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We have carried out a determination of the magnetic field temperature �H-T� phase diagram for realistic
models of the high-field superconducting state of tetragonal Sr2RuO4 with fields oriented in the basal plane.
This is done by a variational solution of the Eilenberger equations. This has been carried for spin-triplet gap
functions with a d vector along the c axis �the chiral p-wave state� and with a d vector that can rotate easily in
the basal plane. We find that, using gap functions that arise from a combination of nearest- and next-nearest-
neighbor interactions, the upper critical field can be approximately isotropic as the field is rotated in the basal
plane. For the chiral d vector, we find that this theory generically predicts an additional phase transition in the
vortex state. For a narrow range of parameters, the chiral d vector gives rise to a tetracritical point in the
H-T phase diagram. When this tetracritical point exists, the resulting phase diagram closely resembles the
experimentally measured phase diagram for which two transitions are only observed in the high-field regime.
For the freely rotating in-plane d vector, we also find that an additional phase transition exists in the vortex
phase. However, this phase transition disappears as the in-plane d vector becomes weakly pinned along certain
directions in the basal plane.
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I. INTRODUCTION

It is widely believed that tetragonal Sr2RuO4 �Refs. 1–3�
is a spin-triplet chiral p-wave superconductor. In particular, a
pairing state characterized by a gap function d= ẑ�kx± iky�
best explains existing experimental results. The observation
of the appearance of local magnetic moments below the su-
perconducting transition temperature by muon spin-
resonance ��SR� measurements of Luke et al.4 can qualita-
tively be accounted for by the twofold degeneracy of
the order parameter �a nondegenerate order parameter
cannot give rise to local magnetic moments�. The nuclear
magnetic resonance5,6 and spin polarized neutron-scattering
measurements7 carried out for fields applied perpendicular to
the fourfold symmetric c axis show that the spin susceptibil-
ity is unchanged by the normal to superconductor transition.
This is naturally explained by d= ẑ�kx± iky� since the d vector
is perpendicular to the magnetic field for which no change of
spin susceptibility is expected. Also, the Josephson experi-
ments of Liu et al. arguably place the strongest constraint on
the orientation of d vector8,9 and also implies a chiral p-wave
superconducting state with d � ẑ. Finally, the observed field
distribution of the vortex lattice for the field along the c axis
is not consistent with a nondegenerate �single component�
order parameter but can be accounted for by the chiral
p-wave state.10,11

These experiments provide a convincing picture in favor
of a chiral p-wave superconductor. However, there are some
experiments that do not directly support this state. In particu-
lar, the more recent Knight shift measurements of Murakawa
et al. have been carried out for the field along the c axis.6

These measurements reveal no change in the spin suscepti-
bility. For this field orientation, this would lead to the con-
clusion that d vector is in the basal plane, not along the c axis
as would be the case for the chiral p-wave state. The simplest

interpretation of this experiment is that the magnetic field is
sufficiently strong as to rotate d from ẑ to the basal plane.
This would imply that the transition temperatures for d in the
plane are close but slightly less than that for d along ẑ. This
is possible if spin-orbit coupling is weak. Another explana-
tion for the Knight shift data is that the d vector is in the
basal plane, but free to rotate in the plane. This would re-
quire all four possible in-plane degrees of freedom to be
degenerate �or at least nearly degenerate�. If this is the case
then for any in-plane field orientation, the d vector will have
an in-plane component perpendicular to the field. Conse-
quently, the spin susceptibility will remain unchanged for
fields applied in the basal plane as well.

Another difficulty with the chiral p-wave state is that, for
magnetic fields applied in the basal plane, there are two
qualitative predictions for which there is little experimental
evidence. These are

�i� the existence of an anisotropy in the upper critical
field as the field is rotated perpendicular to the fourfold sym-
metry axis that does not vanish as T→Tc;

12

�ii� the existence of a phase transition in the vortex state
in addition to the usual transitions at Hc2 and Hc1. This ad-
ditional transition is due to a change in the structure of the
order parameter.13

The primary goal of this work is to understand if there are
microscopic theories of the chiral p-wave state that can lead
to situations where the above predictions �i� and �ii� do not
hold. We find that it is plausible that one of the two predic-
tions does not hold, but it is less likely that both do not hold.
Intriguingly, this analysis also points to the possibility of a
tetra-critical point in the H-T phase diagram. This tetracriti-
cal point has features that agree with recent experimental
measurements in high magnetic fields.14 Given the difficul-
ties that the chiral p-wave state has explaining the H-T phase
diagram, we also address the possibility of an in-plane d
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vector to see if it can account for the observed phase dia-
gram. This follows a discussion of the limited conditions for
which an in-plane d vector is consistent with experimental
results. We find that an in-plane d vector that is nearly free to
rotate in the plane can explain the H-T phase diagram.

