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The methods of nonequilibrium thermodynamics are used in this paper to relate an evolution equation for the
vortex line density L, describing superfluid turbulence in the simultaneous presence of counterflow and rota-
tion, to an evolution equation for the superfluid velocity vs, in order to be able to describe the full evolution of
vs and L, instead of only L. Two alternative possibilities are analyzed, related to two possible alternative
interpretations of a term coupling the effects of the counterflow and rotation on the vortex tangle, and which
imply some differences between situations where counterflow and rotation vectors are parallel or orthogonal to
each other. One arrives to a modified Gorter-Mellink equation with new terms dependent on the angular speed.
Finally, two proposals to describe the effects of anisotropy of the vortex tangle on the dynamical equations for
vs and L are examined.
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I. INTRODUCTION

The use of nonequilibrium thermodynamics for the analy-
sis of unsteady superfluid turbulence1–5 has revealed useful
to explore its evolution equations and to suggest some ex-
periments to discriminate between different microscopic in-
terpretations leading to different macroscopic equations for
the evolution of counterflow superfluid turbulence. A full de-
scription of this well-known phenomenon would require an
evolution equation for the �averaged� vortex line density L
describing the vortex tangle and another equation for the
evolution of the �averaged� counterflow velocity V=vn−vs
�vn and vs being the �averaged� velocities of the normal and
superfluid components�, which is related to the �averaged�
heat flux q �as q=�sTsV, �s the density of the superfluid
component, T the temperature, s the entropy�.

The more subtle characteristics of the process, that differ
from the averaged quantities L, V, vn, and vs, and which may
establish a link between the rotational of the local velocity
and the vorticity, do not participate in this macroscopic de-
scription. Thus, for instance, an average homogeneous heat
flux �or V� produces, beyond some critical value, a complex
mesh of vortex lines, whose local detailed description re-
quires a statistical analysis. The macroscopic descriptions of
this problem directly explore the relation between the mac-
roscopic averages of L and V. Though, up to now, most of
the experiments in this field are carried out under a constant
value of the counterflow velocity V, some specific situations
where the simultaneous variation in V and L may arise are,
for instance: �a� letting V change in a periodic way and
studying the effect of the frequency of this change on the
time variation of L �b� cutting down suddenly the heat supply
to the superfluid and studying the simultaneous decay of V
�which will not be instantaneous� and of L. In both situa-
tions, the vortices will not follow the instantaneous value of
V, but the rate of change of variation of V will have an
influence on the instantaneous value of L. An analysis of

such unsteady situations is certainly challenging for a more
complete understanding of the interactions between the
counterflow and the vortex formation and destruction.

Another point studied in the present paper is the interac-
tion between rotation, counterflow and vortex formation. The
most known experiment on simultaneous rotation and coun-
terflow is the apparatus of Swanson et al.6 in which rotation
and heat flow are parallel to each other. It would be easy to
make them antiparallel, by simply rotating the container in
the opposite sense, and this would reveal features which are
not seen if only the parallel situation is studied. Furthermore,
it would be easy to have a situation where the heat flux and
the rotation vector are neither parallel nor antiparallel: for
instance, one could incorporate a thin heat conductor along
the rotation axis and keep it at a temperature higher than that
of the wall: in this way, one would have a controllable radial
heat flux in addition to the usual longitudinal heat flux. This
would make that the local heat flux were not locally parallel
to the rotation vector. Though here we are interested in av-
eraged values of the vortex line density, rather than in a
detailed local formulation, we could consider the average
over angular sections around the axis, which should exhibit
the consequences of this lack of parallelism between both
vectors. An other experiment in which heat flux is orthogonal
to the rotating axis, which have a very different geometry, is
that performed by Yarmchuk and Glaberson7 which will be
discussed in Sec. VI.

In this paper, we will carry out an analysis of these situ-
ations, by combining nonequilibrium thermodynamics and a
previous equation8 we proposed for the interaction between
counterflow and rotation �when they are parallel to each
other�. Even in this situation, we outline two different pos-
sible extensions of our former equation to the situation where
counterflow and rotation are not parallel to each other. We
explore the restrictions of Onsager-Casimir reciprocity rela-
tions in both cases, and such an analysis let us obtain two
alternative versions for the microscopic force between the
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counterflow and the rotating vortices. Thus, though seem-
ingly formal, our paper does suggest new experiments and
emphasizes on their possible microscopic significance.

The evolution equation for L under constant values of V
has been explored for many years. In summary, neglecting
the influence of the walls, such an equation is the well-
known Vinen’s equation for the evolution of the vortex line
density L:9,10

dL

dt
= �VL3/2 − ��L2, �1.1�

with V the absolute value of the counterflow velocity, �
=h /m the quantum of rotation �m the mass of the 4He atom
and h Planck’s constant� and � and � dimensionless param-
eters.

In general conditions, the velocity V could also change
with time, and therefore a full description of the problem
would require to know an evolution equation for V. Instead,
one can write an equation for the superfluid velocity vs,
linked to the counterflow velocity by the relation vs
=v− ��n /��V �v being the velocity of the mixture�. Of
course, the evolution equations for L and for vs would be
strongly coupled with each other, as V influences the vortex
tangle, which modifies on its turn the velocity. The analysis
of such evolution equations may be undertaken from several
perspectives, amongst them macroscopic nonequilibrium
thermodynamics, which guarantees their consistency with
the second law.

Vinen’s equation has been obtained from different micro-
scopic models, differing in their interpretations of the anni-
hilation of the vortices: that of Feynman-Vinen9–11 and that
of Schwarz.12–14 In the Feynman-Vinen model this process is
attributed to the transformation of their energy into heat
through the breaking of small vortex rings into thermal ex-
citations. In Schwarz’s model the annihilation of the vortices
is interpreted as a return of their energy to the kinetic energy
of the main flow, rather than to its internal energy. Both
interpretations yield the same Eq. �1.1� for L, but they lead,
as it will be seen, to different predictions for the equation for
vs.

