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We generalize the dynamical-mean field �DMFT� approximation by including into the DMFT equations
some length scale � via a momentum dependent external self-energy �k. This external self-energy describes
nonlocal dynamical correlations induced by the short-ranged collective spin density wave–like antiferromag-
netic spin �or the charge density wave–like charge� fluctuations. At high enough temperatures these fluctuations
can be viewed as a quenched Gaussian random field with a finite correlation length. This generalized
DMFT+�k approach is used for the numerical solution of the weakly doped one-band Hubbard model with
repulsive Coulomb interaction on a square lattice with the nearest and the next nearest neighbor hopping. The
effective single impurity problem in this generalized DMFT+�k is solved by the numerical renormalization
group. Both types of the strongly correlated metals, namely: �i� The doped Mott insulator and �ii� the case of
the bandwidth W�U �U—value of the local Coulomb interaction� are considered. The densities of states, the
spectral functions, and the angle resolved photoemission spectra calculated within the DMFT+�k show a
pseudogap formation near the Fermi level of the quasiparticle band.
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I. INTRODUCTION

Among the numerous anomalies of the normal phase of
high-temperature superconductors the observation of a
pseudogap in the electronic spectrum of underdoped copper
oxides1,2 is especially interesting. Despite continuing discus-
sions on the nature of the pseudogap, the preferable scenario
for its formation is most likely based on the model of strong
scattering of the charge carriers by a short-ranged antiferro-
magnetic �AFM� or spin density wave �SDW� spin
fluctuations.2,3 In a momentum representation, this scattering
transfers momenta of the order of Q= �� /a ,� /a� �a—lattice
constant of a two-dimensional lattice�. This leads to the for-
mation of structures in the one-particle spectrum, which are
precursors of the changes in the spectra due to the long-range
AFM order �period doubling�. As a result, we obtain non-
Fermi-liquidlike behavior �dielectrization� of the spectral
density in the vicinity of the so called hot spots on the Fermi
surface, appearing at intersections of the Fermi surface with
an antiferromagnetic Brillouin zone boundary �Umklapp
surface�.2

Within this spin-fluctuation scenario, a simplified model
of the pseudogap state was studied2,4,5 under the assumption
that the scattering by dynamic spin fluctuations can be re-
duced for high enough temperatures to a static Gaussian ran-
dom field �quenched disorder� of pseudogap fluctuations.
These fluctuations are defined by a characteristic scattering
vector from the vicinity of Q, with a width determined by the
inverse correlation length of a short-range order �=�−1, and
by an appropriate energy scale � �typically of the order of
the crossover temperature T* to the pseudogap state2�.

Undoped cuprates are antiferromagnetic Mott insulators
with U�W �U—value of the local Coulomb interaction,
W—bandwidth of noninteracting band�, so that correlation
effects are very important. It is thus clear that the electronic
properties of underdoped �and probably also optimally

doped� cuprates are governed by strong electronic correla-
tions also, so that these systems are typical strongly corre-
lated metals. Two types of correlated metals can be distin-
guished: �i� the doped Mott insulator and �ii� the bandwidth
controlled correlated metal W�U. Both types will be con-
sidered in this paper.

A state of the art tool to describe such correlated systems
is the dynamical mean-field theory �DMFT�.6–10 The charac-
teristic features of correlated systems within the DMFT are
the formation of incoherent structures, the so-called Hubbard
bands, split by the Coulomb interaction U, and a quasiparti-
cle �conduction� band near the Fermi level dynamically gen-
erated by the local correlations.6–10

Unfortunately, the DMFT is not useful to the study of the
antiferromagnetic scenario of the pseudogap formation in
strongly correlated metals. This is due to the basic approxi-
mation of the DMFT, which amounts to the complete neglect
of nonlocal dynamical correlation effects.

Besides the extended DMFT,11 which locally includes a
coupling to nonlocal dynamical fluctuations, a straightfor-
ward way to extend the DMFT are the so-called cluster
mean-field theories.12 Two variants of this approach are the
dynamical cluster approximation �DCA� �Ref. 12� and the
cellular DMFT �CDMFT�.13 In particular, the DCA has been
applied to study the low-energy properties of the Hubbard
model, systematically including short- to medium-ranged
nonlocal correlations. Both improve on the cluster perturba-
tion theory �CPT�,14,15 an attempt to use finite-size calcula-
tions to obtain approximate results for the thermodynamic
limit.

However, these approaches have certain drawbacks from
both the technical and the interpretation points of view. First,
the effective quantum single impurity problem becomes
rather complex. Thus, most computational methods available
for the DMFT can be applied for the smallest clusters
only,12,16,17 i.e., include nearest-neighbor fluctuations only.
For medium- to long-ranged correlations one is currently re-
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stricted to the Quantum Monte-Carlo.18,19 Since for cluster
problems again a sign problem arises, one is restricted to
relatively small values of the local Coulomb interaction and
high temperatures. Second, the interpretation of electronic
structures found has to be based on a reliable input from
other, typically approximate, complementary techniques.

The aim of the present paper is to propose such an ap-
proach, which on the one hand retains the single-impurity
description of the DMFT, viz a proper account for local cor-
relations and the possibility of using very efficient impurity
solvers like NRG;20,21 on the other hand, we include nonlocal
correlations on a nonperturbative model basis, which allows
one to control characteristic scales and also types of nonlocal
fluctuations. This latter point allows for a systematical study
of the influence of a nonlocal fluctuation on the electronic
properties and in particular provide valuable hints on the
physical origin and the possible interpretation of results
found in, e.g., more refined theoretical approaches.

