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Semiconductor Bloch equations, in their extension including the spin degree of freedom of the carriers, are
capable to describe spin dynamics on a microscopic level. In the presence of free holes, electron spins can flip
simultaneously with hole spins due to electron-hole exchange interaction. This mechanism named after Bir,
Aronov, and Pikus is described here by using the extended semiconductor Bloch equations �Phys. Status Solidi
B 234, 385 �2002�� and considering carrier-carrier interaction beyond the Hartree-Fock truncation. As a result
we derive microscopic expressions for spin-relaxation and spin-dephasing rates.
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Semiconductor Bloch equations �SBE� are a well-
established concept to describe the dynamics of carriers
in a semiconductor or quantum structure by a scalar light
field.1–3 It has been used successfully in modeling the
time evolution due to carrier-carrier interaction on different
time scales including the coherent and the relaxation
regime.4 Thus, SBE have become the dominating tool in
the theory of semiconductor lasers and in designing even
the complex structures of vertical cavity surface emitting
lasers �VCSEL�. One phenomenon, however, connected with
VCSELs points to a deficiency of the SBE: These laser
structures are known for their polarization instability, i.e.,
the uncontrolled switching of the laser modes between the
two possible transverse polarizations.5–7 In addition, the in-
vestigation of semiconductor quantum structures as model
systems for coupled Rabi oscillations with electrons, heavy-
and light-hole states �each spin degenerate� required to ex-
tend the two-level SBE to six-level SBE and to take into
account the polarization degree of freedom of the exciting
light.8

More recently, the carrier spin and its dynamics have
gained much interest in the field of spintronics.9 Spin
dynamics in semiconductors10 and quantum structures,11,12

formulated so far in a more phenomenological way, is
ruled by different mechanisms: one of which is related to
the electron-hole exchange interaction.13 It becomes relevant
if the semiconductor system contains besides electrons also
holes �e.g., due to doping or high excitation�. This Bir-
Aronov-Pikus �BAP� mechanism, originally considered for
bulk semiconductors,14 has been described also for semicon-
ductor quantum structures,11,15 but never by a rigorous
microscopic treatment of the spin dynamics. In this perspec-
tive, the SBE have been formulated for the six-level
system,16 considering spin splitting of the electronic energies
due to spin-orbit coupling caused by bulk inversion17 �BIA�
or structure inversion asymmetry18 �SIA�. These extended
SBE were designed only within the Hartree-Fock truncation
leading to the coherent regime, thus neglecting scattering
processes, responsible for relaxation. Recently, we have
used the extended optical Bloch equations �SBE without
carrier-carrier interaction19� to provide a microscopic ap-
proach to the longitudinal �T1� and transverse �T2� relaxation

times due to electron-phonon interaction.20 In this approach
we have considered scattering between electrons and
phonons in second-order Born approximation to provide a
microscopic formulation for the D’yakonov Perel �DP�
mechanism of spin relaxation.21 The analogous concept is
applied here to the electron-hole exchange interaction and
yields the microscopic formulation of spin relaxation due to
the BAP mechanism.

In the following, we concentrate on spin dynamics in a
semiconductor quantum well �QW� under excitation with cir-
cularly polarized light leading to a nonequilibrium spin dis-
tribution due to optical selection rules. Let the system be
described by the Hamiltonian

H = H0 + Hlight + Hcoul, �1�

where H0 is the kinetic part including BIA and SIA spin-
orbit coupling, Hlight the interaction with the exciting light
field, and Hcoul the Coulomb interaction between the carriers.
We adopt the notation of our previous works16,20 and use the
basis in which the kinetic part of the Hamiltonian for the
six-level system is diagonal

H0 = �
k�mc�

�mc�
�k��cmc�

† �k��cmc�
�k��

+ �
k�mv�

�mv�
�k��vmv�

�k��vmv�
† �k�� . �2�

Here, cmc
�k� �vmv

�k�� are fermion operators for electrons
�light and heavy holes� with spin quantum numbers mc
= ±1/2�mv= ±1/2 , ±3/2� defined with respect to the in-
plane wave vector k. The time dependence of the operators is
understood. The single particle energies �mc�

�k�� ��mv�
�k���

describe subbands, which are spin split due to spin orbit
interaction. In dipole approximation, the interaction with the
light field reads
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Hlight = − �
mc�mv�

k�

�E�t� · dmc�mv�
�k��cmc�

† �k��vmv�
† �k��

+ E*�t� · dmc�mv�
* �k��vmv�

�k��cmc�
�k��� , �3�

where E�t� is the electric field vector and dmc�mv�
�k�� is the

dipole matrix element connecting valence and conduction
band states �for details see Ref. 16�.

