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An ensemble Monte Carlo method is used to study the spin injection through a ferromagnet-semiconductor
junction where a Schottky barrier is formed. It is shown that the Schottky-barrier-induced electric field, which
is confined in the depletion region and is parallel to the injection direction, is very large. This electric field can
induce an effective magnetic field due to the Rashba effect and cause strong spin relaxation.
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Spin injection from a ferromagnetic metal contact into a
nonmagnetic low-dimensional semiconductor structure is
one of the prerequisites for the realization of the next gen-
eration of high-speed low-power devices based on the spin
degree of freedom.1–3 Notwithstanding the fact that many
efforts have been devoted to this problem experimentally,4,5

an efficient room-temperature spin injection is still far away
from the horizon.5 In the meantime, there are many theoret-
ical investigations7–9 on the spin injection through the
ferromagnet-semiconductor junction where a high potential
Schottky barrier is formed.6 In these studies the interface is
treated through various boundary conditions.7,8 Large �up to
100%� spin injections are reported in these theories. Very
recently Shen et al. reported an ensemble Monte Carlo �MC�
simulation of the spin injection through a Schottky barrier
into a semiconductor quantum well �QW�.9 In this study, the
Schottky barrier is treated carefully through the simulation.
Still they reported a substantial spin polarization after the
injection to a length scale in the order of 1 �m at room
temperature without an external magnetic field. Therefore
there must be something missing in the theories in dealing
with the ferromagnet-semiconductor junctions.

It is noted that the Schottky barrier induces a very large
electric field parallel to the QW. Such an electric field can
induce an effective magnetic field due to the Rashba effect10

and can therefore cause a strong reduction of the spin polar-
ization after the injection. This effect has long been ne-
glected in the literature. A quantitative estimation of this re-
laxation mechanism requires an accurate computation of the
electric field induced by the Schottky barrier that varies
strongly with the position and is confined in the depletion
region. For this purpose we apply an ensemble MC simula-
tion to simulate the Schottky barrier and examine the spin
relaxation induced by this additional relaxation mechanism
under various conditions.

We study a ferromagnet-semiconductor diode that is one
of the elements for many spintronic devices.11 The spin-
polarized particles are injected from a bulk ferromagnetic
metal into a GaAs QW through a Schottky barrier by both
thermionic emission and tunneling injection, excluding the
recombination in the space-charge region and the hole injec-
tion from the metal to the semiconductor.6 The direction of
injection is parallel to the QW plane. The electron transport
in the QW is based on the semiclassical approximation, sim-

ply including a “drift” and a “scattering” process: During the
drift process, the spin is influenced by both the Rashba10 and
the Dresselhaus12 spin-orbit interactions. The method of the
MC simulation has been laid out in detail in Ref. 13 for the
Schottky barrier simulation, in Refs. 14 and 15 for the spin-
transport simulation, and in Ref. 9 for the spin-injection
simulation. For the inhomogeneous electron distribution in
the depletion region, the compression-expansion technique
presented by Martin et al.16 has to be applied. In this Brief
Report we do not repeat these details except for the differ-
ences, which are addressed in the following.

At finite temperature T, the total current injected from a
ferromagnetic metal to a semiconductor through the Schottky
barrier is written as6

jms�Ex� =
A*T

kB
�

0

�

Tms�Ex�fm�E��1 − fsc�E��dE , �1�

where kB denotes the Boltzmann constant and A* stands for
the Richardson constant. Tms�Ex� is the tunneling probability
through the barrier at the energy Ex, which represents
the kinetic energy along the x direction �the injection
direction�. It is 1 for Ex��B and Tms�Ex�=exp�−�2/��
��0

xtp�2m*�Ec�x�−Ex�	 for 0�Ex��B following the WKB
approximation. �B represents the Schottky barrier height at
the metal-semiconductor interface, xtp is the electron position
after tunneling, and Ec�x� stands for the bottom of the con-
duction band in the semiconductor. fm�E� and fsc�E� are the
electron distribution functions in the ferromagnetic metal and
semiconductor, respectively, with E standing for the total en-
ergy. It is emphasized here that unlike the previous works,9,13

the current and the tunneling probability are only functions
of Ex, instead of E. After injection, electrons start traveling in
the QW subject to the spin-orbit interactions, the electric
field, and the electron-phonon and possible electron-impurity
scattering. The spin-orbit interaction is described by Hso�x�
=HR�x�+HD, with the spacial variable-dependent Rashba
term

HR�x� = 	��
xky − 
ykx�Ez − ky
zEx�x�� , �2�

the linear Dresselhaus term HD
�1�=�
kz

2��
yky −
xkx�, and the
cubic Dresselhaus term HD

�3�=��
xkxky
2−
ykykx

2�. Ex�x� in
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Eq. �2� is the Schottky-barrier-induced electric field �SBIEF�.
The effective magnetic field induced by it in Eq. �2� has a
significant influence to the spin relaxation and has long been
overlooked in the literature.

