni, has been given in Refs. 41 and 42.

The paper is organized as follows. In Sec. II the formal-
ism of the GW+T approach for the self-energy calculations
is given. We discuss some fine ingredients of the approach,
in particular, so-called double-counting terms and demon-
strate the relations between the T-matrix self-energy and sus-
ceptibility functions. We also outline the way of calculating
the excited electron lifetimes based on the GW+T self-
energy. In Sec. III the method is applied to the evaluation of
the excited electron lifetimes in Pd, Ta, and Al. We compare
the T-matrix electron-electron and electron-hole multiple
contributions to lifetimes. We find that for Ta and Al the
inclusion of the T-matrix greatly improves the agreement
with the experiment. Unexpectedly, we come to the conclu-
sion that the T-matrix contributions to the lifetimes are more
important in free-electron-like Al than for Pd which has more
localized electrons. Analyzing the main matrix elements of
transverse susceptibility and screened potential, we suggest
an explication of this result. In Sec. IV the obtained results
are summarized.

II. THEORETICAL CONSIDERATIONS

In the framework of the many-body theory,18,30–33,43 the
lifetime of an excited electron is evaluated from the imagi-
nary part of the self-energy expectation value. A systematic
way to perform self-energy calculations is described by He-
din’s equations where the self-energy is expressed in a series
of terms with dynamically screened potential W as a small
perturbation.30,32 For real systems the ab initio calculations
of all the terms are unfeasible, so one has to keep only the
terms that are important for the discussed problem. In Fig. 1
we show the Feynman’s diagrams for the terms of self-
energy retained in our theory.

In the GW approximation one keeps for the self-energy
only the first-order term in screened potential W:

��1,2�� = iG��1,2�W�1,2� . �1�

Here � is a spin coordinate and we use short-hand notation
1��r1 , t1�. The details of the GW formalism and implemen-
tations are well known, see, e.g., Refs. 31 and 44. The
Green’s function G� is usually constructed from the band-
states �kn� with energies �kn� which are most often calcu-
lated by means of the local density approximation �LDA� of
the density functional theory, Ref. 45. The imaginary part of
the self-energy of an excited electron, which determines the
rate of de-excitation, is expressed within GW in frequency
representation as

Im ��
GW�r4,r2,� � 	� = − �

k
�

n

unocc

�kn��r4��kn�
* �r2�


 Im W�r4,r2,� − �kn����� − �kn�� .

�2�

We calculate the screened potential W in RPA
approximation18 that means we neglect the vertex corrections
to W. As has been shown in Refs. 46 and 47, such corrections
are not essential for the lifetimes calculations within the GW
approach because of mutual cancellations. A basic value in
our calculation is the RPA polarization, which in the fre-
quency representation is

P�r4,r2,�� = �
��

�
k�n�

occ

�
k�n�

unocc

�k�n���
* �r4��k�n����r4�


 �k�n���
* �r2��k�n����r2�


 � 1

� − �k�n��� + �k�n��� + i�

−
1

� + �k�n��� − �k�n��� − i�� . �3�

The details of the calculations for Im � and P are given
elsewhere.19,24,25 In particular, P�r4 ,r2 ,�� can be expanded
in a basis set which consists of plane waves or products of
muffin-tin orbitals. With such a basis set the matrices of po-
larization P and of Coulomb potential V are evaluated first.
Then one calculates the matrix of the dielectric function

� = 1 − VP , �4�

the matrix of the response function

R = �1 − PV�−1P , �5�

the matrix of the inverse dielectric function

FIG. 1. Feynman diagrams for GW and T-matrix self-energy of
an excited electron. A: GW-term; B: T-matrix direct terms with
multiple electron-electron scattering; C: T-matrix direct terms with
electron-hole scattering; D: T-matrix exchange terms. The vertical
wiggly line represents static screened potential, and lines with the
arrows are Green’s functions. The time direction is towards the
right. Changing the time direction, one obtains analogous diagrams
for the self-energy of an excited hole.
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�−1 = 1 + VR �6�

and the matrix of the screened potential

W = �−1V . �7�

Then the matrix Im W is expressed as

Im W��� = V Im R���V . �8�

Retaining only the largest matrix element, we have approxi-
mately

Im W��� = V Im P���V/��1 − Re P���V�2 + �Im P���V�2� .

�9�

So the mechanism of an excited electron decay correspond-
ing to the GW approach is the following, see Fig. 2. A pri-
mary excited electron �e� with spin � and excitation energy
� drops to one of the unoccupied states �kn� with the same
spin and energy �kn��e��. The relaxed energy �−�kn� is em-
ployed to produce secondary excitations, i.e., to create
electron-hole pairs �e2 and h� corresponding to the poles of
the Im R value. Usually the poles of the factor
�1− P���V�−1, concerned with excitations of plasmons, cor-
respond to excitation energies higher than those involved in
TR-2PPE spectroscopy, therefore the contribution of this fac-
tor is negligible. So the main process responsible for the
decay of excitations is the creation of electron-hole pairs in
both spin channels.

In the GW approach the decay channel in which the final
state of the primary electron has opposite spin is not in-
cluded. Because of this, the secondary electron excitations
with change of spin are omitted. The interactions between
the electrons in the states �kn��e�� and the created electron-
hole pairs are also disregarded.

