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Spin-dependent tunneling through a symmetric semiconductor barrier is studied including the k3 Dresselhaus
effect. The spin-dependent transmission of an electron can be obtained analytically. By comparing with pre-
vious work �Phys. Rev. B 67, 201304�R� �2003� and Phys. Rev. Lett. 93, 056601 �2004��, it is shown that the
spin polarization and interface current are changed significantly by including the off-diagonal elements in the
current operator, and can be enhanced considerably by the Dresselhaus effect in the contact regions.
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Recently electron spin in semiconductors has attracted a
rapidly growing interest due to its potential application in
spintronics devices. To successfully incorporate spin into ex-
isting semiconductor technology, one has to overcome tech-
nical difficulties such as efficient spin-polarized injection,
transport, control and manipulation, as well as measurement
of spin polarization. The injection of spin-polarized electrons
from ferromagnetic metals into semiconductors has low effi-
ciency, less than 1%, because of a large resistivity mismatch
between ferromagnetic and semiconductor materials.1

Rashba proposed that this problem could be solved by insert-
ing a tunneling barrier at the metal-semiconductor interface.2

Asymmetric nonmagnetic semiconductor barriers are also
used in the construction of spin filters.3 This effect is caused
by the interface-induced Rashba spin-orbit coupling4 and can
be quite significant for resonant tunneling through asymmet-
ric double-barrier structure.5 Very recently, a multichannel
field-effect spin-barrier selector was investigated theoreti-
cally utilizing the Rashba and Dresselhaus effects.6 A con-
siderable spin polarization and an interesting “tunneling
spin-galvanic” effect were found in the tunneling of electron
through a single symmetric barrier utilizing the Dresselhaus
effect in the barrier.7,8 However, the off-diagonal elements in
the current operator, the contribution from the Dresselhaus
effect, are neglected in these works. These off-diagonal ele-
ment in the currents operator could lead to the significant
correction of the spin-dependent transmission, especially in a
thin barrier case.

In this paper, we investigate theoretically the spin-
dependent tunneling through a single symmetric barrier. The
barrier and contacts consist of a zinc-blende-structure semi-
conductor lacking the inversion symmetry. It is shown that
the spin-dependent tunneling and the electric current in the
plane of the interfaces are different from the previous
studies.7 This difference is significant in thin barrier case and
disappears gradually with increasing the thickness of the bar-
rier. It is interesting to notice that the spin polarization and
the interface current j� are enhanced by including the
Dresselhaus effect in the contact regions.

We consider the transmission of an electron with initial
wave vector k= �k� ,kz� through a flat potential barrier of
height V grown along the z �001� direction; k� is the in-plane

wave vector, and kz is the wave vector along the growth
direction, i.e., z axis. Then the electron Hamiltonian includ-
ing the spin-dependent k3 Dresselhaus term is

H =
P2

2m* + V�z� + HD,

HD = �i��xkx�ky
2 − kz

2� + �yky�kz
2 − kx

2� + �zkz�kx
2 − ky

2�� ,

�1�

where m* is the effective mass of electron, and V�z� is the
height of barrier. HD describes the Dresselhaus spin-orbit
coupling, �� are the Pauli matrices, and �i�i=1,2� describe
the strength of the Dresselhaus effect in the contact regions
and the barrier. We assume that the kinetic energy of the
electron is substantially smaller than the barrier height V in
the barrier7,8 �we take V=0.2 eV, EF=0.02 eV in our paper�.
The Hamiltonian in the barrier is simplified to

H =
P2

2m* + V�z� + �2�kx�x − ky�y�
�2

�z2 . �2�

The eigenvalues and eigenstates of the Hamiltonian are

E =
�2�k�

2 + q±
2�

2m* + V�z� ± �2k�q±
2 , �3�

�± =
1
�2

� 1

�e−i� � , �4�

which correspond to the “+” and “−” electron states with
opposite spin orientation. The wave functions of the electron
in the left source, the barrier and right drain are

�L = �i + exp�ik� · ��	
j=±

rj exp�− ikjz�� j ,

�b = exp�ik� · ��	
j=±

�Aj exp�qjz� + Bj exp�− qjz��� j ,
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�R = exp�ik� · ��	
j=±

tj exp�ikjz�� j , �5�

here �i=exp�ik� ·��	 j=±exp �ikjz�� j corresponds to the in-
jected spin state of electron,7,8 t±, r± are the transmission and
reflection coefficients for the spin states �±, respectively. �
= �x ,y� is the coordinate in the barrier plane, and � is the
polar angle of the wave vector k in the xy plane. The wave
vectors q±�k±� inside and outside the barrier are given by

q± =� 2m2
*V

�2 + k�
2 −

2m2
*EF

�2

1 ±
2m2

*

�2 �2k�

,

k± =� 2m1
*EF

�2 − k�
2

1 ±
2m1

*

�2 �1k�A
, �6�

where A=�1+tan2 	+tan2 	 sin2 2��tan2 	 /4−2� and
m1

*�m2
*� is the effective masses outside �inside� the barrier.