From the point of view of nonequilibrium thermodynam-
ics it is interesting to consider the problem of simultaneous
evolution of vs and L and their possible couplings. In Refs. 1,
5, and 15, Nemirowskii et al. have shown that application of
Onsager-Casimir reciprocity relations to this problem leads
to an evolution equation for vs going beyond the so-called
Gorter-Mellink force in unsteady situations; in particular
they showed that different predictions for the sign of the
additional coupling term are obtained according to which
microscopic interpretation is used. Such couplings suggest
experiments which would indicate which interpretation is the
most suitable one.

The aim of the present paper is to extend this kind of
analysis to a more general range of phenomena, simulta-
neously including not only counterflow turbulence but also
the ordered array of vortices arising when the superfluid is
submitted to a rotation. The point under consideration has
much current interest because of the increasing experimental

and theoretical activity in situations combining rotation and
counterflow,6–8,16–21 where the basic set of equations is still
not settled out.

The plan of the paper is the following one. In Sec. II we
give a sketch of the Nemirowskii analysis, which sets the
framework we will use. In Secs. III and IV we analyze two
different possible interpretations of a term coupling counter-
flow and rotation and its consequences on the evolution
equation for vs. In Sec. V we discuss two descriptions of the
anisotropy of the vortex tangle and its effects on the dynami-
cal equations for L and vs. In the final section we perform a
qualitative comparison with experiments of the predictions
of our two interpretations in the case of parallel and orthogo-
nal counterflow and rotation and we present some simple
microscopic arguments on the possible role of the relative
direction of counterflow and rotation.

II. BRIEF REVIEW OF COUNTERFLOW
THERMODYNAMIC ANALYSIS

Here we briefly review the essential lines of the thermo-
dynamic analysis of the evolution equations for L and vs for
a description of counterflow turbulence in unsteady states, as
presented in Refs. 1, 5, and 15, and whose ideas will be
extended in the next sections.

In summary, Nemirowskii et al.5,15 consider for the en-
tropy density s of the superfluid in the presence of vortex
lines a differential form which may be written as

T
ds

dt
= − �sV

dvs

dt
+ �V

dL

dt
, �2.1�

with

− �sV �
�u

�vs
, �V �

�u

�L
=

�s�
2

4�
ln� 1

a0L1/2� , �2.2�

being u the internal energy density and �V the contribution to
the internal energy per unit length of the vortex line �a0 is the
dimension of the vortex core, which is very small, of the
order of one Å�. According to the formalism of nonequilib-
rium thermodynamics one may obtain evolution equations
for vs and L by writing dvs /dt and dL /dt in terms of their
conjugate forces −�sV and �V, including coupling terms be-
tween each other, in the matrix form

�
dvs

dt

dL

dt
� = L� −

�n

��s
AU ±

�

�s

V

�V�
L1/2

−
�

�s

V

�V�
L1/2 − �

�

�V
L ��− �sV

�V
� ,

�2.3�

where U is the unit matrix.
Here and in the following, the average line density L is

defined as L= �1/	�	d
, where 
 is the arc length along the
vortices and the integral is taken along all vortices in the
sample volume 	. Also V and vs are averaged velocities and
do not coincide with the local counterflow and superfluid
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velocities. As usual in the study of turbulent phenomena, the
more subtle characteristics of the process, that differ from the
averaged quantitities L, V, and vs do not participate in this
macroscopic description.

In Eq. �2.3� the second equation has been written to re-
cover Vinen’s equation �1.1�. In the first one, which was the
aim of Nemirowskii research, A is a friction coefficient
whereas the second term �for which we keep a double sign to
discuss the ambiguity related to it� comes in a natural way
from the Onsager-Casimir reciprocity relation. In Feynman-
Vinen view, L is a scalar quantity which does not change
under time reversal, unlike the superfluid velocity vs which
changes sign. According to Onsager-Casimir, this leads to
antisymmetry of crossed coefficients thus leading to the �
sign. In Schwarz view, L possesses vectorial properties and it
would change on time reversal, just like the superfluid veloc-
ity. This leads to the symmetry of the kinetic coefficients in
the matrix in Eq. �2.3�, i.e., to the � sign in the upper right-
hand term.

Now, we focus our attention on the equation for dvs /dt,
given by the first line in Eq. �2.3�. which is

dvs

dt
=

�n

�
ALV ±

�

�s

V

V
L3/2�V. �2.4�

The second term does not depend on the modulus of V, but
only on its direction, and it is then called a “dry friction”
force in analogy with the force acting in the friction between
two solids. This coupling between dvs /dt and �V arises natu-
rally in the scheme of classical irreversible thermodynamics,
and its sign depends on the interpretation of L, as it has been
stressed.

In Gorter-Mellink law, L is supposed to be given by its
steady-state value, which, according with Eq. �1.1� is

L =
�2

�2�2V2, �2.5�

and Eq. �2.4� may be written as

dvs

dt
= ��n

�
A

�2

�2�2 ±
�5/2�V

�s����3/2�V2V � A�V2V , �2.6�

with A� a coefficient, dependent on temperature T, defined
by Eq. �2.6�, i.e., by the combination of quantities appearing
in the second term of Eq. �2.6�, and it is related to the so-
called Gorter-Mellink force between normal fluid and the
vortex tangle, proportional to V3. However, in the complete
model �2.3�, L is not always given by Eq. �2.5� and the two
terms in Eq. �2.6� may behave in different ways, according to
Eq. �2.4�, in unsteady states.