The T-matrix theory incorporates some of the decay pro-
cesses omitted in the GW approach. Within this approach, the
self-energy of an excited electron includes �see Fig. 1� direct
terms B of multiple scattering between the primary electron
and the secondary electron of an electron-hole pair, direct
terms C of scattering between the primary electron and the
hole of an electron-hole pair and multiple exchange terms D.
Diagrams C are essential for ferro-magnetics where they cor-
respond to the emission of spin-waves, whereas in nearly
ferro-magnetics �e.g., Pd� these diagrams are related with the
creation of para-magnons. The self-energy of an excited hole
also has analogous diagrams. Diagrams B for excited holes

are important in explanations of the low-energy satellites in
photo-emission spectra of Ni, Refs. 35, 36, and 40.

T-matrix operator is defined as a solution of the Bethe-
Salpeter �BS� equation

T�1,�2
�1,2	3,4� = W�1,2���1 − 3���2 − 4�

+ W�1,2� 
 d1�d2�K�1,�2
�1,2	1�,2��


 T�1,�2
�1�,2�	3,4� . �10�

Feynman’s diagram for the T-matrix self-energy and for
the BS equation are given in Fig. 3. The kernel �electron-hole
propagator� of the BS equation with multiple electron-hole
scattering is a product of electron and hole time-ordered
Green’s functions

K�1,�2

eh �1,2	1�,2�� = iG�1
�1,1��G�2

�2�,2� . �11�

For the electron-electron scattering it is a product of two
electron Green functions

K�1,�2

ee �1,2	1�,2�� = iG�1
�1�,1�G�2

�2�,2� , �12�

and for the hole-hole scattering it is a product of two hole
Green’s function

K�1,�2

hh �1,2	1�,2�� = iG�1
�1,1��G�2

�2,2�� . �13�

With such kernels, explicit expressions for the self-energy
are derived by applying usual rules.18,32 For multiple
electron-electron scattering the direct term of the self-energy
is expressed as40

��2

d �4,2� = − i�
�1


 d1d3G�1
�1,3�T�2,�1

�1,2	3,4� �14�

whereas the exchange self-energy term is

FIG. 2. Electron scattering processes included in GW
method.

FIG. 3. Feynman diagrams for the self-energy of an electron
�top figure� and for the BS equation with multiple electron-hole
scattering �bottom figure�. The positive time direction is to right.
For the BS equation with multiple electron-electron scattering the
direction of both Green’s functions will be positive.
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��2

x �4,2� = i
 d1d3G�2
�1,3�T�2,�2

�1,2	4,3� . �15�

For the electron-hole scattering, the Green’s function in Eq.
�14� is changed for G�1

�3,1�. The screened potential W is
generally frequency-dependent, but we study here only low-
energy excitations, so we assume for W in Eq. �10� the static
approximation W�1,2�=W�r1 ,r2���t1− t2�. For the calcula-
tions of kernel and the T-matrix we also apply a local ap-
proximation, i.e., assume in Eqs. �11�–�13� that 1=2 and
1�=2�. This approximation has been proposed in Ref. 39; its
validity has been confirmed by successful calculations of
spin-wave energies in Fe and Ni. With such an approxima-
tion the kernels become polarization-like functions, although
they depend on two spin coordinates, e.g., K�1,�2

eh �1,1��
= iG�1

�1,1��G�2
�1� ,1�. This simplifies essentially the calcu-

lations of the T-matrix which also becomes dependent only
on two space and two time coordinates. The BS equation for
the T-matrix is reduced to

T�1,�2
�1,2	1,2� = W�1,2� + W�1,2�K�1,�2

�1,2�


 T�1,�2
�1,2	1,2� . �16�

Besides, the calculations for self-energy are shortened.
Namely, the spin-diagonal part of �d with electron-electron
scattering �i.e., when �1=�2� cancels with ��2

x with electron-
hole scattering, so we have to calculate only the nonspin-
diagonal part of �d.

With such approximations, the kernel for multiple
electron-hole scattering is written in frequency representation
as

K�1,�2

eh �1,2,�� = �
kn

occ

�
k�n�

unocc�− �k�n��1
�1��k�n��1

* �2��kn�2
�2��kn�2

* �1�

� + �kn�2
− �k�n��1

+ i�
+

�kn�1
�1��kn�1

* �2��k�n��2
�2��k�n��2

* �1�

� + �k�n��2
− �kn�1

− i�
� . �17�

For multiple particle-particle �electron-electron or hole-hole� scattering it is40

K�1,�2

pp �1,2,�� = �
kn

unocc

�
k�n�

unocc �kn�1
�2��kn�1

* �1��k�n��2
�2��k�n��2

* �1�

� − �kn�1
− �k�n��2

+ i�
− �

kn

occ

�
k�n�

occ �kn�1
�2��kn�1

* �1��k�n��2
�2��k�n��2

* �1�

� − �kn�1
− �k�n��2

− i�
. �18�

Here the sum over unoccupied states corresponds to the electron-electron scattering �pp=ee�, and the sum over occupied states
is for hole-hole scattering �pp=hh�.

