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We study a single-mode Datta-Das spin field-effect transistor �SFET� in the presence �absence� of impurity
scattering and external magnetic fields, and find interesting mesoscopic effects such as peak splitting, phase
locking, and period halving. Experimental observation of these effects appears to be feasible in a single-mode
SFET made of materials such as InGaAs/ InAlAs.
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The spintronics1 aims to utilize the spin of electrons. One
of the representative spintronic systems is the Datta-Das spin
field-effect transistor �SFET�,2,3 which utilizes the phase dif-
ference between spin-up and -down electrons caused by the
Rashba spin-orbit interaction4,5 in a two-dimensional elec-
tron gas �2DEG�. Despite the intense experimental efforts,
the SFET has not yet been realized.3 There are theoretical
indications that the spin relaxation is severely suppressed in
a quasi-one-dimensional SFET �Ref. 6� even when it is not
strictly ballistic. Moreover it is suggested that to achieve a
SFET with large current modulation and low power con-
sumption, which is one of the prime advantages of spintron-
ics over conventional electronics, a SFET with only one
transverse mode is desired.7

In this paper, we report interesting mesoscopic effects in a
single-mode SFET �Fig. 1�a��, where a 2DEG of length L is
connected to a spin-selective injector and collector, both of
which are assumed to be magnetized along the x-direction
and ideal.8 With y-axis as its growth direction, the 2DEG in
the xz-plane is described by

H2D =
px

2 + pz
2

2m* + Vc�z� +
�

�
��zpx − �xpz� + Vsc�x,z� , �1�

where the transverse confinement potential Vc�z� is 0 for
�z��w /2 and � for �z��w /2, and w is smaller than �2� /ns,
ns being the electron density in the 2DEG, so that only one
transverse mode is allowed.9 Here �x and �z are the Pauli
matrices, Vsc�x ,z� is a nonmagnetic scattering potential, m* is
the effective mass, and � is the Rashba spin-orbit interaction
parameter. For various candidate systems of the SFET such
as InGaAs/ InAlAs,5 InAs/GaSb,10 InAs/AlSb,11 and
CdTe/HgTe/CdTe,12 the dimensionless number
�m*� /�2��2� /ns ranges from 0.01 to 0.1. Combined with
the single-mode constraint w��2� /ns, we assume below
m*�w /�2	1, implying negligible spin variation along the
transverse direction.

When m*�w /�2	1, a ballistic �Vsc�x ,z�=0� single-mode
SFET can be described by an effective one-dimensional �1D�
Hamiltonian,2 H1D

ballistic= px
2 /2m*+��zpx /�+Etr−m*�2 /2�2,

which produces an exact energy dispersion relation of H2D
�Fig. 1�b�� up to the second order in m*�w /�2. Here Etr
��2�2 /2m*w2 arises from the transverse quantization and
the last term is a correction to Etr due to −��xpz /� in H2D.

The application of the Landauer formula9 to a SFET re-
sults in the zero temperature �T=0� two-terminal conduc-
tance,

G =
e2

h

4 cos2 
0

2
sin2 k̄L

sin4 
0

2
+ 4 cos2 
0

2
sin2 k̄L

, �2�

where 
0�2m*�L /�2 is the spin precession angle over

length L, k̄��k↑
F+k↓

F+k↑
B+k↓

B� /4 is the average Fermi wave
vector, and k↑�↓�

F and −k↑�↓�
B are, respectively, the Fermi wave

vectors for forward and backward motion of spin up �z=1
�spin down �z=−1� electrons at the Fermi energy EF �Fig.
1�b��. Note that Eq. �2� differs from the conventional expres-
sion G= �e2 /h�cos2�
0 /2�. Physically this difference arises
from the interference of the Fabry-Perot-like multiple reflec-
tion trajectories between the injector and collector �see Fig.
2�a��, which has been previously discussed in Ref. 13. Ac-
cording to Eq. �2�, the conductance peak width varies con-