Thus, application of nonequilibrium thermodynamics
yields an evolution equation for vs with new terms, which
are not present in the most intuitive and simple version of the
theory, based on a friction force, just the first term in Eq.
�2.4�. The sign of the new term depends on the microscopic
interpretation. The final decision will depend on the consis-
tency with experiments.15

III. EVOLUTION EQUATION FOR L IN COUNTERFLOW
IN ROTATING CONTAINERS: POSSIBLE

INTERPRETATIONS OF THE COUPLING TERM

In Ref. 8, we have proposed for the evolution of L in the
presence of V and � the following phenomenological gen-
eralization of Vinen’s equation:

dL

dt
= − ��L2 + 
�1V + �2

����L3/2 − ��1� + �4
V��

��
�L ,

�3.1�

where terms dependent on � �the absolute value of the an-
gular velocity �� appear, which are not present in Eq. �1.1�.
Here, we explore how the terms in � influence the evolution
equation for L. In particular we will pay a special attention to
the term V�� which plays an especially relevant role in our
equation �3.1�, because it describes the nonlinear coupling
between rotation and counterflow, whose effects are non ad-
ditive, as is known by experiments.6 The status of this term
must be clearly understood, because, for the moment, we are
still lacking for a microscopic interpretation for it, in spite
that it accounts for current experimental observations.8

One could consider two possible alternatives: in the first
one V�� depends on the angle between V and �, i.e., on the
scalar product V ·�, in the second one it does not depend on
the angle between these two vectors, but only on their abso-
lute values. As V is a polar vector and � an axial vector, a
mathematically consistent version of Eq. �3.1�, which con-
tains both these alternatives, is

dL

dt
= − ��L2 + L3/2��1V̂ · U · V +

�2

���
�̂ · U · ��

− L��1�̂ · U · � +
�4

���
� · �a1V̂�̂ + a2�̂V̂� · V� ,

�3.2�

U being the second order unit tensor, with a1+a2=1 and

where V̂�̂ and �̂V̂ are the diadic products between V̂ and

�̂, being V̂ and �̂ the unit vectors parallel to V and �. In

particular, if a1=a2=1/2, the tensor a1V̂�̂+a2�̂V̂, respon-
sible for the coupling between V and �, is symmetric.

In the situation which has been studied theoretically and
experimentally up to now, namely, a container rotating
around its axis and heated from the base, where � and V are
parallel to each other, the two interpretations a1=1, a2=0
and a1=0, a2=1 are equivalent, but these two alternatives
will lead to different results in other physically interesting
situations, as for instance a cylindrical container rotating
around its axis and heated radially along it, in which case V
would be radial �i.e., V perpendicular to ��, a situation for
which, to our knowledge, there are no experimental analyses
neither numerical simulations.

IV. SIMULTANEOUS ROTATION AND COUNTERFLOW:
NONLINEAR COUPLING

Up to here, we have restricted ourselves to discuss the
results of �Ref. 8� and to summarize the main ideas of the
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analysis of Nemirowskii et al.1,5,15 In this section, we follow
the general lines of their work to study the evolution equa-
tions of superfluid turbulence in simultaneous presence of
counterflow and rotation.

Our aims are to find the evolution equation for vs consis-
tent with Eq. �3.1� and to explore some topics related with
the anisotropy of the tangle, which are not dealt neither in
Vinen’s equation �1.1�, which assumes an isotropic tangle,
neither in our proposal �3.1�. In the present section we will
analyze the nonlinear coupling, keeping our work as parallel
as possible with Nemirowskii one, and in Sec. V we will
consider the anisotropy.

First of all, it is important to recall that in the presence of
pure rotation �which produces an ordered array of vortex
lines parallel to the rotation axis�, the evolution equation of
vs has the form22

dvs

dt
+ 2� � vs + i0 = −

�n

�
B�̂ � � � V −

�n

�
B�� � V ,

�4.1�

where i0 is the inertial force and B and B� the Hall-Vinen
dimensionless coefficients describing the interaction between
the normal fluid and the vortex lines. Both these coefficients
depend in a complicated manner on the temperature.23

If we take into account that, in this case, L= �̃��� �with
�̃=2/��, this equation may be rewritten in terms of L as

Dvs

dt
= − L

�n

�

B

�̃

�̂ � �̂ � V +

B�

B
�̂ � V� . �4.2�

where we have denoted for simplicity of notation

Dvs

dt
=

dvs

dt
+ 2W · � · vs + i0, �4.3�

with W the totally antisymmetric third-order tensor such that
W ·� ·vs=��vs.

In the presence of an isotropic contribution of the vortex
tangle, due to the simultaneous presence of the counterflow,
an additional term of the form �2.4� should be included, and
further an additive contribution Fcoupl=Fc�V ,�� due to cou-
plings between counterflow, rotation and superfluid velocity,
in a way similar to that presented in Sec. II:

Dvs

dt
= �1 − b�

�n

�
ALV − bL

�n

�

B

�̃

�̂ � �̂ � V +

B�

B
�̂

� V� ±
�

�s
L3/2�VV̂ + Fc�V,�� . �4.4�

Here b is a parameter related to the anisotropy of vortex
lines, describing the relative weight of the array of vortex
lines parallel to � and the isotropic tangle: when b=0 we
recover an isotropic tangle and when b=1 the ordered array.
In the pure isotropic limit, we are thus left with the
��n /��ALV contribution in the first term of Eq. �4.4�.

Observing that for an isotropic tangle it results A
=2B /3�̃,23 and introducing the tensor


 � �1 − b�
2

3
U + b
U − �̂�̂ +

B�

B
W · �̂� , �4.5�

Eq. �4.4� can be written

Dvs

dt
=

�n

�
L

B

�̃

 · V ±

�

�s

V

V
L3/2�V + Fc�V,�� . �4.6�

The tensor �4.5� provides a description of some aspects of
the anisotropy of the tangle in presence of counterflow and
rotation, as we will see in more detail in Sec. V.

We want to mention, however that, in Ref. 24, we have
proposed to describe the superfluid turbulence in the frame-
work of extended thermodynamics,25 using as independent
variables the heat flux q and a vorticity tensor P� associated
to the vortex line. In such a case, the time derivative of the
entropy density sEIT has the form

T
dsEIT

dt
= �� ·

dq

dt
+ �=V:

dP�

dt
, �4.7�

where �� and �=V are the variables conjugated to q and P�. As
it has been mentioned in the Introduction, V is clearly related
to q. Concerning P�, it has the form24,26

P� = �L
��U − s�s�� + ���W · s��� , �4.8�

s� being the unit vector tangent to the vortices, � and ��
dimensionless functions of T and �, such that

��

�
=

B�

B
�4.9�

and brackets denote macroscopic average. As we will see in
more detail in Sec. V, tensor P� is linked to the tensor 

defined by Eq. �4.5� by the relation P�=�L�
.