Practically, we calculate first the spectral function of the kernel that is expressed for electron-hole scattering as

S�1,�2

eh �1,2,�� = �
kn

occ

�
k�n�

unocc

��k�n��1
�1��k�n��1

* �2��kn�2
�2��kn�2

* �1���� + �kn�2
− �k�n��1

� − �kn�1
�1��kn�1

* �2��k�n��2
�2��k�n��2

* �1�


 ��� + �k�n��2
− �kn�1

�� �19�

and for particle-particle scattering as

S�1,�2

pp �1,2,�� = − �
kn

unocc

�
k�n�

unocc

�kn�1
�2��kn�1

* �1��k�n��2
�2��k�n��2

* �1���� − �kn�1
− �k�n��2

�

+ �
kn

occ

�
k�n�

occ

�kn�1
�2��kn�1

* �1��k�n��2
�2��k�n��2

* �1���� − �kn�1
− �k�n��2

� . �20�

Spectral function S�1,�2

eh ��� gives the probability of all the
electrons transitions between occupied states with spin �1
and unoccupied states with spin �2 at the energy of transi-
tions equal to �. Function S�1,�2

pp ��� gives the probability of
all the electron �hole� excitations with spin �1 and all the
electron �hole� excitations with spin �2, such that the energy
of both excitations is equal to �. The kernel is calculated
through Hilbert transform

− K�1,�2
�1,2,�� = P
 d��

S�1,�2
�1,2,���

�� − ���

− i
S�1,�2
�1,2,��sgn��� . �21�

Equations for the imaginary part of the T-matrix self-energy
are derived in the way similar to that employed in the GW
approach.40,44 For an excited electron with multiple electron-
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hole scattering we obtain in the local approximation

Im ��2

d �r4,r2,� � 	�

= − �
�1

�
k

�
n�

unocc

�kn��1
�r4��kn��1

* �r2�


Im T�2,�1

eh �r2,r4,� − �kn��1
���� − �kn��1

� �22�

and for an excited hole with electron-hole scattering we have

Im ��2

d �r4,r2,� � 	�

= �
�1

�
k

�
n

occ

�kn�1
�r4��kn�1

* �r2�


Im T�2,�1

eh �r2,r4,� − �kn�1
����kn�1

− �� . �23�

For en excited electron with multiple electron-electron
scattering we have40

Im ��2

d �r4,r2,� � 	�

= �
�1

�
k

�
n

occ

�kn�1
�r2��kn�1

* �r4�


Im T�2�1

ee �r2,r4,� + �kn�1
���� + �kn�1

− 2	�

�24�

and for an excited hole with multiple hole-hole scattering we
have

Im ��2

d �r4,r2,� � 	�

= − �
�1

�
k

�
n�

unocc

�kn��1
�r2��kn��1

* �r4�


Im T�2�1

hh �r2,r4,� + �kn��1
���− � − �kn��1

+ 2	� .

�25�

In Fig. 4 we illustrate the processes included in the T-matrix
theory. Figures 4�a� and 4�b� depict the processes with mul-
tiple electron-hole scattering whereas the bottom figure �Fig.
4�c�� refers to multiple electron-electron scattering. In Figs.
4�a� and 4�b� a primary electron �e� with spin �2 and exci-
tation energy � drops to an unoccupied state �e2� with the
same spin and a lower energy �kn��2

. The relaxed energy is
used to create an electron-hole pair �e1−h� in the same or in
the opposite spin channel. The interaction between the pri-
mary and secondary electrons is absent here; it is included in
Fig. 4�c�. The energy �−�kn��2

belongs to an interacting
electron-hole pair e2−h. The secondary excitations with this
energy are concerned with the poles of the value Im T��
−�kn��1

�. According to Eq. �16�, the T-matrix is expressed in
frequency representation as

T�1,�2
��� = �1 − WK�1,�2

����−1W . �26�

If we define susceptibilities

R�1,�2
= K�1,�2

�1 − WK�1,�2
�−1 �27�

then

Im T�1,�2
��� = W Im R�1,�2

���W . �28�

If we approximate the matrices by their main matrix ele-
ments, we have

Im R�1,�2
= Im K�1,�2

/��1 − W Re K�1,�2
�2 + �W Im K�1,�2

�2� .

�29�

So the contributions of the T-matrix to Im � are deter-
mined by the longitudinal R�,� and transverse R�,−� suscep-
tibilities. For cubic paramagnetic crystals these susceptibili-
ties are equal. It follows from Eq. �27� that the sus-
ceptibilities may have two types of poles. The poles of
Im K�1,�2

correspond to the creation of electron-hole pairs
with the holes in the spin channel �2 and the electrons in the
channel �1. So, in contrast to GW, such excitations occur
both without the change of spin, Fig. 4�a�, and with the
change of spin, Fig. 4�b�. The conservation of total spin mo-
ment is evident in Fig. 4�a�. In Fig. 4�b� the creation of
electron-hole pairs is accompanied by the change of spin
equal to −�. But the disappearance of the electron e and
appearance of the electron e1 corresponds to the change of
spin equal to �, so the total spin moment is also conserving.

FIG. 4. Electrons scattering processes included in the T-matrix
theory. In the right column with zigzag line we connect the particles
with multiple scattering. In the left column we show Feynman dia-
grams for the illustrated processes.
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An essential difference with GW is that at low frequencies
the poles of the value �1−WK�−1, usually called a suscepti-
bility enhancement factor, can be important. This is the case
of ferro-magnetics where the value Im R−1/2,1/2 is recognized
as the spectral function of spin-waves excitations. For ex-
ample, the ab initio calculations for Fe41 show that at mag-
non energies the factor �1−WK�−1 is big and the T-matrix
term in Im � is bigger than the GW term. So the main loss of
energy of a hot electron in Fe, if the energy is less than
0.5 eV, is concerned with the excitations of magnons. At the
excitation energy above 1 eV the spin-diagonal T-matrix
contributions become also important. In the following we
will show that the T-matrix terms with multiple electron-hole
scattering provide also a noticeable contributions into the
self-energy of paramagnetic Pd, Ta, and Al.