The paper begins with an overview of Ginzburg-Landau
theory for the chiral p-wave state to provide the origin of the
two predictions �i� and �ii� above. Then we discus the role of
spin-orbit coupling on the orientation of the d vector. This
discussion motivates an examination of the quasiclassical
equations in a magnetic field for which more than one irre-
ducible representation is important. The quasiclassical equa-
tions are solved using an approximation that is valid in high-
field regime for all temperatures. We present the resulting
H-T phase diagrams for the chiral p-wave state. Finally, after
a discussion of the consistency of an in-plane d vector with
existing experimental results, we present results on the H-T
phase diagram for this case as well.

II. GINZBURG-LANDAU THEORY

The simplest framework within which the role of mag-
netic fields on the chiral p-wave state can be understood is
the Ginzburg-Landau theory. Here we give a brief overview
of this theory to demonstrate the origin of the additional
transition and the anisotropy in the upper critical field that
we will discuss later within a microscopic theory. The free-
energy density for the Eu representation of D4h with a basis
�= ��x ,�y� �this basis has the same rotation properties as
�x ,y�� is given by12,15

f = − ���2 + ���4/2 + �2��x�y
* − �y�x

*�2/2 + �3��x�2��y�2

+ �Dx�x�2 + �Dy�y�2 + �2��Dy�x�2 + �Dx�y�2�

+ �5��Dz�x�2 + �Dz�y�2� + �3��Dx�x��Dy�y�* + H.c.�

+ �4��Dy�x��Dx�y�* + H.c.� + h2/�8�� , �1�

where Dj =� j − �2ie /�c�Aj, h=��A, and A is the vector
potential. There are three possible homogeneous phases:12,15

�a� �= �1, i� /�2 ��2	0 and �2	�3 /2�, �b� �= �1,0� ��3

	0 and �2
�3 /2�, and �c� �= �1,1� /�2 ��3
0 and �2


0�. Phase �a� is nodeless �if the Fermi surface has the same
topology as a cylinder� and phases �b� and �c� have line
nodes. Weak coupling theories give rise to phase �a�: the
chiral p-wave phase. The application of a magnetic field in
the basal plane breaks the degeneracy of the two components
�x and �y. For the chiral p-wave state, symmetry arguments
imply that the vortex lattice phase diagram contains at least
two vortex lattice phases for magnetic fields applied along
any of the four twofold symmetry axes: ��1,0,0�, �0,1,0�,
�1,1,0�, �1,−1,0�	.13,16 To illustrate the origin of these phase
transitions, consider a zero-field ground state �= �1, i� and a
magnetic field applied along the �1,0,0� direction. Due to the
broken tetragonal symmetry, the degeneracy of the �
= �1,0� and the �= �0,1� solutions is removed by the mag-
netic field. Consequently, only one of these two possibilities
will order at the upper critical field. However, if the system is
spatially uniform along the magnetic field, then the solution
near the upper critical field will exhibit a symmetry that the

zero-field solution does not. For our example, this symmetry
is either �x �if �= �0,1� orders at Hc2� or −�x=U����x �if
�= �1,0� orders at Hc2� where U��� is a gauge transforma-
tion and �x is a reflection through the x axis. The only way
this can occur is if there is an additional phase transition as
magnetic field is reduced to break this symmetry. The only
difference that occurs for the field applied along the �1,1,0�
direction is that the solution near the upper critical field will
be either �= �1,1� or �= �1,−1�.

Another result of the Eu theory that follows from Eq. �1�,
originally shown by Gor’kov, is that the upper critical field is
anisotropic near Tc.

12 Such an anisotropy, for which
dHc2 /dT�T=Tc

is not equal for �1,0,0� and the �1,1,0� direc-
tions, cannot occur for order parameters that have only one
complex degree of freedom.12 The anisotropy in upper criti-
cal field near Tc has been calculated from microscopic cal-
culations for the in-plane fields, along the �1,0,0� and �1,1,0�
directions, for a gap function of the form d�k�= ẑ�� xfx�k�
+�yfy�k��.17 These calculations show that anisotropy is gen-
erally much larger than that experimentally observed. How-
ever, under certain special circumstances, this anisotropy can
be small.17 To examine the lack of anisotropy for the whole
temperature range requires a microscopic model that goes
beyond the Ginzburg-Landau theory as is done below. Note
that previous microscopic studies of the chiral p-wave state
for in-plane magnetic fields18,19 did not reveal the physics
discussed here. This was because the order parameter in
these works was fixed to have the form �= �1, i� for all mag-
netic fields and temperatures. Such an approximation is valid
only for fields much smaller than Hc2.