siderably with EF since k̄L�m*vFL /�+ �m*�L /�2��� /�vF�
changes by � when EF changes by ��vF /L. Here vF is the
Fermi velocity and � / ��vF� �	�m*� /�2��2� /ns	1� is as-
sumed to be small. At finite temperatures, the EF-dependence
is weakened by the thermal averaging and disappears for
kBT���vF /L; G= �2e2 /h� cos2�
0 /2� / �1+cos2�
0 /2��,
which still differs from the conventional result. Equation �2�
is found to be in good agreement with the results �Fig. 3�a��
of our numerical calculation for the original 2D Hamiltonian
H2D via the tight-binding �TB� approximation14 that takes
into account not only the 2DEG but also the injector and
collector.15

Mesoscopic effects become more pronounced when an

external magnetic field B� ext=B
ẑ is applied parallel to the
effective magnetic field due to the Rashba interaction. Below
we assume g*�BB
 	EF−Etr, where g* is the effective gyro-

FIG. 1. The schematic drawing of a Datta-Das spin field-effect
transistor �a�, the energy dispersion relations without magnetic field
�b�, and with magnetic field B
 parallel to ẑ �c�.
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magnetic ratio and �B is the Bohr magneton. With the effec-
tive Hamiltonian H1D

ballistic,B
 �H1D
ballistic−g*�BB
�z, the

energy dispersion relation is modified as shown in Fig. 1�c�.
The conventional approximation, which takes into account
only the first trajectory in Fig. 2�a�, results in G

= �e2 /h�cos2��
0−

� /2�, where 

�2g*�BB
 / ��vF /L�
represents the spin precession by B
. Thus all conductance
peaks are predicted to shift by 
��

 / �2m*L /�2�
=g*�BB
� /m*vF. On the other hand, correct summation of
all trajectories in Fig. 2�a� results in

G
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�3�
which predicts that upon the application of B
, each peak
splits into two, one drifting to the left and the other drifting
to the right by the amount �
��. The numerical calculation
result �Fig. 3�b�� for H2D

B
 �H2D−g*�BB
�z is in good
agreement with the prediction of Eq. �3�. Physically the
peak splitting arises from the difference between �k↓

F−k↑
F�L

=
0−

 and �k↑
B−k↓

B�L=
0+

 �Fig. 1�c��, which
represent the total spin precession angles �due to � and B
�

FIG. 2. �Color online� Electron trajectories contributing to the
transmission probability in a ballistic system �a�, and trajectories
contributing to the reflection probability in a ballistic system �b�. In
a nonballistic system, additional trajectories contribute to the trans-
mission �c�. Small �red� arrows in �a,b,c� indicate the spin direction
right after the injection or right after the reflection. �d� The sche-
matic drawing of an Aharonov–Bohm interferometer with a thread-
ing magnetic flux �.

FIG. 3. Conductance G of a SFET that consists of a 2DEG, ideal injector, and collector �Ref. 15�. H2D
B
 is approximated by a 2D

tight-binding Hamiltonian.14 The following parameters are used: m*=0.04 melectron, ns=1.7�1012 cm−2, g*�B=1.3�10−23 J /T, w=0.7
� �2� /ns�1/2�	�2 /m*��, and L=1.44 �m, where melectron is the free electron mass. �a� The ballistic case with B
 =0: The variation of G���
with EF at T=0. Inset: G��� at kBT=10�vF /L. The numerical result is in excellent agreement with the analytic high temperature expression
G= �2e2 /h� cos2�
0 /2� / �1+cos2�
0 /2��. �b� The ballistic case with B
�0: The variation of G��� with 2g*�BB
 / ��vF /L� at T=0. �c� The
nonballistic case with B
 =0: G��� at kBT=0 and kBT=6.2Ec. The seed number represents different impurity configurations, all of which have
the same ratio l /L=0.7. The graph for the seed 3 shows the scattering-induced peak splitting. The mean free path l is evaluated by the first
order Born approximation. Inset: Maximum and minimum values of G��� as a function of l /L for the seed 1 at kBT=6.2Ec. �d� The
nonballistic case with 2g*�BB
 =8��vF /L=8.7Ec: G��� at kBT=0 and kBT=14.5Ec. The seed number represents different impurity configu-
rations, all of which still have the same ratio l /L=0.3. Note the period halving. Upper inset: G��� at l /L=0.3 �solid line for seed 1, dashed
line for seed 2� and T=0. The symmetry G���=G�−�� holds for general B
. Lower inset: Magnitudes of the first �with period 2��2 /2m*L�
and second �with period ��2 /2m*L� harmonic components of G��� for l /L=0.3 �seed 1� as a function of the scaled temperature kBT /Ec.
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for forward and backward motion, respectively. Interestingly
cos2��
−