Figure 4�c� illustrates the multiple scattering between the
primary electron e2 and the secondary electron e1 of an
electron-hole pair. Whereas the kernel of multiple electron-
hole scattering depends on the occupied and empty states,
the kernel of electron-electron scattering is determined only
by the convolution of the density of empty states. We will
show later that the electron-electron scattering is important
in Al.

One fine question concerns the problem of double count-
ing terms �DCT� in the GW+T approach. A thorough analy-
sis of the Hedin’s formalism shows that the direct term of the
second order in W is absent.32 In the GW+T approach such
term, with a static potential, is included in the T-matrix series
in order to make it complete. It has been shown in Ref. 40
that a simple subtraction of the second-order term leads to
un-physical negative spectral function. We also found that
the subtraction of the second-order term, calculated with po-
larization function as in Fig. 1, yields un-physical negative
contributions to lifetimes. So we calculate DCT with the po-
larization function replaced by the response function; for the
argumentation we refer the reader to Ref. 40. Within the
adopted approximations the DCT is expressed as

Im ��2

D�R��r4,r2,� � 	�

= �
k

�
n�

unocc

�kn��2
�r4��kn��2

* �r2�


Im D�r4,r2,� − �kn��2
���� − �kn��2

� , �30�

Im ��2

D�R��r4,r2,� � 	�

= − �
k

�
n

occ

�kn�2
�r4��kn�2

* �r2�


Im D�r4,r2,�kn�2
− �����kn�2

− �� , �31�

where

D�r4,r2,�� =
 d3r1d3r3W�r2,r1�R�r1,r3,��W�r3,r4� .

�32�

It cancels the double counting in the GW and T-matrix
with electron-hole scattering. When the T-matrix with mul-

tiple electron-electron scattering is also included, we have to
cancel again the direct second-order term in W. Taking into
account that the exchange T-matrix term cancels the spin-
diagonal part of the direct T-matrix term with electron-
electron scattering, the second DCT, Im �D�P�, is similar to
that in Eqs. �30�–�32�, with response function R replaced by
polarization function P and divided by 2. Since the electron-
electron scattering is big only in Al, we evaluate the second
DCT only for Al.

The direct first-order term is included in the T-matrix se-
ries also formally, see p. 134 of Ref. 33. It is absent in the
Hedin’s equations for self-energy, so it has to be also sub-
tracted. But with the static approximation for screened po-
tential this term does not produce a contribution to the imagi-
nary part of self-energy, so it is irrelevant for lifetime
calculation. Hence, in the GW+T approach the lifetime is
calculated from Im �GW+T=Im �GW+Im �T−Im �D�R�

−Im �D�P�. The inverse lifetime is defined by the complex
quasi-particle energy Eqn��� which is obtained from the Dys-
on’s equation

Eqn���� = �qn� + 
�qn�	������	�qn�� . �33�

Here ������=�����−V�
xc�LDA�, with V�

xc�LDA� being
LDA exchange-correlation potential, provides many-body
corrections to the LDA eigenvalues ��qn�=Eqn�−�qn�. We
solve the equation by employing the re-normalization factor
of Green’s function Z18

Zqn� = �1 −
� Re ��qn����

��
�

�=�qn�

−1

. �34�

As usual, we neglect the imaginary part of Z. Finally, the
imaginary part of ��qn� determines the inverse of a quasi-
particle lifetime �line-width�:

�qn�
−1 = 2 
 	Im ��qn�	 , �35�

where Im ��qn=Zqn�
 
�qn�	����qn��	�qn��.
We perform LDA band-structure calculations in the basis

of linear muffin-tin-orbitals48 �LMTO�, and many-body cal-
culations in the basis of LMTO product-orbitals.31,44 The de-
tails of the RPA calculations for screened potential W are
similar to those for Nb, Mo, Rh, and Pd.27 The number of
momentum vectors in full Brillouin zone is equal to 8000.
The band structure is calculated with the minimal
s , p ,d-basis set, whereas the basis set of many-body calcula-
tions consists of orthogonalized linear combinations of
the s
s , s
 p , s
d , p
 p , p
d , d
d products of
LMTO’s. The total number of the product basis function is
typically 40–45. The first, most important product basis
function has the composition 	1�=C1	ss�+C2�i	pipi�
+C3� j	djdj�, where s , pi , dj are all the inter-sphere parts of
the s-, p-, and d-LMTO’s. For Pd the C-values are equal to
0.27, 0.27, 0.95; for Ta and Al they are 1.05, 1.20, 1.20 and
1.08, 1.13, 1.20, respectively. One of the virtues of such
basis set is that the matrix elements 
1	S	1�, 
1	K	1�, 
1	�1
−WK�−1	1�, i.e., over the first basis function, are much larger
than the rest of the matrix elements. So below we discuss
these first matrix elements which helps us in making our
results more transparent. In the calculations of spectral func-
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tions we replace the delta-functions in Eqs. �19� and �20�
with the Gaussians of the width 0.136 eV �0.005
Hartree a.u.�. The Hilbert transform from imaginary to the
real part of self-energy, Eq. �21�, is performed numerically
with the step of frequency also equal to 0.136 eV.