Our aim here is to include Eqs. �3.2� and �4.6� into a
common thermodynamic framework, and study possible cou-
plings between them. Thus, as well as in Sec. II, we will
consider the evolution equations for vs and L and we will
write dvs /dt and dL /dt in terms of −�sV and �V, in order to
recover the generalized Eq. �3.1� for dL /dt and Eq. �4.6� plus
some possible coupling for dvs /dt, in analogy with Sec. II.

A. Interpretation of V�� as „1/��…� · V̂�̂ ·V [a1=1,
a2=0 in equation (3.2)]

In this subsection, we interpret the term V�� as

�1/���� · V̂�̂ ·V=V�� cos2 �. As one sees, this term de-
pends on the angle � between V and �, reducing to zero
when V is perpendicular to �.

Recall that in Eq. �3.1� we wrote V�� because in the
experiments we wanted to describe by means of it, V and �
where parallel to each other, whereas a situations with the
angle between V and � different from zero, are not known
by us. In this spirit, we write in the second line of the fol-
lowing system �4.10�, the equation for L in the form given in
Eq. �3.2� �with a1=1 and a2=0� and by means of Onsager-
Casimir reciprocity we build up the second part of the evo-
lution equation for vs, as was outlined in Sec. II. The result is
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�
Dvs

dt

dL

dt
� = L� −

�n

��s

B

�̃

 −

�4

�s
���

��̂ · V̂�� +
�1

�s
V̂L1/2

�4

�s
���

��̂ · V̂�� −
�1

�s
V̂L1/2 −

1

�V
���L − �2

���L1/2 + �1�� ��− �sV

�V
� , �4.10�

according to the form �4.6� of the evolution equation for vs in
the simultaneous presence of the ordered vortex array pro-
duced by rotation and the disordered tangle produced by the
counterflow.

As in �2.4�, the new term not contained in the previous
evolution equation for vs is the coupling term between
dvs /dt and �V in the matrix in Eq. �4.10�. The ambiguity
present in that equation is omitted, because, for the sake of
simplicity, we assume here the Feynman-Vinen microscopic
interpretation, leading to an antisymmetric matrix. Accord-
ingly, if we write Eq. �3.2� as

dL

dt
= − ��L2 + 
�1V + �2

����L3/2

− ��1� +
�4

���

�� · V�2

�V �L , �4.11�

the corresponding evolution equation of vs is

dvs

dt
+ 2� � vs + i0 = L

�n

�

B

�̃

 · V + L

�V

�s

�1V̂L1/2

−
�4

���
��̂ · V̂��� . �4.12�

Comparing with Eq. �4.6� we see that in this interpretation is

Fcoupl = − L
�V

�s

�4

���
��̂ · V̂�� . �4.13�

This term is the one corresponding to the � · V̂�̂ ·V contri-
bution in Eq. �4.10�. It is collinear with �, depends on the
angle between V and �, vanishing in particular when � is
orthogonal to V.

The presence of this term may be linked to the axial mu-
tual friction force, present in rotating helium II, and evi-
denced when the direction of propagation of the second
sound is not orthogonal with respect to the vortex lines. In-
deed, careful measurements by Snyder and Putney27 and by
Mathieu, Plaçais, and Simon28 have evidenced for some axial
mutual friction effects not completely understood �see also
Ref. 23�. These effects may be due to the presence, in the

tensor �4.5� of a term of the type �̂�̂. In this case, tensor 

should be written


 = �1 − b�
2

3
U + b�
1 −

B�

B
��U − �̂�̂�

+ 2
B�

B
�̂�̂ −

B�

B
W · �̂� , �4.14�

which gives rise to a force, parallel to � dependent on the
counterflow velocity V:

Faxial = 2bL
B�

�̃

�n

�
�V · �̂��̂ . �4.15�

We think that the coupling between V and � may be respon-
sible also of a small dry-friction effect parallel to � and
leading to the latter term in Eq. �4.12�.

B. Interpretation of V�� as V��= „1/��…� ·�̂V̂ ·V [„a1=0,
a2=1 in Eq. (3.2)]

In this subsection we study the consequences of assuming
that the term V�� in Eq. �3.1� does not depend on the rela-
tive angle � between the vectors V and �. In this case we
will write instead of Eq. �4.10�

�
Dvs

dt

dL

dt
� = L� −

�n

��s

B

�̃



1

�s
��1L1/2 − �4

��

��
�V̂

−
1

�s
��1L1/2 − �4

��

��
�V̂ −

1

�V

��L − �2

���L1/2 + �1�� ��− �sV

�V
� . �4.16�

As in Eq. �4.10�, we have written the second line of Eq.
�4.16� in order to reproduce Eq. �3.1� 
or, equivalently Eq.
�3.2� with a1=0 and a2=1� and we have required the matrix

to follow the Onsager-Casimir symmetry. Then, if the equa-
tion for dL /dt is Eq. �3.1�, the equation for dvs /dt is different
from Eq. �4.12�. Indeed it is
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dvs

dt
+ 2� � vs + i0 = L

�n

�

B

�̃

 · V + L

�V

�s

�1L1/2 −

�4

��
���V̂ .

�4.17�

In this case the new term, corresponding to the V�� contri-
bution in Eq. �3.1�, has the form

Fcoupl = − �4L
�V

�s
��

�
V̂ , �4.18�

it is parallel to V, but does not depend on the modulus of V,
and is therefore a dry friction term as the one of Nemirovskii.