III. SPIN-ORBIT COUPLING AND THE
ORIENTATION OF d

An important interaction in determining the specific spin-
triplet pairing state in Sr2RuO4 is spin-orbit coupling. We
quantify this in this section. From a symmetry point of view,
the superconducting state belongs to one of the odd-parity
representations of the tetragonal point group D4h.12,15 The
quasi-two-dimensionality of the Fermi-liquid state in
Sr2RuO4 makes it reasonable to assume that the momentum
dependence of the superconducting state is described by
functions fx�k� and fy�k� which obey the same symmetry
transformation properties as kx and ky, respectively, under
rotations of D4h �but otherwise are arbitrary�. When there is
no spin-orbit coupling, the spin-triplet state has sixfold
degeneracy,20,21 the transition temperature Tc will be same

TABLE I. Gap functions and interaction strengths for the differ-
ent representations of D4h.

Rep ��� Gap function Interaction �V��

A1u x̂fx+ ŷ f y gz−2�g2+g3�
A2u x̂fy − ŷ fx gz+2�g2+g3�
B1u x̂fx− ŷ f y gz−2�g2−g3�
B2u x̂fy + ŷ fx gz+2�g2−g3�
Eu ẑ�fx± ify� 2g1−gz
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for any linear combination for gap functions given in Table I.
When spin-orbit coupling is included, the degeneracy of Tc
will be lifted. The stable state will either have the d vector
along the c axis or be a linear combination of in-plane d
vectors.

To quantify the role of spin-orbit coupling, we follow an
approach developed by Sigrist et al.22 In particular, the effect
of spin-orbit coupling is included through the magnetic sus-
ceptibility. The Hamiltonian with a general pairing interac-
tion is

H = 

k,s

kcks
† c−ks +

1

2 

k,k�



s1s2s3s4

Vk,k�;s1s2s3s4
cks1

† c−ks2

† c−k�s3
ck�s4

,

�2�

where k is electron band energy measured from the Fermi
energy and cks

† ,cks are the fermion creation and annihilation

operators. As a concrete model, we use an effective pairing
interaction that is due to spin fluctuations.22 However, the
results that we require later depend solely upon the splitting
of the sixfold degeneracy �this can be incorporated in a
model independent way within the quasiclassical theory�.
The effective pairing interaction we use is

Vkk�,s1,s2,s3,s4
= −

I2

16

�,�

����,��k,k�� + ��,��k,k����s1,s4

� �s2,s3

�

− ���,��− k,k�� + ��,��k,− k����s2,s4

� �s1,s3

� 	 ,

�3�

where I is a coupling constant, and ����k ,k�� is the static
susceptibility. The phenomenological form of ��,��k ,k�� in a
material of tetragonal symmetry is

��,��k,k�� = �g1�fx fx� + fy fy�� + g2�fx fx� − fy fy�� g3�fx fy� + fy fx�� 0

g3�fx fy� + fy fx�� g1�fx fx� + fy fy�� − g2�fx fx� − fy fy�� 0

0 0 gz�fx fx� + fy fy��
� , �4�

where g1, g2, g3, and gz are phenomenological parameters.
The self-consistency equation for the d vector with the above
interaction can be solved to get the superconducting transi-
tion temperature, kBTc=1.14�c exp�−16/ I2N�0�V�� for the
different representations � �V� corresponds to the interaction
for the representation ��. These are listed in Table I.

In the limit g1=gz and g2=g3=0 there is no spin-orbit
coupling and all the representations will be degenerate. If
there is cylindrical symmetry then g2=g3. Notice that this
does not imply that that all the in-plane pairing states are
degenerate. For this to occur, g2=g3=0. It is instructive to
use results from recent microscopic calculations to gain an
insight into the relative size of �g1 ,g2 ,g3 ,gz	.21,23 Both these
papers reveal that deviation from the isotropic limit is small,
since all the representations have very similar transition tem-
peratures. The results of Ref. 23 correspond to the limit g3
=0, g1	gz, and �g1−gz�� �g2�. Based on these results we will
assume that �g2�,�g3�� �g1−gz�. The case g1	gz corresponds
to the chiral pairing state.21,22 While the case gz	g1 and �g2�,
�g3�� �g1−gz� corresponds to the nearly degenerate in-plane d
vector. We will consider both these cases in the following.