The carrier-carrier interaction can be split up into four
parts

Hcoul = Hee + Hhh + Heh
C + Heh

X . �4�

Here, Hee�Hhh� describes the Coulomb interaction between
electrons �holes� in the conduction �valence� band. The re-
maining terms account for electron-hole interaction, the di-
rect Coulomb term Heh

C and the exchange term Heh
X .13 In the

frame of SBE,2–4 especially for the coherent regime, carrier-
carrier interaction has been considered so far only with re-
spect to renormalization of the single-particle energies and of
the interaction with the light field, while the electron-hole
exchange has been ignored. However, it is just Heh

X that can
cause spin flips, thus contributing to the spin dynamics due
to the BAP mechanism. Hence, we consider in the rest of this
paper only contributions of the exchange term, which as de-
rived in Ref. 16 reads

Heh
X =

1

2 �
mcmc�

mvmv�

�
kk�

q

Vmcmvmc�mv�
X �k,k�,q�

�cmc

† �− k + q�cmc�
�− k� + q�vmv�

† �k�vmv
�k�� . �5�

The detailed form of the interaction matrix element
Vmcmvmc�mv�

X �k ,k� ,q� will not become important in the follow-

ing. But we emphasize, that the structure of this matrix ele-
ment makes simultaneous flips of electron and hole spins
possible, which, in the electron system, finally contribute to
spin relaxation.16,11,15

While the dynamics of the whole system is contained in
the equations of motion �EOM� of the 6�6 density matrix,
we concentrate here on the dynamics of the electron spins by
looking at the EOM of the 2�2 density matrix for the elec-
tron subsystem23

��mcm̄c��k� = � �mcmc
�k� �mc−mc

�k�

�−mcmc
�k� �−mc−mc

�k� � . �6�

The single entries are expectation values of products of a
creation and an annihilation operator �mcm̄c

�k�
= �cmc

† �k�cm̄c
�k�	. Their EOM read

iq�t�mcm̄c
�k� = ��mc

�k� − �m̄c
�k���mcm̄c

�k� + �
mv

�E�t� · dm̄cmv

cv Pmcmv
�k� − E*�t� · dmcmv

cv* Pm̄cmv

† �k��

− �
k̄q

�
mc�

m̃vm̃v�

�Vm̄cm̃vmc�m̃v�
X �− k + q,k̄,q��cmc

† �k�cmc�
�− k̄ + q�vm̃v

† �− k + q�vm̃v�
�k̄�	

− Vmc�m̃vmcm̃v�
X �k̄,− k + q,q��cmc�

† �− k̄ + q�cm̄c
�k�vm̃v�

† �k̄�vm̃v
�− k + q�	� , �7�

where we have introduced the interband polarization
Pmcmv

�k�= �cmc

† �k�vmv

† �k�	.2 Due to the many-body contribu-
tions, the dynamics of �mcm̄c

�k� are ruled by four-point den-
sity matrices and, consequently, we run into a hierarchy
problem, which can be solved by an appropriate truncation.
The Hartree-Fock �HF� truncation scheme,2 as used in Ref.
16, factorizes the expectation values of the four-operator
terms into a product of two-operator terms under the condi-
tion that they are macroscopic, namely, either electron �hole�
densities or polarizations. While closing the hierarchy and
renormalizing the eigenenergies and the dipole interaction,
the HF truncation limits the EOM to the coherent regime by
neglecting scattering processes. In order to include these
processes, which are essential for spin relaxation and
spin dephasing, we go beyond the HF truncation by consider-
ing the reduced four-operator terms,2 defined as the differ-
ence between the expectation value of the untruncated

four-operator term and its HF truncated product. For

�cmc�
† �−k̄+q�cm̄c

�k�vm̃v�
† �k̄�vm̃v

�−k+q�	 �see Eq. �7�� it reads

��cmc�
† �− k̄ + q�cm̄c

�k�vm̃v�
† �k̄�vm̃v

�− k + q�	

= �cmc�
† �− k̄ + q�cm̄c

�k�vm̃v�
† �k̄�vm̃v

�− k + q�	

− �cmc�
† �k�cm̄c

�k�	�vm̃v�
† �− k + q�vm̃v

�− k + q�	�k,−k̄+q.

�8�

The scattering contributions are found by solving the
EOM of the reduced four-operator terms that contain the
complete information about the scattering in expectation val-
ues of four- and six-operator terms. In analogy to the case of
electron-phonon scattering20 we truncate these terms by fac-
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torizing them into their macroscopic parts and taking into
account only those that contribute in second-order Born ap-
proximation. After integrating the arising equations and ap-
plying the adiabatic and the Markov approximation,22 we
achieve a closed set of equations for the reduced four-
operator terms, which can be solved and used in Eq. �7� �for
technical details see Ref. 20. Thus, the EOM for the diagonal
entries of the 2�2 density matrix �m̄c=mc� can be cast into
the form

�t�mcmc
�k�
X = �mcmc

out X�k��mcmc
�k� + �mcmc

in X �k��1 − �mcmc
�k�� .