The boundary conditions including the Dresselhaus effect are

�Lz=0 = �bz=0,

�bz=a = �Rz=a,

jL�Lz=0 = jb�bz=0,

jb�bz=a = jR�Rz=a, �7�

where ji�i=L ,R ,b� are the current operators in the left side,
the right side of the barrier, and inside the barrier,

jL,R =
1

��− i �2

m1
*

�
�z + �1k�

2 cos�2�� − 2�1k�ei��− i �
�z�

− 2�1k�e−i��− i �
�z� − i �2

m1
*

�
�z − �1k�

2 cos�2��
� ,

jb =
1

�� �2

m2
* − 2�2k�ei�

− 2�2k�e−i� �2

m2
*

��− i
�

�z
� . �8�

Note that the off-diagonal elements of the current operators
were neglected in Ref. 7. For the real case m1

*�1k� /�2
1 and
m1

*�1k�
2 cos�2�� /q± /�2
1, we obtain the analytical expres-

sion of the spin-dependent transmission coefficient of the
electron

t± = −
4i�±�±�k±q±e�−q±a−ik±a�

�i�±�q± − �±k±�2e−2q±a − �i�±�q± + �±k±�2 , �9�

where �±=1±2m1
*�1k� /�2, and �±�=1±2m2

*�2k� /�2.
It is convenient to introduce the spin polarization P deter-

mined by the difference between the transmission of the spin
states �+ and �−,

P =

t+
2 − 
t−
2


t+
2 + 
t−
2
. �10�

The interface current due to spin-polarized electron trans-
port through the tunneling structure can be obtained through
the spin density matrix8

j� = e 	
k�,kz�0


p Tr�T�lT +vz�v� , �11�

where 
p is the momentum relaxation time, �l is the electron
density matrix on the left side of the structure, and T is the
spin matrix of the tunneling transmission that links the inci-
dent spin wave function �L to the transmitted spin wave
function �R, �R=T �L. The spin matrix of the electron
transmission through the structure is given by

T = 	
s=±

ts�s�s
+. �12�

In the case of small degree of spin polarization, the density
matrix has the form

�l = f0I −
df0

d�

2ps

�1/��
�ns · �̂� , �13�

where f0 is the equilibrium distribution function of nonpolar-
ized carriers, ps is the degree of the polarization, and �1/�� is
the average of the reciprocal kinetic energy of the carriers. ns
is the unit vector directed along the spin orientation, and the
orientations of spin s± in the states “+” and “−” depend on
the in-plane wave vector of the electron and are given by
s±= ��cos � , ±sin � ,0�. Taking into account the spin matrix
and the density matrix, the interface current is

j� = − C0 	
k�,kz�0

df0

d�
�
t+
2 − 
t−
2�vzv� , �14�

where C0=e
p�ps / �1/���. It is interesting to notice that the
direction of the interface current depends on the spin polar-
ization of the injected electron ps.

It is well know that normally the transmission through the
barrier reaches maximum for carriers propagating along the
normal to the barrier in the absence of spin-orbit interaction.
But the spin-orbit coupling changes this rule as shown in Fig.
1 �see Eq. �9��. The tunneling transmission for the spin-
polarized electron with the finite in-plane wave vector k� is
larger than that for the electron with the opposite in-plane
wave vector, −k�. This asymmetry results in the in-plane flow
of the transmitted electron near the barrier, i.e., an interface
electric current.

For an electron with wave vector k �see �L in Eq. �5�� is

FIG. 1. The spin-dependent transmission of electron as a func-
tion of the angle 	 between the direction of k and the z axis.
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injected into the barrier, the spin-dependent transmission is
determined by the width of the barrier and the Dresselhaus
spin-orbit coupling strength �see Eq. �8��. The spin-
dependent transmission and the spin polarization P are plot-
ted as a function of the barrier width q0a in Fig. 2. Here we
consider the Dresselhaus effect only in the barrier material.
The material parameter relevant to GaSb are used in our
calculation �1=0, �2=187 and the effective masses are m*

=m2
*=0.041m0. It is shown that the spin-dependent transmis-

sion decreases rapidly with increasing barrier width q0a,
while the spin polarization increases gradually. From this
figure, we can see that the results of Ref. 7 agree with ours
only in the thick barrier case, but there is a big difference in
the thin barrier case. From the numerical results, we can find
that the off-diagonal elements due to the Dresselhaus effect,
in the current operator play an important role in the spin-
dependent transport, especially in the thin barrier case.