IV. EILENBERGER EQUATIONS FOR THE � BAND

An important aspect for understanding the superconduct-
ing state in Sr2RuO4 is the band structure. In particular, the
states near the Fermi surface are derived from the Ru t2g
orbitals. The degeneracy of these orbitals are split by the
tetragonal crystal field into a xy orbital and the degenerate
�xz ,yz	 orbitals.24–27 These two sets of orbitals have a differ-

ent parity under a mirror reflection through the basal plane.
Consequently, to first approximation, the � sheet of the
Fermi surface is comprised of xy Wannier functions, while
the �� ,�	 sheets of the Fermi surface are comprised of
�xz ,yz	 Wannier functions. This leads naturally to orbital de-
pendent superconductivity;28,29 a theory for the supercon-
ducting state that has different gaps on the �� ,�	 and �
sheets of the Fermi surface. This theory has experimental
support through specific-heat measurements in magnetic
fields.30,31 These measurements indicate that for strong fields
applied in the basal plane, superconductivity in the �� ,�	
bands is suppressed and the � band has the dominant super-
conducting gap. In addition to these measurements, recent
theoretical calculations indicate that the ratio of the �� ,�	
band gaps to that of the � band gap is 0.15 in the high-field
limit.19 Therefore we restrict the following microscopic
theory in the high-field regime to a single band theory for the
� band.

Now we will explain briefly the approximate analytic so-
lution of the fundamental quasiclassical equations for a
single band within weak-coupling superconductivity under
magnetic fields. Our notation and formulation follows that of
Ref. 19. The solution can be obtained by the following ap-
proximations: �i� the spatial dependence of the internal mag-
netic field is averaged by B, �ii� the vortex lattice structure is
expressed by the Abrikosov lattice, and �iii� the diagonal
elements of the Green’s function are approximated by the
spatial average. In general, a magnetic field will mix differ-
ent representations of the D4h. Consequently, the d vector
will be a linear combination of the functions listed in Table I,
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d�R,k� = d1�R��x̂ fx�k� + ŷ f y�k�� + d2�R��x̂ f y�k� + ŷ fx�k��

+ d3�R��x̂ fx�k� − ŷ f y�k�� + d4�R��x̂ f y�k� − ŷ fx�k��

+ ẑ��x�R�fx�k� + �y�R�fy�k��; �5�

the form of fx�k� and fy�k� is given in next subsection. The
approximation �ii� amounts to taking each order-parameter
component in the lowest Landau level, so that d�R ,k�
=��0�R�d̃�k�, where �0, the lowest Landau level, is given
by

�0�R� = 

n

cne−ipny� exp�− ��x� − �2pn�/��2/2	 , �6�

where pn=2�n /�, � being the lattice constant in the y direc-
tion, �= �2�e�B�−1/2 is the magnetic length, and the coeffi-
cients cn, which determine the type of vortex lattice, are such

that ���0�R��2�=1, � is the magnitude of gap, and d̃�k� de-
fines the angular dependence of the d vector. We have taken
anisotropy into account by writing x=x� /�1/2 and y=y��1/2.
For a conventional superconductor, even though all approxi-
mations mentioned above are valid near Hc2, comparisons
with reliable numerical calculations suggest that the solution
is competent quantitatively in the wide region of the �T ,H�
phase diagram except in very low T and H regions.32 For
further details we recommend the reader to refer to the
literature.32–36 In principle, we should consider higher Lan-
dau level solutions in this problem. However, within
Ginzburg-Landau theory our solution is exact in the high-
field limit provided the magnetic field is in the basal plane.
This indicates that it is reasonable to keep only the lowest
Landau level �for the field along the c axis, other Landau
levels must be included13�. The expression for the free en-
ergy measured relative to the normal-state energy,32 which is
given for strongly type-II superconductors, B�H, in the
clean limit is

�SN/N0 = ln� T

T c
z����x�2 + ��y�2� + 


�=1

4

�d��2 ln� T

T c
��

+ 2�T

n=0

� ��2

�n
− �I�� , �7�

where N0 is the total density of states �DOS� in the normal
state, and �n= �2n+1��T is the Fermionic Matsubara fre-
quency. Equation �7� generalizes the corresponding expres-
sions in earlier works32–36 by including more than one irre-
ducible representation. The function I is given by

I =
2g

1 + g
��� 2�

ṽ��k̂�
��2���k̂��2W�iun� , �8�

with

g = �1 +
��

i � 2�

ṽ��k̂�
�2

�2���k̂��2W��iun� ,�−1/2

, �9�

where un=2��n / ṽ��k�, W�z�=e−z2
erfc�−iz� is the Faddeeva

function, and ���k̂��2= d̃�k� · d̃*�k�. Here ṽ��k̂� is the compo-

nent of v perpendicular to the field, which for an in-plane
field of the form H=H�cos �h , sin �h ,0� is given as

ṽ�
2 �k̂� = �−1/2vz

2 + �1/2vF
2 sin2�� − �h� , �10�

where �= �̃vF /vc is an anisotropy parameter �we let �̃ be
arbitrary�. We have taken vz�k�=vc sgn�kz�. All fields are
measured in units 2�2Tc

2 / �evFvc� and � and kB are both 1.
We will use this formalism to examine the in-plane magnetic
field phase diagram for the chiral p-wave state and the nearly
degenerate in-plane d vector separately.