We apply the MC method to study the spin injection from
the magnetic Fe to �001� GaAs QW through a Schottky con-
tact. The well width is 8 nm. The Schottky barrier height in
the simulation is fixed to be �B=0.72 eV.17 We use the fol-
lowing spin-orbit coupling constants: �=28 eV Å3 for the
Dresselhaus effect18 and 	=740 eV Å2 for the Rashba one.19

The channel length along the spin transport is Lx=2.5 �m.
The injection takes place at the Fe/GaAs interface at x=0.
As we investigate the spin injection from the source, the
drain is assumed to be in ohmic contact with the QW. In the
figures of this paper, we only show the results for the initial
1 �m. In the MC simulation, we divide Lx into 500 cells and
choose the time step to be �t=1 fs. To achieve the steady
transport region, we run the simulation program for 10 000
time steps and get the results by averaging over the last 3000
steps. The initial spin polarization is always assumed to be
along the x axis throughout this paper.

The simulated Schottky barrier shape, which is deter-
mined by the solution of the Poisson equation and the MC
simulation of the electron distributions self-consistently, is
shown in Fig. 1 for different electron densities n in semicon-
ductor QW. An inverse bias voltage V=0.2 V is applied in
the simulation, which is in favor of the electron injection
from the ferromagnetic metal into the semiconductors.6 The
large bending near the contact indicates the existence of a
depletion layer where the electron concentration is negli-
gible. It also gives an electric field Ex�x� that is shown in the
inset of the figure. It can be seen that the Schottky barrier
becomes thicker when the electron density in the QW is de-
creased. This is in consistent with the approximation relation
that the Schottky barrier width is proportional to n−1/2.6 Due
to the change of the shape of the barriers, the SBIEF changes
also at different electron densities as shown in the inset of
Fig. 1.

Because of the large population of the spin-unpolarized
electrons in the device, especially beyond the depletion re-

gion, the total spin polarization averaged over all the par-
ticles at a given position reduces to nearly zero at about x
=20 nm.9,20 We want to get the spin evolution of the injected
electrons, so our simulation only gets the spin polarization at
each grid averaged over the injected spin-polarized electrons.
In fact, the spin polarization of electrons in the interface of
the ferromagnetic metal is determined by the spin-dependent
density of states of electrons in the ferromagnetic contact.
Nevertheless, in order to investigate spin polarization clearly,
we assume the injected carrier is Sx=100% spin polarized
first. We use �S�=�Sx

2+Sy
2+Sz

2 to denote the spin polarization
of the injected electrons. Moreover, differing from the previ-
ous works9,15 where the electron density is as high as
1012 cm−2, in the present paper we only concentrate on the
case with density being smaller than 1011 cm−2. This is be-
cause when the electron density is high, the chemical poten-
tial is large compared to kBT. Therefore, one should not use
the Boltzmann distribution. Nevertheless, the MC method
treats the scattering semiclassically and does not contain any
distribution function. Consequently, it can only be applied to
the problems with low electron density.

In Fig. 2 the spin polarization �S� is plotted as function of
the position x at temperatures T=300 and 70 K without �the
red and blue or the dashed and dotted curves� and with �the
green and pink or the solid and chain curves� the SBIEF
Ex�x� in the Rashba term �Eq. �2��. The electron density is
1010 cm−2 in the simulation. We also show the effects of the
cubic Dresselhaus term to the spin relaxation by performing
the simulation with �the blue and pink or the dotted and
chain curves� and without �the red and green or the dashed
and solid curves� HD

�3�. It is seen from the figure that the
SBIEF Ex�x� in Eq. �2� leads to a pronounced spin relaxation
in the depletion region. The spin polarization is almost zero
after the depletion layer, in contrast to the previous report of
a substantial amount at the length scale of 1 �m.9 The spin
relaxation in all the cases is due to the D’yakonov and Perel’
mechanism.21 It is further noted from the figure that after the
fast initial drop of the spin polarization in the depletion re-
gion, the spin polarization also slowly decreases with the
position. This is because of the spin relaxation induced by
the Rasbhba terms from the electric field perpendicular to the

FIG. 1. Energy of the simulated Schottky barriers for two elec-
tron densities n at bias V=0.2 V and T=300 K. Solid curve: n
=1011 cm−2; dotted curve: n=1010 cm−2. The corresponding electric
fields are shown in the inset.