The paper is organized as follows: In Sec. II we present a
derivation of the self-consistent generalization we call
DMFT+�k which includes short-ranged dynamical correla-
tions to some extent. Section III describes the construction of
the k-dependent self-energy, and some computational details
are presented in Sec. IV A. Results and discussion are given
in the Sec. IV. Then the paper is ended with a summary �Sec.
V� together with an overview of related recent approaches
and results on a pseudogap issue.

II. INTRODUCING LENGTH SCALE INTO DMFT:
DMFT+�k APPROACH

The basic shortcoming of the traditional DMFT
approach6–10 is the neglect of the momentum dependence of
the electron self-energy. This approximation, in principle, al-
lows for an exact solution of the correlated electron systems
fully preserving the local part of the dynamics introduced by
electronic correlations. To include nonlocal effects, while re-
maining within the usual single impurity analogy, we pro-
pose the following procedure. To be definite, let us consider
a standard one-band Hubbard model from now on. The ex-
tension to multi-orbital or multi-band models is straightfor-
ward. The major assumption of our approach is that the lat-
tice and Matsubara time Fourier transformed of the single-
particle Green function can be written as:

Gk�i	� =
1

i	 + 
 − ��k� − ��i	� − �k�i	�
, 	 = �T�2n + 1� ,

�1�

where ��i	� is the local contribution to the self-energy, sur-
viving in the DMFT, while �k�i	� is a momentum dependent
part. We suppose that this last contribution is due to either
electron interactions with some additional collective modes
or order parameter fluctuations, or may be due to a similar
nonlocal contribution within the Hubbard model itself.

To avoid possible confusion, we must stress that �k�i	�
can, in principle, also contain local �momentum independent�
contributions, which obviously vanish in the limit of an in-
finite dimensionality d→� and are not taken into account

within the DMFT. Due to this fact there is no double count-
ing of diagrams within our approach to the Hubbard model.
This question does not arise at all if we consider �k�i	�
appearing due to some additional interaction. More impor-
tant is that the assumed additive form of the self-energy
��i	�+�k�i	� implicitly corresponds to the neglect of pos-
sible interference of these local �DMFT� and nonlocal con-
tributions. Furthermore, both contributions to the total self-
energy ��i	�+�k�i	� individually obey causality by
construction. Thus, the sum and finally the propagator �1�
constructed from it are causal, too.

The self-consistency equations of our generalized
DMFT+�k approach are formulated as follows.

�1� Start with some initial guess of local self-energy
��i	�, e.g., ��i	�=0.

�2� Construct �k�i	� within some �approximate� scheme,
taking into account interactions with collective modes or or-
der parameter fluctuations which in general can depend on
��i	� and 
.

�3� Calculate the local Green function

Gii�i	� =
1

N
�
k

1

i	 + 
 − ��k� − ��i	� − �k�i	�
. �2�

�4� Define the “Weiss field”

G0
−1�i	� = ��i	� + Gii

−1�i	� . �3�

�5� Use some “impurity solver” to calculate the single-
particle Green function for the effective single Anderson im-
purity problem, defined by the Grassmanian integral

Gd�
 − 
�� =
1

Zeff
� Dci�

† Dci�
† ci��
�ci�

† �
��exp�− Seff� �4�

with the effective action for a fixed site �“single impurity”� i

Seff = − �
0

�

d
1�
0

�

d
2 ci��
1�G0
−1�
1 − 
2�ci�

† �
2�

+ �
0

�

d
 Uni↑�
�ni↓�
� , �5�

Zeff=�Dci�
† Dci� exp�−Seff�, and �=T−1. This step produces

a new set of values Gd
−1�i	�.

�6� Define a new local self-energy

��i	� = G0
−1�i	� − Gd

−1�i	� . �6�

�7� Using this self-energy as an initial one in step �1�,
continue the procedure until �and if� convergency is reached
to obtain

Gii�i	� = Gd�i	� . �7�

Eventually, we get the desired Green function in the form of
�1�, where ��i	� and �k�i	� are those appearing at the end
of our iteration procedure. A more detailed derivation of
this scheme within a diagrammatic approach is given in
Appendix A.

SADOVSKII et al. PHYSICAL REVIEW B 72, 155105 �2005�

155105-2



III. CONSTRUCTION OF k-DEPENDENT SELF-ENERGY

For the momentum dependent part of the single-particle
self-energy we concentrate on the effects of the scattering of
electrons from the collective short-range SDW–like antifer-
romagnetic spin �or charge density wave �CDW�–like
charge� fluctuations. To calculate �k�i	� for an electron
moving in the quenched random field of �static� Gaussian
spin �or charge� fluctuations with dominant scattering mo-
mentum transfers from the vicinity of some characteristic
vector Q �hot spots model2�, we use a slightly generalized
version of the recursion procedure proposed in Refs. 4, 5,
and 22 which takes into account all the Feynman diagrams
describing the scattering of the electrons by this random
field. This becomes possible due to a remarkable property of
our simplified version of hot spots model that under certain
conditions the contribution of an arbitrary diagram with in-
tersecting interaction lines is actually equal to the contribu-
tion of some diagram of the same order without intersections
of these lines.5,22 Thus, in fact, we can limit ourselves to
consideration of only diagrams without intersecting interac-
tion lines, taking the contribution of diagrams with intersec-
tions into account with the help of additional combinatorial
factors, which are attributed to “initial” vertices or just inter-
action lines.22 As a result, we obtain the following recursion
relation �continuous fraction representation22�:

�n�i	,k� = �2 s�n�
i	 + 
 − ��i	� − �n�k� + invn� − �n+1�i	,k�

.