Figure 3 describes the dependence of the magnitude of the
interface current j� on the width of the barrier in unit of C0
for incident electrons, which form spin-polarized degenerate
gas as in GaAs �Fig. 3�a�� and in GaSb �Fig. 3�b��, respec-

tively. From this figure, we can see that the two results are
very different. Our numerical results show that the maximum
interface current is overestimated in Refs. 7 and 8, the two
curves will merge gradually together with increasing the bar-
rier width. The numerical accuracy spin-dependent tunneling
and interface current could be improved significantly by in-
cluding the effect of the off-diagonal elements of the current
operator due to the Dresselhaus effect. The difference be-
tween the present results and Ref. 8 will increase with in-
creasing m2

*k��2 /�2 comparing Figs. 3�a� and 3�b�.
The spin polarization P is plotted as a function of the

barrier width a for different strengths of the Dresselhaus ef-
fect in Fig. 4. From this figure, we see that the spin polar-
ization depends on the Dresselhaus effect �i�i=1,2� and the
barrier width a. It is interesting to notice that the spin polar-
ization is enhanced by including the Dresselhaus effect �1 in
the contact regions, and increases with increasing the barrier
width a. On the other hand, the spin polarization decreases
with diminishing the strength of the Dresselhaus effect �2 in
the barrier for a fixed �1. The spin polarization saturates
gradually with increasing barrier width a for �2=0, and
reaches maximum when �1=�2=187. These features can be
understood from Figs. 4�b� and 4�c�. The total transmission
decreases with increasing barrier width and almost the same
for different strengths of the Dresselhaus effect �see Fig.
4�c��, but the differences between the spin states �+ and �−
reach the maxima for different strengths �1, �2 �see Fig.
4�b��. Therefore the spin polarizations exhibit different be-
havior for different strengths of Dresselhaus effect in the
contact and barrier regions. The spin polarization saturates
gradually with increasing barrier width for �1=187, �2=0
since the spin polarization is mainly caused by the Dressel-
haus effect �1 at both sides of the barrier, and consequently
almost independent of the barrier width. The spin polariza-
tion approaches the maximum when �1=�2.

Figure 5 shows the interface current j� as a function of the
barrier width a for different strengths of the Dresselhaus ef-
fect. From this figure, we can see that the interface current j�

is enhanced by the strength of the Dresselhaus effect �1 in
the contact regions, and show maxima at certain values of

FIG. 2. The spin-dependent transmission of electron as a func-
tion of barrier width q0a for GaSb material ��1=0, �2=187, V
=0.2 eV�. The inset shows the spin polarization P as a function of
barrier width q0a for the same condition.

FIG. 3. The interface current j� as a function of barrier width a
in unit of C0 for �a� GaAs ��1=0,�2=24,V=0.2 eV� and �b�
GaSb ��1=0,�2=187,V=0.2 eV�. The insets show the difference in
transmission between the spin states �+ and �−.

FIG. 4. �a� The spin polarization of electron as a function of
barrier width a including the Dresselhaus effects inside and outside
the barrier. �b� The difference between the transmission of the spin
states �+ and �−. �c� The total of the transmission of the spin states
�+ and �−.
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the barrier width a. It is interesting to notice that the inter-
face current j� reaches maximum when �1=�2, and decreases
as the strength of the Dresselhaus effect either in the barrier
or in the contact regions decreases. Considering the kinetic

energy of the electron is substantially smaller than the barrier
height V and e−q±a
1, we can obtain

j� � 
t+
2 − 
t−
2 � ��+��+e−2q+a − �−��−e−2q−a� . �15�

It is obvious that the interface current j� increases with in-
creasing �2 if we fix �1. Similarly, the interface current j�

decreases with decreasing �1 when we fix �2. Therefore the
interface current j� reaches a maximum when �1=�2.

In conclusion, we investigated the spin-dependent tunnel-
ing through a symmetric semiconductor barrier consisting of
zinc-blende semiconductor material. It is interesting to notice
that the spin polarization and the interface current j� are en-
hanced significantly by including the Dresselhaus effect in
the contact regions, and they all reach a maximum when the
strength of the Dresselhaus effect in the barrier is equal to
that in the contact regions, i.e., �1=�2.
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