� /2�=1 for the right-drifting peaks and
cos2��
+

� /2�=1 for the left-drifting peaks �B
 �0 as-
sumed�. In the latter peaks, each trajectory for the
reflection probability of the forward moving electrons
�Fig. 2�b�� gives a vanishing contribution. The peak
splitting persists up to considerably high temperature
kBT	��EF−Etr� /g�BB
����vF /L� since EF-variation by this
energy scale does not alter 
� significantly.

In a nonballistic case �Vsc�x ,z��0�, the reduction of
H2D

B
 to an effective 1D Hamiltonian is less trivial since
Vsc�x ,z� is known to cause not only spin-conserving scatter-
ing but also spin-flipping scattering �spin↑ ↔spin↓ � via the
Elliot–Yafet �EY� mechanism.16 The spin-flipping scattering
rate can be estimated as follows: In the first order Born
approximation, the spin flipping rate from spin s to
−s is proportional to �
�−s�k���Vsc��s�k���2, where the
energy eigenstate ��s�k�� in the absence of Vsc is given in
Ref. 17 by eikx�0�z��cos�m*�z /�2��s�+ i sin�m*�z /�2��−s�
+O�m*�w /�2�2� and �0�z� is the transverse wave function of
the lowest mode. Note that the nominal spin s state ��s�k��
contains not only the spin s but also −s component due to the
Rashba interaction and thus has spin texture along the
z-axis.18 A straightforward calculation shows that the
spin flipping rate is proportional to �O�m*�w /�2�2�2
=O�m*�w /�2�4	1. Thus the spin-flipping scattering can be
safely neglected and one obtains H1D

B
 = px
2 /2m*+��zpx /�

+V��x�+Etr−m*�2 /2�2−g*�BB
�z, where V��x� is an effec-
tive nonmagnetic scattering potential that in principle de-
pends on �. The �-dependence is however found to be neg-
ligible when m*�w /�2	1.

For H1D
B
 , G at T=0 becomes G= �e2 /h��F�2, where

F = 2
t̂↑
Ft̂↓

F�t̂↑
B + t̂↓

B� − t̂↑
F�1 − r↓

F��1 − r↓
B� − t̂↓

F�1 − r↑
F��1 − r↑

B�

�t̂↑
F + t̂↓

F��t̂↑
B + t̂↓

B� − �2 − r↑
F − r↓

F��2 − r↑
B − r↓

B�
�4�

takes into account all possible nonballistic trajectories �Fig.
2�c�� as well. Here t̂↑�↓�

F/B �exp�ik↑�↓�
F/B L�t↑�↓�

F/B , and t↑�↓�
F/B , and r↑�↓�

F/B

are respectively the transmission and reflection amplitudes of
spin up �down� electrons incident from left �right�.19 Inter-
estingly Eq. �4� is identical to the result �Eq. �3� in Ref. 20�
for an Aharonov–Bohm interferometer �Fig. 2�d��, which ex-
hibits various mesoscopic phenomena. This agreement is not
a mere coincidence and a formally exact correspondence can
be established; the spin up and down channels in a SFET vs.
the upper and lower arms of an AB interferometer, and the
spin-selective injector and collector of a SFET vs. the three-
way splitters of an AB interferometer �Eq. �2� in Ref. 20�.
Moreover � in a SFET corresponds to the threading mag-
netic flux � in an AB interferometer in the sense that they
both induce the phase difference between two channels
�arms�. This relation between the two systems suggests that a
SFET may show similar mesoscopic behaviors as an AB in-
terferometer.