III. THE SPIN-SPIN DENSITY CORRELATION
FUNCTIONS AND QUASI-PARTICLE LIFETIMES

IN PD, TA, AND AL

Our choice of the materials under study is based on the
following reasons. First is that Pd, Ta, and Al are the species
whose electron lifetimes have been most extensively inves-
tigated. In Refs. 27–29 theoretical studies of the electron
lifetimes in Pd have been performed within the GW ap-
proach. In Ref. 29 the calculated lifetimes in Pd have also
been used to simulate the experiments on ballistic electron
emission spectroscopy. A good correspondence between the
data of Refs. 27–29 confirms the reliability of the GW evalu-
ations. Notice also that the dynamic susceptibility in Pd, a
quantity associated with lifetimes, has been extensively stud-
ied before—see references in the Pd subsection. The electron
lifetimes in Ta have been recently obtained from the TR-
2PPE measurements.49 The electron lifetimes in Al have
been deduced in Ref. 13 from the TR-2PPE experiments; the
effects of transport and secondary Auger electrons have also
been studied. The electron lifetimes in Al have been calcu-
lated with the GW method in Refs. 19 and 27.

Secondly, Pd, Ta, and Al have very different electronic
structures. In Fig. 5 we illustrate this by showing the densi-
ties of states. The primary excited electrons in Pd occupy
free-electron like states. The secondary electron excitations,
associated with polarization function, mainly occur between
occupied d-states and free-electron-like states. Palladium is a
material with well expressed correlation effects, which is
confirmed by the high calculated value of the susceptibility
enhancement factor equal to 4.46, see Ref. 50. In Ta the
primary excited electrons occupy d-states. The polarization
in Ta is related with the excitations between occupied and
empty d-states. The width of the d-bands in Ta �6 eV� is
bigger than in Pd �3 eV�, and the density of states at the
Fermi level is much lower. Therefore, the correlation effects
in Ta are less expressed, that corresponds to the lower value
of the enhancement factor, 1.50, see Ref. 51. Aluminum is a
typical free-electron-like metal with low density of states. So
the correlation effects in Al are less pronounced than in Ta,
and the calculated susceptibility enhancement factor is equal
to 1.34, see Ref. 50. In Pd and Ta the density of states above
Fermi level is less than that below EF. So, according to Eqs.
�19� and �20�, one may expect than the effects of electron-
hole scattering are in Pd and Ta less important comparing
with electron-electron scattering. In Al, contrary to Pd and
Ta, the density of states above the Fermi level is higher than
that below EF, so one may expect that the multiple electron-
electron scattering is stronger.

Hence, investigating Pd, Ta, and Al, one can get a broad
insight into the role of the three self-energy terms, i.e., the
GW-, the T-, and the double counting terms. One can also
compare the effects of electron-electron and electron-hole

multiple scattering and reveal the features of electronic struc-
ture associated with the contributions of all the terms in the
decay rate of excited electrons.

A. Pd

Palladium belongs to an interesting class of nearly ferro-
magnetic materials, and a great amount of experimental and
theoretical studies has been performed for its properties. An
intriguing phenomenon in Pd is the low-temperature
anomaly of specific heat concerned with the existence of
paramagnon excited states.52 The electronic structure and
spin susceptibilities in Pd associated with this anomaly were
studied in many ab initio researches. The static susceptibility
has been evaluated in Refs. 51, 53, and 54; the dynamic
susceptibility has been studied in Refs. 55–57. As follows
from model and first-principle calculations,38,42 the genera-
tion of magnons in ferromagnetic materials can essentially
decrease lifetimes of excited electrons. So a question arises if
such effect can exist in nearly ferromagnetic materials with
paramagnon excited states.

The existence of paramagnon excited states is associated
with the peculiarities of the spectral function of the electron-
hole kernel, Eq. �18�. In Fig. 6 we show the frequency and

FIG. 5. Total density of states in Pd, Ta, Al.
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momentum dependence of the main matrix element of this
spectral function. At small momentum q it has a well-defined
peak with maximum at frequency about 0.1 eV; the peak
speedily broadens with increasing q. In Fig. 7 we show the
dispersion curves of electrons in Pd that help to conclude
that the given peak belongs to a set of direct transitions from
the highest occupied to the lowest unoccupied band in the
points around X. The amplitude of the peak is much lower
than that of the d−d spin-flip excitations responsible for the
magnon generation in ferromagnetics,41 nevertheless it es-
sentially affects the low-energy excited states. The spin-flip
excitation spectrum is derived from the spectral function of
the spin-spin density correlation function

R−+�1,2� = − i
T�−�1��+�2�� , �36�

where �+=�x+ i�y and �−=�x− i�y. The calculations of the
R−+ function with model band structures were discussed in
many publications see, e.g., Ref. 52. Here we follow the
method of the first-principle calculations exposed in Refs. 39
and 58. At low temperature the value R−+ can be expressed
as

R−+ = �1 + K−1/2,1/2T−1/2,1/2�K−1/2,1/2. �37�

So at low temperature the value R−+ coincides with the trans-
verse susceptibility R−1/2,1/2, Eq. �27�. We can represent R−+

as a sum R−+=RK
−++RT

−+ where

RK
−+ = K−1/2,1/2 �38�

and

RT
−+ = K−1/2,1/2�1 − WK−1/2,1/2�−1WK−1/2,1/2. �39�

The value Im RK
−+ shows the part of the excitation spectra

that belongs to the creation of electron-hole pairs whereas
the Im RT

−+ shows the enhancement of the spectra due to the
collective effects, i.e., paramagnons. In Fig. 8 we show the
values R−+ , RK

−+ , RT
−+ in the point of the Brillouin zone q

= �2
 /a��0.0625,0 ,0� which is in our calculations the clos-
est to �. Qualitatively, these results are in agreement with the
previous calculations56,57 performed within the time-
dependent density functional theory. As in Ref. 56, we ob-

FIG. 6. Frequency dependence of the main matrix element of Pd
spectral function at three points q= �2
 /a��x ,0 ,0� of the Brillouin
zone.