A. Momentum dependence of the gap function

To complete the description of the superconducting state,
we must specify the functions f i�k� �i= �x ,y	�. The most gen-
eral gap function consistent with translational invariance and
with the appropriate rotational properties of D4h is

f i�k� = 

n=1,m=0

�

cn,m sin�nki�cos�mkj�, i, j = x,y, i � j ,

�11�

where cn,m are complex coefficients, ki in units � /a, and a is
the lattice spacing. Here n=1, m=0 represents a Cooper pair
formed by nearest-neighbor �NN� interactions and n=1, m
=1 to a Cooper pair formed from next-nearest-neighbor
�NNN� interactions. In general, increasing m,n corresponds
to forming Cooper pairs from interactions between increas-
ing number of neighbors. We will restrict ourselves here to
NN and NNN pairing interactions. This has some support
from microscopic calculations. In particular, the theory for
NN interactions was originally proposed by Miyake and
Narikiyo37 and was also examined by Nomura and
Yamada.38 Cooper pairs for which NN interactions are not
important but which have a substantial contribution from
NNN interactions have been proposed recently by Arita et
al.39 with the assumption of large on-site and nearest-
neighbor Coulomb interactions. In particular, the latter
paper proposes a gap function of the form d= ẑ�sin�kx+ky�
− i sin�kx−ky��= ẑ�2e−i�/4�sin kx cos ky + i sin ky cos kx�. We
take Cooper pairs to be formed by NN and NNN interactions
and take the form of fx to be fx=sin�kx��1+ cos�ky��. We
keep the parameter  to be arbitrary and allow it to vary. We
take the Fermi surface to be cylindrical with �kx ,ky�
=�R�cos � , sin �� where R=0.9 approximates the Fermi sur-
face of the gamma band �in the third subsection of next sec-
tion we will take R=0.79 for reasons that will be apparent�.

V. CHIRAL p-WAVE STATE

For the chiral p-wave state, we use d�k ,R�
= ẑ��0�R���k̂� with

��k̂� = �cos �fx�k� + sin �ei�fy�k�� �12�

�not normalized for notational simplicity�. For this gap func-
tion, the Ginzburg-Landau order parameter takes the specific
form ��R�=��0�R��cos � ,ei� sin ��.
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A. Upper critical field

The anisotropy in upper critical field for �1,0,0� and
�1,1,0� directions is a generic feature of the Eu theory. Since
experimentally it has been observed that the upper critical
field is relatively isotropic for in-plane fields,14 we ask if it is
possible to reproduce this. The only free parameter in the
theory is  which describes the anisotropy in the gap func-
tion. Surprisingly, we have found that it is possible for 
=10. The upper critical field for the field in the �1,1,0� and
the �1,0,0� directions for the three values of ; =0, =�,
and =10 for the chiral superconducting state has been
shown in Figs. 1–3. In these figures we also show the stable
solutions for the order parameter at Hc2. For a field along the
�1,0,0� direction, the possible stable solutions are �= �1,0�
or �= �0,1�. For a field along the �1,1,0� direction, the pos-
sible stable solutions are �= �1,1� or �= �1,−1�.

B. Phase diagram

Another generic feature of the Eu theory is that multiple
vortex phases exist for in-plane fields. For a field along the

�1,0,0� direction, the solution near Hc2 is �= �0,1� �for the
three values of  discussed above this was the case� then as
field is reduced for fixed temperature, a second transition
occurs at H2 for which the �= �1,0� component becomes
nonzero. Such phase transitions have only been examined
within Ginzburg-Landau theory.28,40 The Eilenberger equa-
tions discussed above allow for the examination of this phase
transition throughout the entire H-T phase diagram. Here, we
apply this approach to the =10 gap function for a �1,0,0�
field direction; the resulting phase diagram is shown in
Fig. 4.

The specific heat as a function of temperature is also
shown in Fig. 5 for H /Hc2

0 =0.21. This plot clearly shows a
second transition in the specific heat. Such a second transi-
tion has not been seen in specific-heat measurements. This
represents a difficulty for the Eu theory. In general, we have
not been able to find a microscopic theory that can account
for both the lack of anisotropy in the upper critical field and
the lack of the second transition. It is possible that experi-
ments have not seen the predicted specific heat jumps due to
the broadening associated with fluctuations in the vortex

FIG. 1. Upper critical fields for =0 for the fields along the
�1,0,0� and �1,1,0� directions. The field in units 2�2Tc

2 / �evFvc�.