There is, however, a delicate difference between the two
systems: While scattering amplitudes of the two arms in an
AB interferometer are statistically independent, scattering

amplitudes of the two spin channels in a SFET are corre-
lated. To reveal the correlations, we use the gauge transfor-
mation �̃=exp �i�m*�x /�2��z��, which maps H1D

B
 to

H̃1D
B
 � px

2 /2m*+V��x�+Etr−m*�2 /�2−g*�BB
�z. For B
 =0,

scattering amplitudes of H̃1D
B
=0 satisfy t̃↑

F/B�E�= t̃↓
F/B�E�

��t̃0
F/B�E�� and r̃↑

F/B�E�= r̃↓
F/B�E� ��r̃0

F/B�E�� since spin
is decoupled from orbital motion. Moreover t̃0

F�E�
= t̃0

B�E� ��t̃0�E�� due to the time-reversal symmetry.
Taking into account the Zeeman energy and the gauge trans-
formation, one then obtains for H1D

B
 the inter-channel corre-
lations, t↑

F/B�E−g*�BB
�= t↓
F/B�E+g*�BB
� �=t̃0�E�� and

r↑
F/B�E−g*�BB
�=r↓

F/B�E+g*�BB
� �=r̃0
F/B�E��. When these

inter-channel correlations are combined with the energy cor-
relation within each channel, namely t̃0�E� �also r̃F/B�E�� as a
function E being correlated over the Thouless correlation
energy Ec��2��vF /L��l /L�,21,22 where l is the mean free
path, the scattering amplitudes of the spin-up and down
channels at an equal energy are correlated if 2g*�BB
 	Ec.
In contrast, the two interfering arms in an AB interferometer
do not have such correlations.

We first study the high field regime 2g*�BB
 �Ec, where
the inter-channel equal-energy correlations are negligible. To
illustrate scattering-induced mesoscopic effects, it is useful
to confine ourselves to special B
’s with sin 

=0, where, in
a ballistic case, left- and right-drifting peaks cross each other
�see Fig. 3�b�� and even the conventional approximation pre-
dicts the peak positions correctly. For those B
’s and at
T=0, the conventional approximation applied to a nonballis-
tic case results in G= �e2 /2h����t↑

F�2+ �t↓
F�2� /2+ �t↓

Ft↑
F*�cos�
0

−

+arg�t↓
F�−arg�t↑

F���, where arg�t↑/↓
F � represents the phase

of t↑/↓
F . Since t↑

F and t↓
F are independent of each other, the

conventional approximation predicts a scattering-induced
peak shift ��= ��2 /2m*L��arg�t↓

F�−arg�t↑
F��, which can have

any value in principle. According to Eq. �4�, however, �� is
locked to special values ��2 /2m*L�nlocking� �Fig. 3�d��,
where nlocking is an integer. Roughly speaking nlocking is an
integer nearest to �arg�t↓

F�−arg�t↑
F�� /�. This phase locking in

a SFET is in correspondence with the phase locking in an AB
interferometer.23,24 The physical origin of the phase locking
is a bit different in the two systems though. While the phase
locking in an AB interferometer arises from the time-reversal
symmetry, which enforces G���=G�−��,23 the phase lock-
ing in a SFET arises from two symmetries: the first symme-
try being the time-reversal symmetry, which enforces
G�� ,B
 ,ML ,MR�=G�� ,−B
 ,−ML ,−MR� where ML/R is the
magnetization of the injector �collector� along the x-axis, and
the second symmetry being the spin rotation of the entire
system by � about the y-axis followed by the simultaneous
reversal of the magnetization, magnetic field, and �, which
enforces G�� ,B
 ,ML ,MR�=G�−� ,−B
 ,−ML ,−MR�. The nu-
merical calculation results of H2D