We recall now that in Ref. 8 we have found, in the steady
state �L and V constant�, that the solution of the equation for
L in Eq. �4.16� is

L1/2 =
�4

�1
��

�
for 0 � V � Vc2, �4.19�

L1/2 =
�1

��
�V − Vc2� +

�4

�1
��

�
for V � Vc2, �4.20�

while the critical value Vc2 of the velocity V, which charac-
terizes the transition to a turbulent disordered tangle, found
in Ref. 8 is, in agreement with experimental observations,

Vc2 = �2
�4

�1
−

�2

�
���� . �4.21�

Substituting Eqs. �4.19� and �4.20� in the off-diagonal
term in the matrix in Eq. �4.16�, one obtains the following
expression for the dry friction force:

Fdry =
�V

�s
��1L1/2 − �4

��

��
�

V̂ � 0 for V � Vc2, �4.22�

Fdry =
�V

�s
��1L1/2 − �4

��

��
�V̂

�
1

�s

�1

��
�V − Vc2�V̂ for V � Vc2. �4.23�

As a consequence, the dry-friction force is absent for
V�Vc2 �and in pure rotation, too� and it is equal to Eq.
�4.23� for V�Vc2, when the array produced by the rotation
becomes a disordered nonisotropic tangle. Indeed, in a
steady state �L and � constant�, Eq. �4.17�, would take the
expression

Dvs

dt
= L

�n

�

B

�̃

 · V �4.24�

with L expressed by Eq. �4.19�, for V�Vc2, and

Dvs

dt
= L

�n

�

B

�̃

 · V +

�V

�s

�1

��
�V − Vc2�V̂ , �4.25�

with L expressed by Eq. �4.20�, for V�Vc2. Summarizing,
for V�Vc2 the dry-friction force is absent, while, for

V�Vc2, when the array of rectilinear vortex lines becomes a
disordered tangle, an additional term collinear with V ap-
pears. Thus Vc2 indicates the threshold not only of the vortex
line dynamics but also of the friction acting on the velocity
vs itself; this seems logical, as both variables are mutually
related, in general terms.

C. General case

In the general case �a1 and a2 both different from zero,
a1+a2=1� there is a superposition of the effects described in
Secs. IV A and IV B. It is easily seen that in this case the
evolution equation for L is Eq. �3.2� while the evolution
equation for V is

dvs

dt
+ 2� � vs + i0 = L

�n

�

B

�̃

 · V + L

�V

�s
��1L1/2V̂

−
�4

���
�a1V̂�̂ + a2�̂V̂� · �� .

�4.26�

In this case, the coupling term Fcoupl assumes the most gen-
eral expression

Fcoupl = − L
�V

�s

�4

���

a1�� · V̂��̂ + a2�� · �̂�V̂� .

�4.27�

The term with a1 is collinear with � and depends on the
angle within V and � while the term with a2 implies a
reduction of the force on vs related to �� and it would be
collinear with V instead than with �.

We are not aware of any previous proposal of a contribu-
tion such as the term �4.27�; if, for example, we consider the
experiment described in Ref. 6, where V and � are collinear,
this new term indicates that an isotropic tangle rotating with
angular speed � would exert a smaller force on vs than the
same non-rotating tangle. We do not have for the moment a
microscopic interpretation for this contribution, though its
related term in Eq. �3.2� describes well the experimental re-
sults.

V. SIMULTANEOUS ROTATION AND COUNTERFLOW:
ANISOTROPY OF THE TANGLE

The assumption of an isotropic tangle �referred to the ori-
entational distribution of the vector tangent to the vortex
lines� is often satisfactory in pure counterflow analyses, but
it is not so in the presence of rotation. Indeed, in pure rota-
tion the vortices form an ordered array, with the vortex lines
parallel to the rotation axis. In simultaneous presence of ro-
tation and counterflow, there appears an interesting interplay
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between the ordering tendency of the rotation and the disor-
dering tendency of counterflow, which bears some analogy
with the ordering tendency of an external magnetic field on a
system of magnetic dipoles and a disordering tendency ex-
pressed by absolute temperature.8,21,29

Therefore, the question of anisotropy is inescapable in the
study of simultaneous counterflow and rotation. There is in-
deed much current interest in this point.16–21,29,30 Here we do
not aim to solve this delicate problem, but we want to take
advantage of the thermodynamic formalism to explore how
the anisotropy would influence the dynamical equations for L
and vs.

A. Vectorial approach

To begin our analysis, we mention an interesting recent
proposal by Lipniacki16 to generalize Vinen’s equation to an
anisotropic tangle. In his proposal, based on previous works
on Schwarz,12–14 the anisotropy is described by a vector I,
related to the vortex tangle structure by

I =
�s� � s��

��s���
. �5.1�

Here s�
 , t� describes the vortex lines, with 
 the length along
the vortices; the primes indicate differentiation with respect
to 
 in such a way that s� is directed along the local tangent
of the vortex and s� points towards the local center of cur-
vature. In the localized induction approximation, this vector
I is proportional to the self-induced velocity of a given point
of the filament. The angular brackets stand for the average
over the total vortex length of the tangle. In a vortex loop,
s��s� is parallel to the axis of the loop and it tends to ori-
entate parallel to V. According to Lipniacki, Vinen’s equa-
tion should be generalized as

dL

dt
= �V · IL3/2 − ��L2. �5.2�

The origin of Lipniacki proposal �5.2� may be found in
the microscopic analysis of vortex dynamics by
Schwarz,12–14 where an equation analogous to Eq. �5.2� is
derived. Usually, the term in I is included in the � coefficient
of Vinen’s equation. In the localized induction approxima-
tion, the microscopic evolution for the line length of a vortex
tangle satisfies the equation

�L

�t
=� �
V · �s� � s�� − �̃�s��2�d
; �5.3�

the integral is carried out along all the vortex lines in the unit
volume. Thus the scalar product V · �s��s�� appears in a
natural way in the microscopic form of Vinen’s equation.

In fact, according to Lipniacki, the Vinen’s equation
would be recovered when s��s� is always parallel to the
external field V. It is in this situation that vortex lines tend to
be elongated in such a way they increase the total vortex
length per unit volume. If s��s� is not everywhere parallel
to V there would be, accordingly with Schwarz and Lipni-
acki, a reduction in the vortex production term. Note the fact
that we are talking about an isotropic situation, whereas Lip-

niacki refers to total anisotropy; this is so because we are
referring to the distribution of different vectors, namely, s�
and s��s� respectively.