FIG. 7. Electron energy band structure in Pd.

FIG. 8. Components of the transverse
susceptibility in Pd. Solid line: Real part of
R−+; dashed line: Imaginary part of R−+.
q= �2
 /a��0.0625,0 ,0�.
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serve two minima of the value Im RK
−+ at frequencies about

0.1 and 0.4 eV which are concerned with two peaks in the
spectral function of the kernel, Fig. 6. The Im RT

−+ shows a
dip with the minimum at 0.05 eV. So the T-matrix contribu-
tion markedly enhances the spectral function of R−+ and
shifts it to lower frequency. This leads, through the Hilbert
transform, to an about two-times enhancement of the static
susceptibility.

In Fig. 9 we show the frequency dependence of the main
matrix elements of the inverse enhancement factor
�1−W Re K�11 and of the quantities Im K11=
S11, Re K11.
Due to the presence of the low-frequency peak in Im K, its
Hilbert-transform, Re K, attains at ��0 the values rather big
to force the enhancement factor to drop down to 0.5, thus
doubling the Im R11 value. However, this value of
�1−W Re K�11 is much higher than the value corresponding
to the creation of spin waves with long lifetimes which is
about 0.05, see Ref. 39.

In Fig. 10 we present the results of the GW and GW+T
calculations for momentum-averaged lifetimes. As follows
from Fig. 5, the highest energy of d-states in Pd is about
0.3 eV above Fermi level. The density of free-electron-like
states at higher energy is much lower than the density of
d-states. Therefore, the kernel’s spectral function of electron-
hole scattering, which depends on the convolution of the
density of occupied and empty states, appears to be much
bigger than the spectral function of the electron-electron
scattering which can be approximated by the convolution of
empty states. So we neglect the contribution of multiple
electron-electron scattering in the lifetime calculations. As

follows from Fig. 10, the major contribution to the lifetimes
belongs to the GW term, and the T-matrix contribution with-
out DCT reduces the lifetimes by about 20%. The value of
DCT appears to be about 50% of the T-matrix term, and the
effect of the T-matrix with the subtracted DCT is to decrease
the lifetimes by only about 10%. The smallness of the
T-matrix effect in Pd is an unexpected result, taking into
account that such effect in Ta with less correlated electron
interactions is markedly bigger. Comparing the electron life-
times in Pd with the hole lifetimes we find also a correspon-
dence with the density of states. The hole lifetimes are gov-
erned by the density of 4d-states which is about four times
higher than the density of free-electron-like electron excited
states, so the hole lifetimes appear to be about four times
less.27 Noteworthy is that the averaged electron lifetimes in
Pd, although associated with free-electron-like states, essen-
tially differ from the values predicted by Fermi liquid
theory.27 The band-structure effects appear to be also impor-
tant here. A simple model of the density of states convolu-
tions with constant transition matrix element, based on the
first-principle density of states, describes fairy well the en-
ergy dependence of the momentum-averaged lifetimes.27

B. Ta

In Fig. 11 we show the momentum and frequency depen-
dence of the main matrix element of the electron-hole ker-
nel’s spectral function for Ta. At small q we observe a peak
with the frequency about 0.5 eV. The maximum of the peak
is 5 times less than that in Pd. Consequently it leads to
smaller susceptibilities shown in Fig. 12. Nevertheless, the
contribution of collective excitations described by the value
RT

−+ is comparable with the contributions of the single exci-
tations RK

−+. This is due to the inverse enhancement factor
�1−W Re K�11 that we show in Fig. 13 together with the
main matrix elements of the kernel, Im K11 and Re K11. Since
Im K=
S, the Im K11 has a peak near 0.5 eV. The value
Re K11, i.e., the Hilbert-transform of Im K11, is much smaller

FIG. 9. Top panel: Frequency dependence of the main matrix
element of the inverse enhancement factor �1−W Re K�11 in Pd.
Bottom panel: Imaginary part �dashed line� and real part �solid line�
of the main matrix element of electron-hole kernel in Pd.
q= �2
 /a��0.0625,0 ,0�.

FIG. 10. Momentum-averaged electron and hole lifetimes in Pd.
Black diamonds: Lifetimes within GW approach; open diamonds:
Lifetimes within GW+T approach, including double-counting cor-
rections; open circles: Lifetimes within GW+T approach without
double-counting corrections.
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than that of Pd, so the static value of Re K11 in Ta appears to
be about one order less. However, at zero frequency the val-
ues of �1−W Re K�11 in Ta and Pd are comparable. At low
frequencies the changes in �1−W Re K�11 in Ta are small,
and at 0.25 eV this matrix element is smaller by a factor of 2
than in Pd. Such a rather small value of the inverse enhance-
ment factor in Ta is related with a much higher value of the
screened potential W. For example, in Ta the matrix element
W11 at q= �2
 /a��0.05,0.05,0.0� is 3.45 Hartree units, and
in Pd it is only 0.82 Hartree. So even with small K the prod-
uct �WK�11 appears to be big in Ta. We will show below that
the static screened potential is the quantity important to also
explain the differences between the values of the T-matrix
self-energy terms in Pd, Ta, and Al.