�8�

The term �n�i	 ,k� of recurring sequence contains all contri-
butions of diagrams with the number of interaction lines �n.
Then

�k�i	� = �n=1�i	,k� �9�

is actually the sum of all diagrammatic contributions. Since
the convergence of this recursion procedure for �n�i	 ,k� is
rather fast, one can set contributions for large enough n equal
to zero and doing recursion backwards to n=1 to get the
desired physical self-energy.5

The quantity � characterizes the energy scale and �=�−1

is the inverse correlation length of the short-range SDW
�CDW� fluctuations, �n�k�=��k+Q� and vn= 	vk+Q

x 	+ 	vk+Q
y 	

for odd n while �n�k�=��k� and vn= 	vk
x 	+ 	vk

y 	 for even n.
The velocity projections vk

x and vk
y are determined by usual

momentum derivatives of the “bare” electronic energy dis-
persion ��k�. Finally, s�n� represents a combinatorial factor
with

s�n� = n �10�

for the case of commensurate charge �CDW-type� fluctua-
tions with Q= �� /a ,� /a�.22 For the incommensurate CDW
fluctuations22 �when Q is not locked to the period of the
reciprocal lattice� one finds

s�n� = 

n + 1

2
for odd n

n

2
for even n .� �11�

If we want to take into account the �Heisenberg� spin struc-
ture of interaction with spin fluctuations in nearly antiferro-
magnetic Fermi-liquid �spin-fermion �SF� model of Ref. 4,
SDW-type fluctuations�, the combinatorics of the diagrams
becomes more complicated. Spin-conserving scattering pro-
cesses obey commensurate combinatorics, while spin-flip
scattering is described by the diagrams of incommensurate
type �charged random field in terms of Ref. 4�. In this model,
the recursion relation for the single-particle Green function is
again given by �8�, but the combinatorial factor s�n� now
acquires the following form:4

s�n� = 

n + 2

3
for odd n

n

3
for even n .� �12�

Obviously, with this procedure we introduce an important
length scale � not present in standard DMFT. Physically this
scale mimics the effect of short-range �SDW or CDW� cor-
relations within fermionic bath surrounding the effective
single Anderson impurity of the DMFT. We expect that such
a length scale will lead to a competition between local and
nonlocal physics.

An important aspect of the theory is that both parameters
� and � can, in principle, be calculated from the microscopic
model at hand. For example, using the two-particle self-
consistent approach of Ref. 23 with the approximations in-
troduced in Refs. 4 and 5, one can derive within the standard
Hubbard model the following microscopic expression for �:

�2 =
1

4
U2 �ni↑ni↓


�ni↑
�ni↓

��ni↑
 + �ni↓
 − 2�ni↑ni↓
�

= U2 �ni↑ni↓

n2 ��ni↑ − ni↓�2
 = U2 �ni↑ni↓


n2

1

3
�S� i

2
 , �13�

where we consider only scattering from antiferromagnetic
spin fluctuations. The different local quantities—spin fluc-

tuation �S� i
2
, density n and double occupancy �ni↑ni↓
—can

easily be calculated within the standard DMFT.9 A detailed
derivation of �13� and the computational results for � ob-
tained by the DMFT using the quantum Monte-Carlo �QMC�
to solve the effective single impurity problem are presented
in Appendix B. A corresponding microscopic expression for
the correlation length � can also be derived within the two-
particle self-consistent approach.23 However, we expect
those results for � to be less reliable, because this approach is
valid only for relatively small �or medium� values of U / t.
Thus, in the following, we will consider both � and espe-
cially � as some phenomenological parameters to be deter-
mined from the experiments.
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IV. RESULTS AND DISCUSSION

A. Computation details

In the following, we want to discuss the results for a
standard one-band Hubbard model on a square lattice. With
the nearest �t� and next nearest �t�� neighbor hopping inte-
grals the dispersion then reads

��k� = − 2t�cos kxa + cos kya� − 4t� cos kxa cos kya ,

�14�

where a is the lattice constant. The correlations are intro-
duced by a repulsive local two-particle interaction U. We
choose as an energy scale, the nearest neighbor hopping in-
tegral t and as a length scale, the lattice constant a.

For a square lattice the bare bandwidth is W=8t. To study
a strongly correlated metallic state obtained as a doped Mott
insulator we use U=40t as a value for the Coulomb interac-
tion and a filling n=0.8 �hole doping�. The particular choice
of the latter value for U is motivated by two aspects. First,
this value of U leads to an insulating DMFT+�k, solution at
half-filling. Second, the estimations of U for the stoichio-
metric La2CuO4 �high-TC prototype compound� based on the
constrained LDA �Ref. 24� calculations typically give U of
the order of 10 eV,25 which corresponds to 40t with our
choice of parameters. The correlated metal in the case of
W�U is realized via U=4t—a value used in various theo-
retical papers discussing the pseudogap state—and two fill-
ings: half-filling �n=1.0� and n=0.8 �hole doping�. As typi-
cal values for � we choose �= t and �=2t �actually as
approximate limiting values—see Appendix B� and for the
correlation length �=2a and �=10a �motivated mainly by
the experimental data for cuprates2,4�.

The DMFT maps the lattice problem onto an effective,
self-consistent single impurity defined by Eqs. �4� and �5�. In
our work, we employ as “impurity solvers” two reliable nu-
merically exact methods—quantum Monte-Carlo �QMC�
�Ref. 18� and the numerical renormalization group
�NRG�.20,21 The calculations were done for the case t�=0 and
t� / t=−0.4 �more or less typical for cuprates� at two different
temperatures T=0.088t and T=0.356t �for NRG
computations�.40 QMC computations of double occupancies
as functions of filling were done at temperatures T=0.1t and
T=0.4t.41

Below we present results only for most typical depen-
dences and parameters, more data and figures can be found
in Ref. 26.