Equation �5.2� and the corresponding equation for dvs /dt
may be written in a tensorial form analogous to Eq. �2.3� as

�
dvs

dt

dL

dt
� = L�−

�n

��s
AU ±�

1

�s
L1/2I

−
�

�s
L1/2I − �

�

�V
L ��− �sV

�V
� . �5.4�

The evolution equation for vs would then be, according to
the first line of Eq. �5.4�:

dvs

dt
= −

�n

�
ALV ±

�

�s
�VL3/2I . �5.5�

Thus the anisotropy of s��s� in the vortex production
term would modify too the friction force acting on V. This is
logical, because the vortices are produced by the friction of
the normal fluid. It must be noted that the scalar coefficients
themselves, as A and �, could now become a function of the

anisotropy parameter defined, for instance, by Î · V̂ �whose
value is 1 for a tangle in which s��s� is always parallel
to V�.

B. Tensorial approach

A different way to describe the anisotropy of the tangle
�referred now to the orientational distribution of the vector s�
tangent to the vortex lines� is to use a full tensor related to
the tensor P� introduced in Ref. 24 
see Eq. �4.8��. Consid-
ering only the symmetric part, an explicit possibility is to use
the tensor 
s defined by


s = �U − s�s�� . �5.6�

Indeed, when the tangle is isotropic �referred to the s� distri-
bution� one has


s = �U − s�s�� =
2

3
U , �5.7�

whereas, in the rotation case, the tangent vector s� becomes

s�=�̂ and 
s takes the form


s = U − �̂�̂ . �5.8�

Note that here, when we refer to an isotropic tangle, we
take into account only an isotropic distribution of the tangent
vectors s�, but we do not refer to s��s�, in contrast with
Lipniacki’s approach.

Under the simultaneous presence of counterflow and ro-
tation, which is the situation we are interested in, 
 will have
the form introduced in Eq. �4.5�, and


s =
2

3
�1 − b�U + b�U − �̂�̂� . �5.9�

Tensor �5.9� provides a very intuitive description of some
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especially relevant aspects of the global geometry of vortex
tangle in simultaneous presence of counterflow and rotation.
In particular, it has the feature that the second part of Eq.
�5.9� is a projector in the direction perpendicular to �, in
such a way that if V is parallel to �, as it is in usual experi-
ments, the second contribution from Eq. �5.9� will vanish
and the product 
s ·V, will simply be


s · V =
2

3
�1 − b�V . �5.10�

In Eq. �5.9� b will be a function of V and �, in general. A
possibility could be, for instance,

b�L,�� =
��2

��2 + V�2 , �5.11�

with ��=� /�c and V�=V /Vc, �c and Vc being the critical
values of � and V at which the laminar state �L=0� becomes
unstable. Equation �5.11� has, in fact, the required limits b
=1 for high rotation and b=0 for high V. This proposal is
only meant as an illustration, rather than a well confirmed
expression.

Finally, we write system �4.10� by taking into account the
influence of the anisotropy of vortex tangle. Following the
thermodynamic formalism used along this paper we may
write, in the interpretation of V�� as the product

�1/���� · V̂�̂ ·V, discussed in Sec. IV A,

�
Dvs

dt

dL

dt
� = L� −

�n

��s

B

�̃

 +

1

�s
��1L1/2I −

�4

���

� · V

�V
��

−
1

�s
��1L1/2I −

�4

���

� · V

�V
�� −

1

�V

��L − �2

���L1/2 + �1�� ��− �sV

�V
� . �5.12�

These equations may be written as

dL

dt
= − ��L2 + 
�1V · I + �2

����L3/2

− ��1� +
�4

���

�� · V�2

�V �L , �5.13�

dvs

dt
+ 2� � vs + i0 = L

�n

�

B

�̃

 · V + L� �V

�s

�1L1/2I

−
�4

���
��̂ · V̂���� . �5.14�

To write the expressions corresponding to Eqs. �5.13� and
�5.14�, using the interpretation in Sec. IV B is straightfor-
ward, so that we will not do it here, to avoid unnecessary
repetitions.

VI. CONCLUSIONS

We have examined the joint evolution equations for the
counterflow velocity V �in fact for vs� and the vortex line
density L from the perspective of irreversible thermodynam-
ics. Starting from an evolution equation for L, the formalism
of irreversible thermodynamics has been used to obtain a
consistent evolution equation for vs. Such equation would be
needed to describe general unsteady situations where both L
and V �or vs� change with time. At present, most of the
counterflow experiments use an imposed value of V and
study the subsequent evolution of the vortex line density of
the tangle.

We follow the ideas set out by Nemirowskii et al.1,5,15 in
an analysis of pure counterflow situation. Their main issue

was, besides the obtention of an evolution equation for V,
the discussion of an ambiguity in a coupling term, related to
two possible microscopic interpretations of the mechanism
of vortex lines annihilation. Instead, our analysis has dealt
with a more general situation, incorporating simultaneous
counterflow and rotation. In our case, we have explored an
ambiguity related to the interpretation of a term coupling the
effects of counterflow and rotation, and which accounts for
the fact that effects of both phenomena are not merely addi-
tive, as it is known from experiments. We have outlined two
different interpretations of these terms and we have obtained
the corresponding evolution equations for V, for each for
them.

Thus, the present formal analysis could reveal at full its
potential interest when experiments involving different direc-
tions of V and � will be performed. Furthermore, our analy-
sis shows 
in Eqs. �4.24� and �4.25�� a discontinuity in the
friction force when V exceeds a threshold value, consistent
with a discontinuity in the geometrical features of the vortex
lines.