B
 confirm the relation
G�� ,B
 ,ML ,MR�=G�−� ,B
 ,ML ,MR� �upper inset in Fig.
3�d��, which is a combined result of the two symmetries. The
numerical results �Fig. 3�d�� are also in good agreement with
the phase locking prediction. Note that nlocking and also the
oscillation amplitude fluctuate considerably among different
realizations of V��x�, all of which still have the same ratio
l /L. These fluctuations are due to the well known phenom-
enon of conductance fluctuations.9
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The EF-dependent fluctuations of scattering amplitudes
implies that the integer nlocking also fluctuates with EF and is
correlated over the energy scale Ec. Thus at high tempera-
tures �kBT�Ec�, the energy dependent fluctuation of nlocking
is expected to self-average and suppress the conductance os-
cillation with �. The way the oscillation is suppressed is
rather peculiar however. As shown in the lower inset of Fig.
3�d�, the self-averaging suppresses only the first harmonic
component of the �-dependent oscillation �with period
2��2 /2m*L� while the second harmonic component �with
period ��2 /2m*L� is not significantly affected. As a result,
the oscillation period at high temperatures is reduced to half
of the original value �Fig. 3�d��, which is in an exact corre-
spondence with the period halving in an AB interferometer
�Ref. 25� due to the temperature-induced self-averaging. We
also remark that the suppression of the first harmonic com-
ponent is not specific to the special B
’s used for illustration
but occurs for arbitrary B
 with 2g*�BB
 �Ec.

Next we study the low field regime 2g*�BB
 	Ec. In par-
ticular, we focus on the zero field case, where perfect equal-
energy correlations exist between the two spin channels:
t↑
F/B�E�= t↓

F/B�E� �=t̃0�E��, and r↑
F/B�E�=r↓

F/B�E� �=r̃0
F/B�E��. An

immediate consequence is the identically vanishing conduc-
tance for cos2�
0 /2�=0, which uniquely fixes the integer
nlocking to be zero. The correlations also prevent the period
halving at high temperatures since nlocking does not fluctuate
with EF. Then the magnitude of the first harmonic compo-
nent can be estimated by the conductance at cos2�
0 /2�=1,
which is G= �e2 /h��t̃0�EF��2 at T=0. We remark that the os-
cillation amplitude suppression of G by the factor �t̃0�EF��2 is
not due to the spin relaxation but rather due to the imperfect

transmission probability �t̃0�EF��2, which fluctuates from
sample to sample by order 1 due to the phenomenon of the
conductance fluctuations.9 We also remark that occasionally
the magnitude of the second harmonics is comparable to the
magnitude of the harmonics, which may result in a
scattering-induced peak splitting. At high temperatures kBT
�Ec, the peak splitting disappears due to the thermal aver-
aging of E-dependent fluctuations and the peak conductance
at cos2�
0 /2�=1 is roughly given by �e2 /h��l /L� for l /L
�1.26 These predictions are in good agreement with the nu-
merical calculation results of H2D in Fig. 3�c�.

We remark that the predicted mesoscopic effects can be
revealed only when both spin and orbital degrees of freedom
are analyzed quantum mechanically and thus go beyond
semiclassical treatments �Ref. 6� that ignore quantum me-
chanical nature of the orbital degree of freedom. We also
remark that our preliminary numerical calculation for three
transverse modes also shows peak splitting, phase locking,
and period halving. Thus the predicted mesoscopic effects
are not restricted to a single-mode SFET only. Further stud-
ies on a SFET with multiple transverse modes are necessary.
Finally we expect that the predicted mesoscopic effects can
be observed in a single-mode SFET made of materials such
as InGaAs/ InAlAs,5 InAs/GaSb,10 InAs/AlSb,11 and
CdTe/HgTe/CdTe,12 for which our assumption m*�w /�2

	1 holds.
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