B. Generalized DMFT+�k approach: densities of states

Let us start the discussion of our results obtained within
our generalized DMFT+�k approach with the densities of
states �DOS� for the case of the small �relative to bandwidth�
Coulomb interaction U=4t with and without pseudogap fluc-
tuations. As already discussed in Sec. I, the characteristic
feature of the strongly correlated metallic state is the coex-
istence of the lower and upper Hubbard bands split by the
value of U with a quasiparticle peak at the Fermi level. Since
at half-filling the bare DOS of the square lattice has a Van–
Hove singularity at the Fermi level �t�=0� or close to it �in

case of t� / t=−0.4� one cannot treat a peak on the Fermi level
simply as a quasiparticle peak. In fact, there are two contri-
butions to this peak; �i� the quasiparticle peak appearing in a
strongly correlated metals due to many-body effects and �ii�
the smoothed Van–Hove singularity from the bare DOS.42 In
Figs. 1 and 2 we show the corresponding DMFT �NRG�
DOS without pseudogap fluctuations as black lines for both
the bare dispersions t� / t=−0.4 �left panels� and for the
t�=0 �right panels� for two different temperatures T=0.356t
�lower panels� and T=0.088t �upper panels� with fillings
n=1.0 and n=0.8, respectively. The remaining curves in
Figs. 1 and 2 represent results for the DOS with nonlocal
fluctuations switched on with the fluctuation amplitude
�=2t. For all sets of parameters, one can see that the intro-
duction of nonlocal fluctuations into the calculation leads to
the formation of pseudogap in the quasiparticle peak.

FIG. 1. �Color online� Comparison of DOS obtained from
DMFT�NRG�+�k calculations for different combinatorical factors
�SF–spin-fermion model, commensurate�, inverse correlation
lengths ��−1� in units of the lattice constant, temperatures �T�, and
the value of pseudogap potential �=2t. The left column corre-
sponds to t� / t=−0.4, the right column to t�=0. In all graphs the
Coulomb interaction is U=4t and n=1. The Fermi level corre-
sponds to zero.

FIG. 2. �Color online� Comparison of DOS obtained from
DMFT�NRG�+�k calculations for a filling n=0.8, other parameters
as in Fig. 1.
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The behavior of the pseudogaps in the DOS has some
common features. For example, for t�=0 at half-filling �Fig.
1, right column� we find that the pseudogap is most pro-
nounced. For n=0.8 �Fig. 2, right column� the picture is
almost the same but slightly asymmetric. The width of the
pseudogap �the distance between the peaks closest to the
Fermi level� appears to be of the order of �2� here. De-
creasing the value of � from 2t to t leads to a pseudogap that
is correspondingly twice smaller and in addition more shal-
low �see Ref. 26�. When one uses the combinatorial factors
corresponding to the spin-fermion model �Eq. �12��, we find
that the pseudogap becomes more pronounced than in the
case of commensurate charge fluctuations �combinatorial
factors of Eq. �11��. The influence of the correlation length �
can be seen as expected. Changing from �−1=0.1 to �−1

=0.5, i.e., decreasing the range of the nonlocal fluctuations,
slightly washes out the pseudogap. Also, increasing the tem-
perature from T=0.088t to T=0.356t leads to a general
broadening of the structures in the DOS. These observations
remain at least qualitatively valid for t� / t=−0.4 �Figs. 1 and
2, left columns� with an additional asymmetry due to the
next-nearest neighbor hopping. Noteworthy is, however, the
fact that for t� / t=−0.4 and �−1=0.5 the pseudogap has al-
most disappeared for the temperatures studied here. Also a
very remarkable point is the similarity of the results obtained
with the generalized DMFT+�k approach with U=4t
�smaller than the bandwidth W� to those obtained earlier
without the Hubbard-like Coulomb interactions.4,5

Let us now consider the case of a doped Mott insulator.
The model parameters are t� / t=−0.4 with filling n=0.8, but
the Coulomb interaction strength is now set to U=40t. The
characteristic features of the DOS for such a strongly corre-
lated metal are a strong separation of the lower and upper
Hubbard bands and a Fermi level crossing by the lower Hub-
bard band �for the non-half-filled case�. Without nonlocal
fluctuations the quasiparticle peak is again formed at the
Fermi level; but now the upper Hubbard band is far to the
right and does not touch the quasiparticle peak �as it was for
the case of small Coulomb interactions�. DOS without non-
local fluctuations are again presented as black lines in Fig. 3.
The results for the case t�=0 are presented elsewhere.26

With rather strong nonlocal fluctuations �=2t, a
pseudogap appears in the middle of the quasiparticle peak. In

addition, we observe that the lower Hubbard band is slightly
broadened by fluctuation effects. Qualitative behavior of the
pseudogap anomalies is again similar to those described
above for the case of U=4t, e.g., a decrease of � makes the
pseudogap less pronounced, reducing � from �=2t to �= t
narrows of the pseudogap and also makes it more shallow,
etc. �see Ref. 26�. Note that for the doped Mott-insulator we
find that the pseudogap is remarkably more pronounced for
the SDW-like fluctuations than for CDW-like fluctuations.

There are, however, obvious differences of the case with
U=4t. For example, the width of the pseudogap appears to
be much smaller than 2�, being of the order of � /2 instead
�see Fig. 3�. This effect we attribute to the fact that the qua-
siparticle peak itself is actually strongly narrowed now by
the local correlations.