FIG. 2. Upper critical fields for =� and for the fields along the
�1,0,0� and �1,1,0� directions.

FIG. 3. Upper critical fields for =10 and for the fields along the
�1,0,0� and �1,1,0� directions. The two upper critical fields almost
identical.

FIG. 4. Phase boundaries for =10 and for the field along the
�100� direction.

QUASICLASSICAL DETERMINATION OF THE IN-… PHYSICAL REVIEW B 72, 144528 �2005�

144528-5



phase, or due to sample inhomogeneities. In the case of UPt3,
for which multiple phase transitions in the vortex phase have
been observed, the entire phase diagram was found through
ultrasound measurements.41 Specific-heat measurements
mapped out some portions of the phase diagram42 but they
did not show clear anomalies throughout the entire phase
diagram.43 Therefore it would be useful to look for such
transitions in the phase diagram for Sr2RuO4 with other
probes such as ultrasound.

C. Tetracritical point

While there has been no evidence of multiple supercon-
ducting transitions in the low-field regime, two supercon-
ducting transitions have been observed in the high-field
range.14,44 In one aspect these transitions are natural candi-
dates for two transitions discussed above. In particular, the
vanishing of the second transition �which does not occur at
Hc2� as the field is rotated away from the in-plane direction is
consistent with the above predictions. However, the second
transition is only observed for T /Tc
0.1 and appears to in-
tersect the upper critical field line. This is inconsistent with
the above prediction which predicts that this transition
should exist for all temperatures. Here we explore a possible
explanation for this transition that is based on results of the
Eilenberger equations.

We have found that for small parameter ranges in the
model described above, it is possible that the solution for the
order parameter at the upper critical field changes as a func-
tion of temperature. In particular for a field along the �1,0,0�
direction, the low-temperature solution �at Hc2� is �= �1,0�
and there is a transition as temperature is reduced so that the
solution at Hc2 becomes �= �0,1�. The phase diagram that
emerges bears a striking similarity to the observed results.

In Figs. 6 and 7, we show the phase diagram and specific-
heat calculations for R=0.79 and =−12. Note that a nega-
tive  corresponds to a repulsive interaction between Cooper
pairs formed from nearest and Cooper pairs formed from
next-nearest neighbors. This theory would still require the

existence of two transitions up to T=Tc. However, as this
phase diagram shows, the two transition lines between Tc
and the temperature of the tetracritical point are very close to
each other and will be very difficult to observe experimen-
tally.

While this phase diagram agrees with that observed ex-
perimentally for a field along the �1,0,0� direction, this
choice of parameters also exhibits a moderate 15% aniso-
tropy of the in-plane upper critical field. Furthermore, for the
field along the �1,1,0� direction the phase diagram resembles
that of Fig. 4 �there is no tetracritical point�. Therefore these
results can only be taken as suggestive since this set of pa-
rameters cannot account for all observed features. It is pos-
sible that the gap on the �� ,�	 bands may improve the agree-
ment between theory and experiment. It appears that at low
fields these gaps cannot be neglected19 and the suppression
of these gaps relative to that of the � may provide a more
robust mechanism for the appearance of a tetracritical point
in the relatively low-field regime. This can occur if these

FIG. 5. Specific heat as a function of temperature for a fixed
field H /Hc2

0 =0.21 and for =10.

FIG. 6. Phase diagram showing a tetracritical point. Between Tc

and the tetracritical temperature there are two phase transitions,
shown in the inset, that are difficult to distinguish from each other.

FIG. 7. Specific heat as a function of temperature for fixed mag-
netic fields.
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bands prefer orthogonal order parameter solutions at Hc2, as
was often the case for calculations for different Eu gap func-
tions in Ref. 17. A second possible explanation for both the
observed lack of anisotropy and the existence of a tetracriti-
cal point is that the parameter  may not be constant for all
temperatures and magnetic fields as we have used here. A
complete description would require an effective two-gap
theory for which  is determined self-consistently. In such a
theory,  can develop a temperature and magnetic field de-
pendence �though in many circumstances,  will be approxi-
mately constant�. A complete analysis of this would require a
detailed knowledge of the microscopic interactions giving
rise to superconductivity. This is beyond the scope of this
paper.

VI. NEARLY DEGENERATE IN PLANE d VECTOR

The chiral p-wave state has difficulties explaining both
the observed absence of anisotropy in Hc2 and the absence of
additional phase transitions in the vortex phase. For this rea-
son we also consider the nearly degenerate in-plane d vector.
Initially, we consider under what circumstances the nearly
degenerate d vector is consistent with other experiments
�Knight shift, �SR, vortex lattice structure, and Josephson
experiments�. Then we examine the specific heat as a func-
tion of magnetic field in the vortex state and show that the
second anomaly is rapidly suppressed by the breaking of the
degeneracy of the four components of the in-plane d vector.