In Fig. 14 we show the calculated and experimental data
on electron and hole lifetimes in Ta. The calculations yield
very small electron-electron and hole-hole self-energies, so
we omit them. Also small, within 1 to 2 fs, are the double-
counting corrections. Therefore, the T-matrix self-energy is

mainly provided by the electron-hole scattering. The de-
crease of lifetimes appears to be about 30–40%. Within the
inaccuracy of experimental data, which is evaluated in Ref.
49 as 2 fs, we have a good correspondence between the
GW+T and experimental results.

Remarkably, the T-matrix contribution to the quasi-
particle self-energy in Ta appears to be bigger than in Pd,
although Pd is a material with stronger electron correlations.

FIG. 11. Frequency dependence of the main matrix element S11

of Ta spectral function at q= �2
 /a��x ,0 ,0�.

FIG. 12. Components of transverse susceptibility in Ta. Solid
line: real part of R−+; dashed line: Imaginary part of R−+.
q= �2
 /a��0.0625,0 ,0�.

FIG. 13. Top panel: Frequency dependence of the main
matrix element of the inverse enhancement factor �1−WK�11 in Ta.
Bottom panel: Imaginary part �dashed line� and real part �solid line�
of the main matrix element of electron-hole kernel in Ta.
q= �2
 /a��0.0625,0 ,0�.

FIG. 14. Momentum-averaged electron and hole lifetimes in Ta.
Black diamonds: Lifetimes within GW approach; open diamonds:
Lifetimes within GW+T approach, including double-counting cor-
rections; small open circles: Lifetimes within GW+T approach
without double-counting corrections; open squares: experimental
relaxation times in Ta, Ref. 42.
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We explain this by a higher value of the screened potential W
in Ta, which provides higher T-matrix self-energy through
Eqs. �22� and �26�.

C. Al

Aluminum is a typical free-electron-like metal with rela-
tively small and smoothly changing density of electron
states, see Fig. 5. So we have a possibility to check our
implementations by performing Fermi liquid theory �FLT�
calculations for the self-energy and related values. Within
FLT we calculate the GW term by means of Eq. �2�, replac-
ing the LDA wave functions with normalized plane waves
and expressing Im W�q ,�� through the RPA Lindhardt’s di-
electric function ��q ,��. In these calculations we employ
dynamic potential W�q ,��=�−1�q ,��v with bare Coulomb
potential v=4
 /q2 �in Hartree units�. This corresponds to
the traditional FLT calculations,18,33,59 and we extend FLT by
including the T-matrix term. For nonmagnetic systems the
kernel defined by Eq. �17� is equal to K�q ,��=−P�q ,�� /2
=−�1−��q ,��� / �2v�. As in our ab initio calculations, in FLT
we employ static screened potential W�q ,0�, so with
�-dependent K the T-matrix is

T�q,�� = �1 + �−1�q,0��1 − ��q,����−1�−1�q,0�v�q� .

�40�

With the static screened potential the transverse susceptibil-
ity becomes

R−+�q,�� = �1 + �−1�q,0��1 − ��q,���/2����q,�� − 1�/�2v� .

�41�

The summation over one-particle states in the calculations
for Im � is performed numerically. The Hilbert transform
from the imaginary part of the self-energy to real part con-
verges with a high limit of integration over frequency very
slowly, and we have an inaccuracy in the evaluated Green’s
function re-normalization factor Z, Eq. �34�. So we prefer to
apply the value of the re-normalization factor Z=0.75 that
follows from FLT calculations without Hilbert transform,
Ref. 59, for the electron density parameter rs=2.0.

In Fig. 15 we show the components of the transverse sus-
ceptibility for small momentum q. Similarly to Pd and Ta,
their imaginary parts have dips, but at much higher fre-
quency. For the frequency smaller than 0.1 eV the magnitude
of Im R is incomparably less than that in Pd, so the results
for Al do not suppose the existence of low-temperature
anomalies similar to those in Pd. The RK and RT contribu-
tions appear to be comparable in value, thus revealing the
importance of multiple scattering for the dynamic suscepti-
bility. The total static susceptibility is, however, six times
less than in Pd. We also find a qualitative agreement between
the transverse susceptibility calculated from first principles
and from FLT.

In Fig. 16 we show the main matrix elements of the
inverse enhancement factor �1−W Re K�11 and of real and
imaginary part of kernel, Re K11 and Im K11. We see that,
because of a small density of states, the kernel of Al is
much smaller than in Pd, Ta, but the enhancement
factor appears to be comparable with that in Pd and Ta.

FIG. 15. Components of the
transverse susceptibility in Al
at q= �2
 /a��0.05,0.05,−0.05�.
Thick solid line: real part of R−+;
thick dashed line: Imaginary part
of R−+. With thin solid �dashed�
line in figure for RK+RT we show
the Fermi liquid results at rs=2.0.
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We find that a small value of the inverse enhancement factor
is caused by a very big value of the screened potential. At
q= �2
 /a��0.05,0.05,0.05� we have the main matrix ele-
ment W11=10.90 Hartree. It is much higher than W11 in Ta
and Pd �3.45 and 0.82 Hartree, respectively�, so the product
�W Re K�11 is for Al about 0.5.