C. Generalized DMFT+�k approach:
spectral functions A„� ,k…

In the previous subsections we discussed the densities of
states obtained self-consistently by the DMFT+�k approach.
Once we get a self-consistent solution of the DMFT+�k
equations with nonlocal fluctuations we can, of course, also
compute the spectral functions A�	 ,k�

A�	,k� = −
1

�
Im

1

	 + 
 − ��k� − ��	� − �k�	�
, �15�

where the self-energy ��	� and the chemical potential 
 are
calculated self-consistently as described in Sec. II. To plot
A�	 ,k� we choose k points along the bare Fermi surfaces for
different types of lattice spectra and filling n=0.8. In Fig. 4
one can see corresponding shapes of these bare Fermi sur-
faces �presented are only 1

8 th of the Fermi surfaces within
the first quadrant of the first Brillouin zone�.

A natural quantity to inspect is the self-energy ��k ,	
+ i��, shown in Fig. 5 for t� / t=−0.4, n=0.8, and U=4t �left
column� and U=40t �right column�. As a representative k
points we chose the center of the first Brillouin zone ���, the
hot-spot and cold-spot �point B in Fig. 4�. The results were
obtained with NRG at a temperature T=0.088t. The struc-
tures for U=4t are rather broad, but reveal after a closer
inspection features similar to the case U=40t. For the latter,
the behavior at � and B is very different from the structures
at the hot-spot. Namely, while for the former two k points
Im ��k ,	+ i�� shows a nice parabolic maximum at the
Fermi energy, the latter develops a minimum instead. Such a

FIG. 3. �Color online� Comparison of DOS obtained from
DMFT�NRG�+�k calculations for t� / t=−0.4, T=0.088t, U=40t,
�=2t, and filling n=0.8.

FIG. 4. One-eighth of the bare Fermi surfaces for the occupancy
n=0.8 and different combinations �t , t�� used for the calculation of
spectral functions A�k ,	�. The diagonal line corresponds to the
Umklapp surface. The full circle marks the so-called hot spot.
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structure in the self-energy will result in a rather evident
�pseudo� gap in the spectral function at this k point and at
weaker pseudogap behavior in the DOS. Its appearance is
obviously due to the presence of the spin-fluctuations at the
hot-spot. Note that similar features have been observed in
numerically expensive cluster mean-field calculations,27 too,
with an interpretation as a spin fluctuation induced based on
physical expectations. Our calculations, obtained at a mini-
mum numerical expense, indeed show, that including short-
ranged fluctuations will precisely produce these non-Fermi-
liquid structures in the one-particle self-energy. This
behavior is quite typical for the problem and was observed
by other groups using different methods.16,28–30 In several
works the midgap peak in the pseudogap was obtained with
an explanation of its origin by a particular shape of the self-
energy close to the Fermi level.28,29,31

In the following we concentrate mainly on the case U
=4t and filling n=0.8 �Fermi surface of Fig. 4�a��. The cor-
responding spectral functions A�	 ,k� are depicted in Fig. 6.
When t� / t=−0.4 �upper row�, the spectral function close to
the diagonal of the Brillouin zone �point B� has the typical
Fermi-liquid behavior, consisting of a rather sharp peak close
to the Fermi level. In the case of the SDW-like fluctuations
this peak is shifted down in energy by about −0.5t �left upper
corner�. In the vicinity of the hot-spot the shape of A�	 ,k� is
completely modified. Now A�	 ,k� becomes double-peaked
and non-Fermi-liquidlike. Directly at the hot-spot, A�	 ,k�
for SDW-like fluctuations has two equally intensive peaks
situated symmetrically around the Fermi level and split from
each other by �1.5� Refs. 4 and 5. For the commensurate
CDW-like fluctuations the spectral function in the hot-spot

region has one broad peak centered at the Fermi level with
the width ��. Such a merging of the two peaks at the hot
spot for commensurate fluctuations was previously observed
in Ref. 5. However, close to point A this type of fluctuations
also produces a double-peak structure in the spectral func-
tion.

Spectral functions for the case of U=4t at half-filling
�n=1� and for t� / t=−0.4 are similar to those just discussed
for n=0.8. However, the pseudogap is more pronounced in
this case and remains open everywhere close to the Umklapp
surface for SDW fluctuations.26

In the lower panel of Fig. 6 we show spectral functions
for 20% hole doping �n=0.8� and the case of t�=0 �Fermi
surface from Fig. 4�b��. Since the Fermi surface now is close
to the Umklapp surface, the pseudogap anomalies are rather
strong and almost nondispersive along the Fermi surface. At
half filling for t�=0 the Fermi surface actually coincides with
the Umklapp surface �in case of perfect nesting the whole
Fermi surface is the hot region�. The spectral functions are
now symmetric around the Fermi level. For SDW-like fluc-
tuations there are two peaks split by �1.5�. Again, CDW-
like fluctuations give just one peak centered at the Fermi
level with width ��.

For the case of a doped Mott insulator �U=40t, n=0.8�,
the spectral functions obtained by the DMFT+�k approach
are presented in Fig. 7. Qualitatively, the shapes of these
spectral functions are similar to those shown in Fig. 6. As
was pointed out above, the strong Coulomb correlations lead
to a narrowing of the quasiparticle peak and a corresponding
decrease of the pseudogap width. As is evident from Fig. 7
the structures connected to the pseudogap are now spread in
an energy interval �t, while for U=4t they are restricted to
an interval �4t instead. One should also note that in contrast
to U=4t the spectral functions are now about four times less
intensive, because part of the spectral weight is transferred to

FIG. 5. �Color online� Real �dashed line� and imaginary �full
line� parts of the self-energy ��k ,	� for t / t�=−0.4, U=4t �left
column�, and U=40t �right column� for characteristic k points: �,
hot-spot �see Fig. 4� and cold-spot �point B in Fig. 4�. For all graphs
the filling is n=0.8, temperature T=0.088t, inverse correlation
length �−1=0.1, value of pseudogap potential �=2t, and SF
combinatorics.