Knight-shift measurements can be naturally accounted for
by an in-plane d vector. The most recent observation is that
for magnetic fields along the c axis there is no change in the
spin susceptibility as temperature is reduced.6 The simplest
interpretation of this result is that the d vector is in the basal
plane. The earlier observation that the spin susceptibility is
unchanged for in-plane magnetic fields would require that
the d vector is free to rotate in the basal plane. This implies
that all the in-plane d vector states are degenerate or nearly
degenerate. The observed square vortex lattice for the field
along the c axis is also consistent with a degenerate in-plane
d vector. This will follow from a Ginzburg-Landau analysis,
where it can be shown that free energy for the degenerate
in-plane d vector has equilibrium solutions with the same
properties as those of the Ginzburg-Landau theory for the
chiral p-wave state.

The muon spin relaxation ��SR� measurements of Luke
et al.4 have found an increased spin-relaxation rate in the
superconducting state with zero applied magnetic field. This
has commonly been interpreted as evidence for a supercon-
ductor that breaks time-reversal symmetry in the bulk. How-
ever, any bulk internal magnetic field must be screened due
to the Meissner effect. Consequently, �SR only probes inter-
nal magnetic fields due to inhomogeneities such as impuri-
ties or domain walls between degenerate superconducting
states. It has been shown that a superconducting state that
does not break time-reversal symmetry in the bulk can still
give rise to local internal fields.15 The important condition
for such internal magnetic fields to exist is that the supercon-
ducting order parameter has more than one degree of free-
dom. This distinction is emphasized here because for nearly

degenerate in-plane d vectors, the bulk superconducting state
in zero applied field does not break time-reversal symmetry.
This does not imply that such a state is inconsistent with
�SR measurements. However, it does require that the differ-
ent in-plane d-vector representations are nearly degenerate
�the different Tc values must lie close to each other�.

The most difficult experiments to explain with an in-plane
d vector are the Josephson experiments. The most recent of
these has found that for Sr2RuO4-Au0.5In0.5 superconducting
quantum interference device �SQUID�, there is a � phase
difference in the Josephson current when the two junctions
have opposite normals.8 While this is generally expected for
a p-wave superconductor, it cannot be explained by an in-
plane d vector. Such a d vector does not allow for a Joseph-
son current between an odd-parity superconductor and an
isotropic �s-wave� superconductor when the junction has a
normal perpendicular to the Sr2RuO4 c axis. The existence of
such a Josephson current implies a d vector aligned along the
c axis. An explanation of such a Josephson current within an
in-plane d-vector approach would therefore require that at an
interface, the d vector is along the c axis and in the bulk it is
in-plane. A similar scenario has been proposed by Bahcall in
the context of the cuprate superconductors �in this case, the
order parameter near the interface is s-wave and becomes
d-wave in the bulk�.45 In support of such a picture, the d
vector is almost certainly along the c axis for an interface
with a normal perpendicular to the c axis. This is a natural
consequence of a stronger spin-orbit coupling at the interface
than in the bulk �spin-orbit coupling is governed by the gra-
dient of the single-particle potential�. It is the spin-orbit cou-
pling that governs the orientation of the d vector. A Rashba
spin-orbit coupling of the form �Rn̂ ·k�S�k� �where n̂ is the
interface normal, k is the fermion wave number, S�k� is the
fermion spin, and �R is a coupling constant� would give a d
with a component along the c axis if n̂ lies perpendicular to
the c axis.46 If the bulk d vector is in-plane and the d vector
lies along the c axis near the interface, then an analysis fol-
lowing that of Bahcall would imply that the � SQUID ex-
periment of Nelson et al. should sometimes see a � phase
shift and sometimes no phase shift. Nelson’s data indicate
that there is always a � phase shift. However, given that data
on only three samples are presented, it may be prudent to
await further results before ruling out an in-plane d vector in
the bulk on the basis of these experiments.

The general form for an in-plane d vector will be a linear
combination of four different in-plane representations listed
in Table I,

d�R,k� = d1�R��x̂ fx�k� + ŷ f y�k�� + d2�R��x̂ f y�k� + ŷ fx�k��

+ d3�R��x̂ fx�k� − ŷ f y�k�� + d4�R��x̂ f y�k� − ŷ fx�k�� .