To have a more microscopic understanding of the interest
to study the geometry of the tangle not only in situations
where � and V are parallel to each other but also when they
have opposite sign, we may follow the simplified stability
analysis of an isolated helical vortex line proposed by
Tsubota et al.21 The vortex motion is governed by the
equation14

ds

dt
= vsl + �s� � �vn − vsl� − ��s� � 
s� � �vn − vsl�� ,

�6.1�

where vsl=vs+vi is the “local superfluid velocity,” sum of
the superfluid velocity at large distance from any vortex line
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and of the “self-induced velocity,” a flow due to any other
vortex, including other parts of the same vortex, induced by
the curvature of all these lines; this latter contribution, at a
point s0 on the line, is given by the Biot-Savart law; in the
local-induction approximation we can write

vi = �
s� � s��s=s0
, with � =

�

4�
ln
 1

�s��a0
� , �6.2�

with �= ��� � and a0 the dimension of the vortex core, of the
dimension of one Å.

To describe the vortex motion in the presence of rotation
and counterflow, it is need to generalize Eq. �6.1� to a rotat-
ing frame. Tsubota et al.21 have found that in a rotating ves-
sel the evolution equation �6.1� of vortex line must be modi-
fied a

ds

dt
= vsl + �s� � �vn − vsl� − ��s� � 
s� � �vn − vsl��

+ ṡrot + vrot, �6.3�

where ṡrot is the velocity of the vortex caused by the rotation
and vrot is the superflow induced by the rotating vessel �for
an explicit expression of these two contributes see Ref. 21�.

Helical waves are vortex-wave modes for which the wave
vector is along the rotation axis. We consider in particular a
helical deformation of wave vector k and amplitude �, where
��k−1. Ignoring the nonlocal contribution, the line moves
with the local self-induced velocity vi defined in Eq. �6.2�.
This velocity is perpendicular to the undisturbed line and to
the displacement vector from the undisturbed line to the
point considered. Each vortex line element therefore ex-
ecutes motion about the undisturbed line in a circle of radius
R�� and with a frequency �= �vi� /� in sense opposite to the
sense of the velocity field.

We note that the straight vortex lines formed in rotating
helium have vorticity �� parallel to the angular velocity � of
the vessel. As a consequence, helical waves are circularly
polarized vortex waves in which each vortex line element
executes circular motion in a plane perpendicular to the axis
of rotation in opposite sense to the rotation of the vessel: if
the rotation of the vessel is righthanded ��=�ẑ with �
positive� the helical waves are left-handed waves.

Now we assume �=�ẑ and we follow the simplified
analysis proposed by Tsubota et al.21 They assume the helical
vortex line given by

s = �� cos �,� sin �,z� , �6.4�

where �=kz−�t and ��t��1. It easily follows that s�
= �−k� sin � ,k� cos � ,1� and s�= �−k2� cos � ,−k2� sin � ,
0�. We assume a counterflow velocity given by V= �0,0 ,V�
�V positive or negative�.

Neglecting �as in Ref. 21� the small friction coefficient ��
and the two additional terms due to the rotation, Eq. �6.3�
simplifies as

ds

dt
= vs + �s� � s� + �s� � �V − vi� . �6.5�

Neglecting term of second order in � we obtain

vs = − ��n/���0,0,V� = �0,0,vs� , �6.6�

vi = �s� � s� = �k2��sin �,− cos �,0� , �6.7�

�s� � �V − vi� = ���kV − �k2��cos �,sin �,0� . �6.8�

Substituting in Eq. �6.5�, we obtain the following set of equa-
tions:

�
�̇ − ���kV − �k2��cos � + 
���k2 − ���sin � = 0,


�̇ − ���kV − �k2��sin � + 
���k2 − ���cos � = 0,

ż − vs = 0,
�
�6.9�

which yields

z = vst + z0 = −
�n

�
Vt + z0, � = �k2, �6.10�

and leads to the following equation for �:

d�

dt
= �
kV − �k2�� . �6.11�

Substituting Eq. �6.10� in Eq. �6.4� one obtains

s = 
� cos�kvs − ��t,� sin�kvs − ��t,vst + z0� . �6.12�

This helix goes towards higher values of z if it results that

vs � 0, �6.13�

i.e., if V is opposite of the z axis, and is left handed if it
results that

kvs − � = kvs − �k2 = − k
�n

�
V − �k2 � 0. �6.14�

Summarizing, if kV=�k2 �for example if k and V are both
positive�, Eq. �6.11� has the solution �=cost; as a conse-
quence, for this particular value of V helical waves are
present, with �=�k2 and k=�V /�. As � is time independent,
these waves are stable. In this case it results �=−�
��s

+2�n� /���k2�t. This wave is left handed and goes toward
lower values of z. The only difference, if V and k are chosen
both negative, is that the left-handed helical wave goes to-
ward higher values of z.

We suppose now kV��k2. In this case the stationary so-
lution of Eq. �6.11� is �=0. This solution will be stable if the
growth rate �=kV−�k2 of � will be negative, i.e., if kV
��k2. When V is parallel to the propagation direction of the
helical wave and k is chosen positive �plus sign in the term
kV�, the growth rate of � is �=kV−�k2 in such a way that for
a given V, waves with sufficiently high wave vector k will
increase their amplitude. However, for V opposite to the
propagation direction of the wave, the growth rate of � will
be always negative, and the helical perturbations of the rec-
tilinear vortex will disappear within a short time. For oppo-
site values of k, the opposite will hold. If we repeat the same
simplified calculation with V orthogonal to the z axis, we see
that, in this case, the helical perturbations to straight vortex
lines always decrease with time, in such a way that the
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straight vortices are stable. Thus the relative direction of �
and V could have a role on the geometry of the tangle. The
present microscopic argument, however, is too simplified to
lead to definite predictions, because it ignores the interac-
tions between vortices and the global characteristics of the
flow. Thus, more detailed microscopic analyses should be
done and, above all, more experiments.

In this context, two situations would be particularly inter-
esting: to study the differences in the situations with � and
V parallel and antiparallel, and a situation with V orthogonal
to �, as in a superfluid in a rotating annulus with higher
temperature on the walls of the internal cylinder, thus pro-
ducing a radial counterflow31 or in a rotating cylinder with a
thin hot wire along the rotation axis.