FIG. 6. Spectral functions A�k ,	� obtained from the
DMFT�NRG�+�k calculations along the directions shown in Fig.
4. Model parameters were chosen as U=4t, n=0.8, �=2t,
�−1=0.1, and temperature T=0.088t. The hot-spot k point is marked
as a fat dashed line. The Fermi level corresponds to zero.
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the upper Hubbard band located at about 40t and is well
separated from the quasiparticle peak now.

Using another quite common choice of k points we can
compute A�	 ,k� along high-symmetry directions in the first
Brillouin zone: ��0,0�−X�� ,0�−M�� ,��−��0,0�. The
spectral functions for these k points are collected in Fig. 8
for the case of SDW-like fluctuations. Characteristic curves
for the doped Mott insulator are presented in Ref. 26. For all
sets of parameters, one can see a characteristic double-peak
pseudogap structure close to the X point. In the middle of the
M –� direction �so called “nodal” point� one can see the
reminiscence of the AFM gap which has its biggest value

here in the case of perfect antiferromagnetic ordering. Also
in the nodal point “kinklike” behavior is observed caused by
interactions between correlated electrons with short-range
pseudogap fluctuations. A change of the filling leads mainly
to a rigid shift of spectral functions with respect to the Fermi
level.

With the spectral functions we are now, of course, in a
position to calculate the angle resolved photoemission spec-
tra �ARPES�, which is the most direct experimental way to
observe pseudogap in real compounds. For that purpose, we
only need to multiply our results for the spectral functions
with the Fermi function at temperature T=0.088t. A typical
example of the resulting DMFT+�k ARPES spectra are pre-
sented in Fig. 9. More figures of ARPES-like results obtained
within the DMFT+�k approach for a variety of parameters
can be found in Ref. 26. One should note that for t� / t
=−0.4 �upper panel of Fig. 9� as k goes from point A to point
B the peak situated slightly below the Fermi level changes its
position and moves down in energy. Simultaneously it be-
comes more broad and less intensive. The dotted line guides
the motion of the peak maximum. Also at the hot spot and
further to point B one can see some signs of the double-peak
structure. Such behavior of the peak in the ARPES is rather
reminiscent of those observed experimentally in underdoped
cuprates.2,4,32

V. CONCLUSION

In summary, we propose a generalized DMFT+�k ap-
proach, which is meant to take into account the important
effects of nonlocal correlations �in principle of any type� in
addition to the �essentially exact� treatment of local dynami-
cal correaltions by the DMFT. In the standard DMFT the
“bath” surrounding the effective single Anderson impurity is

FIG. 7. Spectral functions A�k ,	� obtained from the
DMFT�NRG�+�k calculations for U=40t; other parameters as in
Fig. 6.

FIG. 8. Spectral functions A�k ,	� obtained from the
DMFT�NRG�+�k calculations along high-symmetry directions of
the first Brillouin zone ��0,0�−X�� ,0�−M�� ,��−��0,0�, SF
combinatorics �left row� and commensurate combinatorics �right
column�. Other parameters are U=4t, n=0.8, �=2t, �−1=0.1, and
temperature T=0.088t. The Fermi level corresponds to zero.

FIG. 9. ARPES spectra simulated by the multiplication of the
spectral functions obtained from DMFT�NRG�+�k calculations for
U=4t and n=0.8 in Fig. 6 with the Fermi function at T=0.088t
plotted along the lines in the first BZ as depicted by Fig. 4. All other
parameters are the same as in Fig. 6.
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spatially uniform since the DMFT self-energy is only energy
dependent. The main idea of our extension is to introduce
nonlocal correlations through the bath, i.e. to make it spa-
tially nonuniform, while keeping standard DMFT self-
consistency equations. Such a generalization of the DMFT
allows us to supplement it with a k-dependent self-energy
��k ,	�. It in turn opens the possibility of accessing the
physics of low-dimensional strongly correlated systems,
where different types of spatial fluctuations �e.g., of some
order parameter� become important, in a nonperturbative
way at least with respect to the important local dynamical
correlations. However, we must stress that our procedure in
no way introduces any kind of systematic 1 /d expansion,
being only a qualitative method to include a length scale into
the DMFT. Nevertheless, we believe that such a technique
can give valuable insight into the physical processes leading
to the correlation induced k-dependent structures in single-
particle properties.

In this work we model such effects for the two-
dimensional Hubbard model by incorporating into the bath
scattering of fermions from nonlocal collective SDW-like an-
tiferromagnetic spin �or CDW-like charge� short-range fluc-
tuations. The corresponding k-dependent self-energy ��k ,	�
is obtained from a nonperturbative iterative scheme.4,5 Such
a choice of the ��k ,	� allows us to address the problem of
pseudogap formation in the strongly correlated metallic state.
We showed evidence that the pseudogap appears at the Fermi
level within the quasiparticle peak, introducing a new small
energy scale of the order of pseudogap potential value � in
the DOS and more pronounced in spectral functions A�	 ,k�.
Let us stress that our generalization of the DMFT leads to
nontrivial and in our opinion physically sensible k depen-
dence of spectral functions. It is significant that this particu-
lar choice of ��k ,	� �Refs. 4 and 5� does not cause difficul-
ties to “double counting” problems within our combined
DMFT+�k approach. Also, the combination of diagrammati-
cally correct techniques such as DMFT �Refs. 6–10� and the
nonlocal self-energy ansatz of Refs. 4 and 5 preserves the
correct analytical properties of the combined self-energy
��i	�+�k�i	�, as well as of the corresponding one-electron
propagator �1�.