FIG. 2. �Color online� Spin-polarization evolution at different
temperatures without �the red and blue or the dashed and dotted
curves� and with �the green and pink or the solid and chain curves�
SBIEF Ex�x� in the Rashba term. The effect of the cubic Dressel-
haus term is shown by including �the blue and pink or the dotted
and chain curves� and excluding �the red and green or the dashed
and solid curves� this term in the simulation. n=1010 cm−2.
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QW, i.e., Ez, and the Dresselhaus terms. This is in contrary to
the results reported by Shen et al.,9 where they show that the
spin polarization keeps almost constant beyond the depletion
region. It is further seen from the figure that the third-order
Dresselhaus term has marginal effect on the spin relaxation,
especially at the depletion region where the Rashba term is
dominant. This is because that the energy along the y direc-
tion �kBT� is small, so that ky

2 is small compared to kz
2 in the

Dresselhaus term.
We further investigate the effect of the SBIEF to the spin

injection at higher electron density �but still barely in the
nondegenerate regime�. The curves in Fig. 3 are exactly cor-
responding to the cases in Fig. 2 except the electron density
is 1011 cm−2, an order of magnitude larger. It is seen from the
figure that after the depletion region of Fig. 3, the injected
spin polarizations all become smaller compared to the corre-
sponding cases in Fig. 2. This is due to the enhanced Rashba
and Dresselhaus terms at high electron densities. It is seen
from the figure that the effective magnetic field induced by
the SBIEF Ex�x� in Eq. �2� again markedly reduces the spin
injections. It is further noted from the figure that the cubic
Dresselhaus term HD

�3� shows a larger influence than the low
electron density case. This is because the SBIEF is much
larger at the high electron density case �see Fig. 1�. This field
drives electrons to a much larger �kx� and gives a larger cubic
Dresselhaus term. It is also seen from Fig. 3 that the effect of
cubic Dresselhaus term gradually reduces with the decrease
of temperature. This is because ky

2 becomes smaller for lower
temperature.

It is noted that the MC method cannot be applied to the
strong degenerate �high density� case as reported by Shen et
al. where the electron density is taken as high as
1012 cm−2.9,15 In the strong degenerate case, the electron dis-
tribution in the scattering cannot be overlooked any more
and the MC method fails. Moreover, the Boltzmann sam-
pling, which is independent of the density, should be
changed into Fermi sampling. In fact, even for the density at

1011 cm−2, the nondegenerate approximation is already
barely valid. In Fig. 4 we show the spin injections by using
different samplings �Fig. 4�a� for Boltzmann sampling and
Fig. 4�b� for Fermi sampling� at n=1011 cm−2, with the scat-
tering still kept to be semiclassical. One can clearly find the
marked difference. This is because when the Boltzmann sam-
pling is used, the energy along the y axis is fixed in the range
of kBT, regardless of the density. However, it is much larger
by the Fermi sampling at the high density case. Therefore, at
the high density case, the Rashba and the Dresselhaus terms
are both weaker from the Boltzmann sampling. This leads to
a larger spin polarizations. For density at 1010 cm−2 reported
in Fig. 2, both samplings give the same results.

In Figs. 2–4 we assume the injected electron spin polar-
ization is 100%. In fact, the initial spin injection, which is
determined by the spin-state probability of electrons in the
ferromagnetic contact and can be obtained from the micro-
scopic models of ferromagnetic metal,22 is about 40%. Fig-
ure 5 shows the results of the spin polarization inside the
semiconductor QW with electron density n=1010 cm−2,
when the initial injected electron spin polarization is 40%.
The main results are all the same as those shown in Fig. 2.
As the initial spin polarization is low, the spin polarization
beyond the depletion layer is lower than the corresponding
case in Fig. 2 and reduces to zero more quickly.

In conclusion, an ensemble MC method is used to simu-
late the spin-polarized electron injection through a Schottky
barrier and transport in two-dimensional semiconductor
QWs with both Rashba and Dresselhaus spin-orbit coupling.

FIG. 3. �Color online� Same as Fig. 2 but with the electron
density n=1011 cm−2.

FIG. 4. �Color online� Comparison of the MC simulation with
the Blotzmann sampling �a� and the Fermi sampling �b� for elec-
trons at relatively high density n=1011 cm−2. T=300 K. The mean-
ings of the curves are all the same as those in Figs. 2 and 3.

FIG. 5. �Color online� Same as Fig. 2 but with the initial spin
polarization being 40%.
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We show that the SBIEF not only drives electron to higher
momentum states during the injection, which influences the
spin relaxation via the Dresselhaus and the Rashba term, but
also provides an effective magnetic field due to the Rashba
effect. We show that this SBIEF-induced effective magnetic
field is very strong and gives a pronounced effect to the spin
dephasing at the Schottky barrier area. Consequently the spin
injection becomes almost negligible after the Schottky bar-
rier region. This effect has long been overlooked in the lit-
erature. Moreover, this effective magnetic field also provides
additional relaxation due to the many-body effect,23 which is

beyond the scope of the MC simulation and will be reported
elsewhere.
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