It is worthwhile to compare the predictions of Sec. IV A
with those of IV B in a particular situation. We consider a
rotating cylinder filled with superfluid helium, in which an
axial heat flux or a radial heat flux is imposed �the latter may
be produced by a thin hot wire along the rotation axis; in
more realistic terms, one should study the flow between two
concentric cylinders, with the inner one being hotter than the
outer one, for instance�. The values of the numerical coeffi-
cients obtained in Ref. 8 are sufficient to make a qualitative
comparison between the predictions of Sec. IV A with those
of Sec. IV B.

To do so, we recall that the solution of Eq. �3.1� for L1/2 in
terms of V and � �to which both interpretations in Secs.
IV A and IV B reduce when V and � are parallel to each
other� is furnished by Eqs. �4.19� and �4.20�, with a critical
velocity Vc2 given by Eq. �4.21�. For V�Vc2, L1/2 depends
on �� /k�1/2 but not on V, whereas for V�Vc2, L1/2 increases
linearly with V. Experimentally, a critical velocity Vc1�Vc2
also appears, in which a small step in the value of L1/2 is
found, as discussed at length in Ref. 8. Comparison with the
experimental data by Swanson, Barenghi, and Donnelly6 for
superfluid turbulence in a rotating cylinder with V and �
parallel to each other, yields �1 /��=47 cm−2 s, �4 /�1
=1.43 and �2 /�3=2.68. Therefore Eq. �4.20� becomes

L1/2 = 47V + 1,25��/� cm−1 for V � Vc2, �6.15�

where the counterflow velocity V is expressed in cm/s. As-
sume, now, a situation in which V is perpendicular to �. In
this case, the coupling term vanishes in Sec. IV A, thus
yielding an effective value �4=0 in Eqs. �3.1� and �4.19�–
�4.21�. In contrast, in Sec. IV B the coupling term is inde-
pendent on the angle between V and �. Thus, according to
Sec. IV B, the behavior of L1/2 in terms of V and � would be
the same for V and � parallel or perpendicular to each other.
Instead, according to Sec. IV A, the behavior would be

L1/2 = 47V + 2,68��/� cm−1 for all V , �6.16�

indeed, in this case the critical counterflow velocity Vc2 be-
comes negative.

In fact, the numerical values in Eqs. �6.15� and �6.16� are
mainly indicative rather than an exact derivation, since the
values of the parameters could be influenced by the geometry

of the system and by the degree of anisotropy of the tangle,
which is not known in sufficient detail nowadays. However,
the main qualitative differences are expected to hold. They
are �a� L1/2 depends on V for all values of the outwards radial
counterflow velocity, because in this case Vc2 becomes nega-
tive, �b� the slope of L1/2 with respect to V is higher in Eq.
�6.5� than in Eq.�6.4�. Thus, the expressions studied in this
paper are not merely formal, but they have testable conse-
quences. Notice that both Secs. IV A and IV B predict that
the situation with V and � counterparallel to each other
would be the same as if they are parallel to each other, be-
cause Sec. IV B does not depend on the relative direction of
V and � and Sec. IV A depends on the square of the angle
they are forming. The differences in both situations cannot
be found in the value of L, but in the expressions �4.13� and
�4.18� of Fcoupl which in Eq. �4.18� is always opposite to V,
while in Eq. �4.13� depends on the angle between V and �.

Another situation to which apply Eq. �3.1� could be the
experiments carried out by Yarmchuk and Glaberson.7 In
their work they arranged a pair of horizontal parallel glass
plates to form a closed channel of rectangular cross section
closed at one end with a heater nearby, and open at the other
end to the liquid helium bath. The channel investigated was
of large aspect ratio, the length being 0.5 mm, the width
1.4 cm, and the length 5.5 cm. The channel is rotated about a
vertical axis orthogonal to the direction of the heat flux. In
this way the counterflow velocity V is orthogonal to angular
velocity � of the sample. Temperature and chemical gradi-
ents where obtained as a function of heater power and rota-
tion speed. They found a linear regime, in which the tem-
perature and chemical gradients increase as the rotation
speed increases, and a critical heater power qc2 �to which
correspond a critical counterflow velocity Vc2� associated
with the onset of turbulent regime, which increase as the
rotation speed increased, becoming proportional to �� as �
gets large. Notwithstanding the very different geometry,
these results allow us to affirm that the coefficient a1 in Eq.
�3.2� is different from zero. To establish whether the coeffi-
cient a2 can be chosen equal to zero, i.e. if we must choose
the interpretation in Sec. IV B, further experiments must be
made.

We have indicated that the two macroscopic interpreta-
tions considered in our paper, namely, Sec. IV A and IV B
lead to different expressions for the force coupling the heat
flow and the rotating mesh of vortices: namely, we are re-
spectively led to Eqs. �4.13� and �4.18�. Thus, in spite that
our analysis is of macroscopic origin, it stimulates the con-
sideration of the microscopic forces between heat flow and
rotating vortices. Thus, even if the ambiguity mentioned in
connection with the interpretation of the coupling term could
be removed, it would remain the problem of providing a
microscopic interpretation for this term, which describes the
influence of a rotating vortex tangle on the friction force
acting on vs. In our equation, we find that such friction force
would be reduced in the presence of a rotation with respect
to the friction in a nonrotating tangle with the same vortex
line density. In a more detailed analysis, the relation between
the rotational of the local velocity and the vorticity should be
taken into account, as it is done, for instance, in the analysis
of vortex lines in rotating cylinders32 and in a new formula-
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tion of the Hall-Vinen-Bekarevich-Khalatnikov equations.33

Finally, we have considered two ways of incorporating the
degree of anisotropy of the tangle, which arises because ro-
tation tends to produce an anisotropy array of vortex lines,
parallel to the direction �, whereas counterflow tends to
produce an isotropy tangle. One of these procedures is pro-
posed by Lipniacki and is based on the scalar product of a
vector I and the velocity V. Our proposal is to use a full
tensor 
 describing the superposition of the contribution of a
fully isotropic tangle and of a completely ordered array of
vortices parallel to �, the relative weight being a non linear
function of V and �. We have examined how both descrip-
tions of anisotropy influence the evolution equations for L
and V.
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