Remarkably, the essential decrease of the screened poten-
tial from Al to Ta and Pd is well explained by the Thomas-
Fermi theory for nonuniform media.32 The dielectric function
is expressed in this theory as ��q�=1+ ��s

2 /q2�, where
the screening wave vector �s is determined by the
density of states at the Fermi level through �s

2=4
N�EF�.
The values of N�EF� for Al, Ta, Pd are 0.089, 0.268,
and 0.735 1/ �Hartree
at. unit3�, respectively. The corre-
sponding �s values are 1.12, 3.36, and 9.23 at. units. For the
screened potential we have in this theory W�q�=1/ �q2 /4

+N�EF��. So at q=0 the values of the screened potential are
11.2, 3.7, and 1.36 Hartree, in good agreement with our first-
principle values of W11.

In Fig. 17 we demonstrate the calculated electron life-
times in Al and compare them with available experimental
data. Both the GW and GW+T results agree well with the
data of the Fermi liquid theory. The GW momentum-
averaged lifetimes are much higher than the experimental
relaxation times obtained by means of the TR-2PPE spec-
troscopy, Ref. 13. The inclusion of multiple electron-hole
scattering by means of the T-matrix theory significantly de-
creases the lifetimes. However, the lifetimes are still much

higher than the experimental data. Including electron-
electron scattering, we further decrease calculated lifetimes,
and finally the GW+T lifetimes are close to experimental
data.

We find a good correspondence between our results for Al
and the calculations for lifetimes of positrons in metals60

where an essential role of the T-matrix scattering has been
shown. Note also that an essential reduction in the lifetimes,
as compared with the data of the Fermi liquid theory, has
been predicted in Ref. 61 based on the kinetic theory and the
generalized mean-field theory.

Therefore, we see that in aluminum the increase of the
decay rate because of the inclusion of multiple electron-hole
scattering is bigger than in Pd and Ta, and the contribution of
the decay rate due to the electron-electron scattering is com-
parable with that of the electron-hole scattering. We notice
also that the neglecting of the double counting term D�R�
changes the lifetimes by about 5% only. So in Al, as in Ta,
the double-counting term is much smaller than the GW and
T-matrix terms, and can be omitted.

IV. CONCLUSIONS

We have presented an ab initio GW+T approach for cal-
culations of excited electron lifetimes. The method includes
the evaluation of the first self-energy term within GW ap-
proximation and the higher terms within T-matrix approxi-
mation.

FIG. 16. Top panel: Frequency dependence of the inverse en-
hancement factor �1−WK�11 for Al. Bottom panel: Imaginary part
�dashed line� and real part �solid line� of the main matrix element of
kernel in Al. q= �2
 /a��0.05,0.05,0.05�.

FIG. 17. Momentum-averaged electron lifetimes in Al. Solid
diamonds: ab initio GW calculations; big open diamonds: GW+T
calculations with included multiple electron-hole scattering and
double counting term D�R�; small open diamonds: GW+T calcula-
tions with included multiple electron-hole scattering and omitted
double counting term; open circles: GW+T calculations with in-
cluded multiple electron-hole and electron-electron scattering and
double counting terms D�R�, D�P�; solid squares: Experimental data
of Ref. 13 not corrected for cascade electrons and transport effects.
Thick solid line represents the results of the Fermi-liquid theory,
whereas thick dashed line corresponds to Fermi liquid theory with
included multiple electron-hole scattering, see text.
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The T-matrix contributions in the decay rate of excited
electrons are associated with the transverse spin susceptibil-
ity, so we have investigated the dynamic spin susceptibility
in Pd, Ta, and Al. As expected, in the spectral function of
susceptibility for Pd we find low-energy paramagnon peaks.
At small momenta we also find peaks in the susceptibility for
Ta and Al, but their frequency is higher and amplitude is
much lower. Unexpectedly, we find that the enhancement
factor of the susceptibility, i.e., the value �1−WK�−1 describ-
ing the contribution of collective spin fluctuations, is compa-
rable in magnitude in Pd, Ta, and Al. This is caused by the
higher value of the screened potential in Al than in Ta and
Pd.

The T-matrix self-energy includes electron-electron, hole-
hole, and electron-hole contributions. The double-counting
term in the GW and T-matrix has also to be considered. We
estimate the role of all these terms for the calculations of the
momentum-averaged lifetimes. One may expect that in Pd, a
material with stronger electron correlations, the T-matrix
electron-hole term should be bigger than in Ta and Al. How-
ever, we reveal an opposite trend: the reduction of the life-
times due to the T-matrix is in Pd markedly smaller than in
Ta and Al. So from Pd to Ta and Al we have due to the
screened potential an increase in the imaginary part of the
T-matrix self-energy which is accompanied by the decrease

of lifetimes. Within the Thomas-Fermi theory for nonuni-
form media this change of screening can be associated with
the change of the density of states at the Fermi level.

We find that the double-counting term is small in all the
metals considered. The T-matrix electron-electron scattering
term is much bigger in Al than in Pd and Ta. The inclusion of
the electron-electron term in the self-energy of Al essentially
reduces lifetimes, bringing them in better agreement with
experimental data.

Although the T-matrix theory has been introduced origi-
nally to study the electronic properties of strongly correlated
materials, our calculations show that the T-matrix effects can
be important for the electron lifetimes in a broader range of
materials with sufficiently strong screened potential. It would
be interesting to apply the GW+T formalism to others para-
magnetic and ferromagnetic systems.
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