Of course, our pseudogap observations are not entirely
new. Similar results about pseudogap formation in the 2d
Hubbard model were already obtained within cluster DMFT
extensions, i.e., the dynamical cluster approximation �DCA�
�Refs. 12 and 27� and the cellular DMFT �CDMFT�,16,17

CPT,14,15,33 and two interacting Hubbard sites self-
consistently embedded in a bath.28 However, these methods
have generic restrictions concerning the size of the cluster,
temperature, or filling accessible and, in the case of the
QMC, values of the local Coulomb energy. Recently, the
EDMFT was also applied to demonstrate the pseudogap for-
mation in the DOS due to dynamic Coulomb correlations.34

Note, however, that within the EDMFT there is no way to
obtain a k dependence in spectral functions beyond that
originating from the bare electronic energy dispersion. Im-
portant progress was also made with the weak coupling ap-
proaches for the Hubbard model35 and the functional renor-
malization group.29,30 In several papers, pseudogap

formation was described in the framework of the t-J model.36

A more general scheme for the inclusion of nonlocal correc-
tions was also formulated within the so called GW extension
to the DMFT.37,38

While at a first glance the introduction of additional phe-
nomenological parameters �correlation length � and
pseudogap strength �� through the definition of ��k ,	�
seems to take a step back with respect to the methods out-
lined above, it actually opens up the possibility to systemati-
cally distinguish between different types of nonlocal fluctua-
tions and their effects and help to analyze experimental or
theoretical data obtained within more advanced schemes in
terms of intuitive physical pictures. Note, however, that in
principle even the parameters � and � can be calculated from
the original model.23

An essential advantage of the proposed combination of
two nonperturbative methods �DMFT and ��k ,	� from
Refs. 4 and 5� removes the restrictions on model parameters
in, e.g., cluster mean-field theories. Our scheme works for
any Coulomb interaction strength U, pseudogap strength �,
correlation length �, filling n, and bare electron dispersion
��k� on a 2d square lattice for any set of k points. Although
we presented only high-temperature data in this paper, the
possibility of using Wilson’s NRG to solve the effective im-
purity model also opens the possibiltiy of studying properties
at T=0, which is currently impossible within the DCA or
CDMFT for larger clusters. Moreover, the DMFT+�k ap-
proach can be easily generalized to orbital degrees of free-
dom, phonons, impurities, etc.

As a further application of our generalized DMFT+�k we
would like to bring the reader’s attention to Ref. 39, which
deals with the problem of the Fermi surface destruction in
high-Tc compounds because of pseudogap fluctuations.
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APPENDIX A: DERIVATION OF GENERALIZED
DMFT+�k APPROACH

In this Appendix we present a derivation of the general-
ized DMFT+�k scheme for the Hubbard model

SADOVSKII et al. PHYSICAL REVIEW B 72, 155105 �2005�

155105-8



H = − �
ij,�

tijci�
† cj� + U�

i

ni↑ni↓, �A1�

using a diagrammatic approach. The single-particle Green
function in Matsubara representation is as usual given by

Gk�i	� =
1

i	 + 
 − ��k� − ��i	,k�
. �A2�

To establish the standard DMFT one invokes the limit of
infinite dimensions d→�. In this limit only local contribu-
tions to the electron self-energy survive,7,9 i.e., �ij→�ij�ii
or, in reciprocal space, ��i	 ,k�→��i	�.

In Fig. 10 we show examples of skeleton diagrams for the
local self-energy, contributing in the limit of d→�. The
complete series of these and similar diagrams defines the
local self-energy as a functional of the local Green function

� = F�Gii� , �A3�

where

Gii�i	� =
1

N
�
k

1

i	 + 
 − ��k� − ��i	�
. �A4�

One then defines the Weiss field

G0
−1�i	� = ��i	� + Gii

−1�i	� �A5�

which is used to set up the effective single impurity problem
with an effective action given by �5�. In Dyson’s equation,
the Green function �4� for this effective single impurity prob-
lem can be written as

Gd�i	� =
1

G0
−1�i	� − �d�i	�

, �A6�

and the skeleton diagrams for self-energy �d are just the
same as shown in Fig. 10, with the replacement Gii→Gd.
Thus we get

�d = F�Gd� , �A7�

where F is the same functional as in �A3�. The two equations
�A6� and �A7� define both Gd and �d for a given Weiss field
G0. On the other hand, for the local � and Gii of the initial
�Hubbard� problem we have precisely the same pair of equa-
tions, �A3� and �A5�, and G0 in both problems is just the
same, so that

� = �d; Gii = Gd. �A8�

Thus, the task of finding the local self-energy of the
�d→�� Hubbard model is eventually reduced to the calcula-
tion of the self-energy of an effective quantum single impu-

rity problem defined by the effective action of Eq. �5�.
Consider now the nonlocal contribution to the self-energy.

If we neglect interference between local and nonlocal contri-
butions �as given, e.g., by the diagram shown in Fig. 11�b��,
the full self-energy is approximately determined by the sum
of these two contributions. Skeleton diagrams for the nonlo-
cal part of the self-energy, �k�i	�, are then those shown in
Fig. 11�a�, where the full line denotes the Green function Gk
of Eq. �1�, while dashed lines denote the interaction with
static Gaussian spin �charge� fluctuations. These diagrams
are just absent within the standard DMFT �as any contribu-
tion from Ornstein–Zernike type fluctuations vanish for
d→��, and no double counting problems arise at all.

The local contribution to the self-energy is again defined
by the functional �A3� via the local Green function Gii,
which is now given by Eq. �2�. Introducing again a Weiss
field via �A5� and repeating all previous arguments, we again
reduce the task of finding the local part of the self-energy to
the solution of a single impurity problem with an effective
action �5�.