�9�

The rate �mcmc

out X�k� ��mcmc

in X �k�� accounts for the electron-hole
exchange scattering out of �into� the state with spin mc at
wave vector k. The derivation of the scattering contributions
for the second four-operator term in Eq. �7� follows the same
scheme. Thus, we present here only the results for the re-
duced four-operator term of Eq. �8�. The corresponding out-
scattering rate �mcmc

out X�k� reads

�mcmc

out X�k� =
2 �

q
�
k̄q

�
mc�

m̃vm̃v�

�Vmcm̃v�mc�m̃v

X �− k + q,k̄,q��2

����mc
�k� − �m̃v

�k − q� − �mc�
�− k̄ + q� + �m̃v�

�− k̄��

��1 − �m̃v�m̃v�
�− k̄���1 − �mc�mc�

�− k̄ + q��

��m̃vm̃v
�k − q��mcmc

�k� , �10�

The expression for the in-scattering rate �mcmc

in X �k� is obtained
from Eq. �10� by replacing the probabilities of the occupied
states with those of the unoccupied ones and vice versa. Note
that each contribution leads to a change of the spin state.
These rates contain all contributions of electron-hole ex-
change scattering in second-order Born approximation. It is
important to note that without a macroscopic occupation of
hole states �by doping or optical excitation� this scattering
rate vanishes: holes are required for the mutual spin flips of
the BAP mechanism.

The EOM for the off-diagonal entry of the density matrix
�m̄c=−mc� can be written in the form

��t�mc−mc
�k��X =

1

i q��mc−mc

X �k��mc−mc
�k�

− �
k̄q

�
mc�

m̃vm̃v�

�̄mc−mc

X �k̄ + q��mc−mc
�k̄ + q� .

�11�

The first self-energy term in Eq. �11� is proportional to the
absolute squared value of the interaction matrix element

Vmcm̃v�mc�m̃v

X �−k+q , k̄ ,q� and can be split up into real and

imaginary part connected by Kramers-Kronig transforma-
tion, where the imaginary part

Im��mc−mc

X �k�� =
�

q
�
k̄q

�
mc�

m̃vm̃v�

�Vmcm̃v�mc�m̃v

X �− k + q,k̄,q��2

����mc�
�− k̄ + q� − �−mc

�k�

+ �m̃v
�− k + q� − �m̃v�

�k̄��

���1 − �m̃v�m̃v�
�− k̄���1 − �mc�mc�

�− k̄ + q��

��m̃vm̃v
�k − q� + �1 − �m̃vm̃v

�k − q��

��m̃v�m̃v�
�− k̄��mc�mc�

�− k̄ + q�� �12�

accounts for dephasing due to scattering, while the real part
contributes to the renormalization of the eigenenergies. How-
ever, the real and imaginary part of the second term

�̄mc−mc

X �k̄+q� in Eq. �11� are not connected by Kramers-
Kronig theorem, because they are proportional to a product
of two complex valued exchange interaction matrix ele-
ments. Nevertheless it is possible to sort out two parts, one
proportional to principal values and one proportional to the
energy conserving � functions. We present here the part pro-

portional to � functions denoted as �̄mc−mc

X �k̄+q�

�̄mc−mc

X �k̄ + q� =
�

q
Vmcm̃v�mc�m̃v

X �− k + q,k̄,q�

�V−mcm̃v�−mc�m̃v

X �− k + q,− k̄,q�

����mc�
�k̄ + q� − �−mc

�k�

− �m̃v�
�− k̄� + �m̃v

�− k + q��

���1 − �m̃vm̃v
�− k + q��

��1 − �−mc−mc
�k���m̃v�m̃v�

�− k̄�

+ �1 − �m̃v�m̃v�
�− k̄��

��m̃vm̃v
�− k + q��−mc−mc

�k�� . �13�

The rates given in Eqs. �9� and �11�–�13� can be converted
into the T1 and T2 times of the Bloch equations: The T1 time
is ruled by the in- and out-scattering terms of Eq. �9� while
the T2 time is given by the imaginary part of both self-
energies of Eq. �11�. The interpretation of these times with
respect to spin relaxation and spin dephasing remains the
same as in Ref. 20 apart from the fact that the spin-relaxation
mechanism is different: The spin-relaxation time �SR is de-
termined only by T1, while the spin dephasing time �SD de-
pends in a more complicated way on both T1 and T2.

In conclusion, we have derived microscopic expressions
for the scattering rates due to electron-hole exchange inter-
action in a semiconductor QW in the frame of extended SBE.
As it turns out, the expressions for these rates show the same
qualitative structure as found for carrier-phonon scattering.20
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The particular scattering mechanism considered here is the
one responsible for the BAP mechanism of spin relaxation.
Thus, the presented results are a microscopic formulation of
the BAP spin relaxation in the frame of the extended semi-
conductor Bloch equations. A future task is the numerical
evaluation of these equations in order to make a quantitative

comparison between the microscopic description and the ex-
perimental findings.
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