�13�

We parametrize �d1�R�,d2�R�,d3�R�,d4�R�� as
��0�R��cos � cos � , sin � sin � , cos � sin � , sin � cos �� so
that the d vector can be written as

d�R,k� = ��R��x̂�x�k� + ŷ�y�k�� , �14�

with
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�x�k̂� = cos ��cos � + sin ��fx�k� + sin ��sin � + cos ��fy�k�

and

�y�k̂� = cos ��cos � − sin ��fy�k� + sin ��sin � − cos ��fx�k� .

With these definitions ���k̂��2= ��x�k̂��2+ ��y�k̂��2.
Prior to presenting the results for the nearly degenerate

in-plane d vector, we briefly give the results for the degen-
erate in-plane d vector. This corresponds to the situation that
g2=g3=0 in Table I. In zero applied field there are many
degenerate solutions for this case. In particular, all the solu-
tions in Table I and the solutions d�k�= ê�kx± iky�, where ê is
any unit vector in the basal plane, are all degenerate ground-
state solutions.20 If a magnetic field is applied along any of
the twofold symmetry axes, then there will be two transitions
as field is reduced �as there was in the chiral p-wave case�.
Unlike the chiral p-wave case the second transition can occur
in two ways. To illustrate this, consider an applied field along
�0, 1, 0� direction, the high-field state �the state correspond-
ing to the transition from normal state to superconducting
state� will be either x̂kx or x̂ky�it has been assumed here that
the d vector prefers to be perpendicular to the magnetic
field�. Consider x̂ky to be concrete. The second transition will
appear as magnetic field is reduced for fixed temperature.
The second transition exists because of the appearance of
either a x̂kx component �the corresponding zero-field ground
state will be x̂�kx± iky��; or a ŷkx component �the correspond-
ing zero-field ground state will then be x̂ky ± ŷkx�. Strictly
speaking, the latter transition will be energetically less favor-
able because the d vector is not perpendicular to the mag-
netic field. However, it is the latter transition that will play a
more important role when the degeneracy between the four
in-plane d vectors is broken. In this case the solutions at zero
field belong to a single irreducible representation while the
other zero-field solutions x̂�kx± iky� belong to a mixture of
more than one irreducible representation.

In Fig. 8, we show the specific heat as a function of tem-
perature for different values of g2 �we have set g2=g3 in the

following� with fixed magnetic field, H /Hc2
0 =0.21 along

�0,1,0� direction for =10 and R=0.9. For g2=0, as dis-
cussed above, the second transition will exist and there are
two specific-heat anomalies. The second transition is re-
moved by a finite value of g2 /gz. The key result is that the
anomaly for the second transition is very quickly suppressed
by a nonzero g2 /gz. Note that the anisotropy in Hc2 will still
be small for small values of g2. Consequently, a nearly de-
generate in-plane d vector can explain the existing experi-
mental observations on the H-T phase diagram.

The nearly degenerate in-plane d vector can account for
the in-plane phase diagram and can qualitatively account for
other key experimental results in Sr2RuO4. However, prior to
carrying out further calculations with this state we note that
it should be possible to rule such a state out experimentally
in the near future. In particular, there are two predictions that
can be made about an in-plane d vector. The first has been
mentioned above: further � SQUID experiments should re-
veal the existence of squids with no phase shift as well as
squids with � phase shifts. Also, further Knight-shift experi-
ments should show a suppression in the spin susceptibility
for low enough in-plane magnetic fields. This will occur be-
cause in zero field the d vector will correspond to a single-
component irreducible representation once g2 and g3 are non-
zero and therefore contain a component that is along the
applied field.

VII. CONCLUSIONS

To address an apparent conflict between theoretical pre-
dictions of chiral p-wave �the Eu representation� theories of
the superconducting state in Sr2RuO4 and the lack of corre-
sponding observations, we have carried out quasiclassical
calculations of the superconducting phase diagram for in-
plane magnetic fields. This has been done for both the chiral
p-wave state and for the nearly degenerate in-plane d vector.
For a gap function with momentum dependence due to a
combination of nearest- and next-nearest-neighbor interac-
tions defined on the � band, we find that a small anisotropy
in the upper critical field as the field is rotated in plane is
possible. However, the same gap functions give rise to an
additional phase transition in the vortex state which has not
been observed experimentally. For a narrow range of param-
eters, the theory gives rise to a tetracritical point in the
H-T phase diagram. When this tetracritical point exists, the
resulting phase diagram closely resembles the experimen-
tally measured phase diagram for which two transitions are
only observed in the high-field regime. We have also argued
that an in-plane d vector that can easily rotate in the basal
plane is consistent with existing experimental results.
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FIG. 8. Specific heat for =10 for the field along the �1,0,0�
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0 =0.21 for different values of g2 �which
is measured here in units gz�.
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