To determine the nonlocal contribution �k�i	� we first
introduce

G0k�i	� =
1

Gk
−1�i	� + �k�i	�

=
1

i	 + 
 − ��k� − ��i	�
�A9�

as the bare Green function for electron scattering by static
Gaussian spin �charge� fluctuations. The assumed static na-
ture of these fluctuations allows one to use the method of
Refs. 4, 5, and 22 and the calculation of the nonlocal part of
the self-energy �k�i	� reduces to the recursion procedure
defined by Eqs. �8� and �9�. The choice of the bare Green
function Eq. �A9� guarantees that the Green function dressed
by fluctuations Gk

−1�i	�=G0k
−1�i	�−�k�i	�, which enters into

the skeleton diagrams for �k�i	�, just coincides with the full
Green functions Gk�i	�.

Thus we obtain a fully self-consistent scheme to calculate
both local �due to strong single-site correlations� and nonlo-
cal �due to short-range fluctuations� contributions to electron
self-energy.

APPENDIX B: � IN THE HUBBARD MODEL

In this Appendix we derive the explicit microscopic ex-
pression for pseudogap amplitude � given in Eq. �13�.

FIG. 10. Local skeleton diagrams for the DMFT self-energy �.
Wavy lines represent the local �Hubbard� Coulomb interaction U;
full lines denote the local Green function Gii.

FIG. 11. Typical skeleton diagrams for the self-energy in the
DMFT+�k approach. The first two terms are DMFT self-energy
diagrams; the middle two diagrams show contributions to the non-
local part of the self-energy from spin fluctuations �see Sec. III�
represented as dashed lines; the last diagram �b� is an example of
the neglected diagram leading to the interference between the local
and nonlocal parts.
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Within the two-particle self-consistent approach of Ref. 23,
valid for medium values of U, and neglecting charge fluctua-
tions, we can write down an expression for the electron self-
energy of the form used in Eq. �1�, with

���i	� = Un−� �B1�

as the lowest order local contribution due to the on-site Hub-
bard interaction, surviving in the limit of d→�, and exactly
accounted for in the DMFT �with all higher-order contribu-
tions�. Nonlocal contribution to the self-energy �vanishing
for d→� and not accounted within the DMFT� due to inter-
action with spin-fluctuations then leads to the expression

�k�i	� =
U

4

T

N
�
m

�
q

Usp�sp�q,�m�G0�k + q,i	 + i�m� ,

�B2�

where

Usp = g↑↓�0�U, g↑↓�0� =
�ni↑ni↓


�ni↑
�ni↓

�B3�

with �n�
2
= �n�
 and �ni↑
= �ni↓
= 1

2n in the paramagnetic
phase. For the dynamic spin susceptibility �sp�q ,�m� we use
the standard Ornstein–Zernike form,23 similar to that used in
the spin-fermion model,4 which describes the enhanced scat-
tering with momenta transfer close to the antiferromagnetic
vector Q= �� /a ,� /a�. With these approximations, we can
write down the following expression for the nonlocal contri-
bution to the self-energy:4,5

�k�i	� =
1

4
UUsp

T

N�
m

�
q

�sp�q,�m�
1

i	 + i�m + 
 − ��k + q�
�

1

4
UUsp

T

N�
m

�
q

�sp�q,�m��
q

S�q�
1

i	 + 
 − ��k + q�

� �2�
q

S�q�
1

i	 + 
 − ��k + q�
=

�2

i	 + 
 − ��p + Q� + i�	vp+Q
x 	 + 	vp+Q

y 	�� sign 	
. �B4�

Here we have introduced the static form factor �Ref. 5�

S�q� =
2�−1

�qx − Qx�2 + �−2

2�−1

�qy − Qy�2 + �−2 �B5�

and the squared pseudogap amplitude

�2 =
1

4
UUsp

T

N�
m

�
q

�sp�q,�m�

=
1

4
UUsp��ni↑
 + �ni↓
 − 2�ni↑ni↓
� =

1

4
UUsp

1

3
�S� i

2
 ,

�B6�

where we have used the exact sum rule for the
susceptibility.4,23 Taking into account Eq. �B3� we immedi-
ately obtain Eq. �13�.

Actually, the approximations made in Eqs. �B4� and �B5�
allow for an exact summation of the whole Feynman series
for the electron interaction with spin fluctuations, replaced
by the static Gaussian random field. Thus generalizing the
one-loop approximation �B4� eventually leads to the
basic recursion procedure given in Eqs. �9� and �8� and Refs.
4 and 5.

Using the DMFT�QMC� approach we computed occupan-
cies �ni↑
, �ni↓
 and double occupancies �ni↑ni↓
 required to
calculate the pseudogap amplitude � of Eq. �B6�. In Fig. 12
the corresponding values of � are presented. One can see
that � grows when the filling goes to n=1. While U ap-
proaches 8t �the value of the bandwidth for a square lattice�

� as a function of n grows monotonically. When U becomes
larger than W=8t �when a metal-insulator transition occurs�
one can see a local minimum for n=0.9, which becomes
more pronounced with further increase of U. For t� / t=−0.4
and both temperatures, the scatter of � values is smaller than
for the case of t�=0. Also � has a rather weak temperature
dependence. All values of � lie in the interval �0.75t÷2t.
Therefore, for our computations we took only two character-
istic values of �= t and �=2t.

FIG. 12. �Color online� Filling dependence of the pseudogap
potential � calculated with the DMFT�QMC� for the varying Cou-
lomb interaction �U� and the temperature �T� on a two-dimensional
square lattice with two sets of �t , t��.
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