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We have developed a method for measuring the transmission coefficient of a sound propagating through the
interface in phase-separated 3He- 4He liquid mixtures. The method and the results are described with discus-
sions by examining the phase-conversion process of 3He quasiparticles driven to flow across the interface.
From the data, we have determined the kinetic growth coefficient of the interface, ��T , P ,��, as a function of
temperature, pressure, and frequency. The temperature range of the present investigation is about 2–100 mK at
the pressure mainly around 1 bar with sound frequency 9.64, 14.4, and 32.4 MHz. The main specific features
observed for the kinetic growth coefficient are, as follows: �i� there is a maximum at some temperature Tm���
depending on the frequency, �ii� above Tm���, � decreases with the increase of temperature as ��5/2T −3, and
�iii� below Tm���, � becomes frequency independent and diminishes as a cube of temperature, T3.
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I. INTRODUCTION

First-order phase transitions are widespread in nature.
Some phase transitions and interfacial boundaries exist at
very low temperatures down to absolute zero. Such transi-
tions and interfaces, having unique properties compared with
high-temperature classical systems, have been studied inten-
sively in helium.1–5

The kinetics of phase transitions and interfacial dynamics
depend strongly on ��, where � is the relaxation time and �
is the frequency of the process. In this respect helium sys-
tems are very convenient since the relaxation time, depend-
ing drastically on temperature, can be varied by many orders
of the magnitude. The kinetics of phase transitions within the
linear Onsager approach is described in terms of the kinetic
growth coefficient � which connects the mass flow across the
interface and the imbalance in chemical potentials �� be-
tween the adjacent phases. Experiments in pure 4He with the
vapor-liquid6 and liquid-solid7,8 interfaces have revealed un-
usual behavior in � compared with classical interfaces. In
this paper we have turned to studying the phase transition in
a 3He- 4He liquid mixture.

Below �0.9 K, the liquid 3He- 4He mixtures decompose
into the 3He-dilute phase �d phase� and the 3He-concentrated
phase �c phase�. The interface between the coexisting d and
c phases provides us a unique system as a spontaneously
existing boundary between two quantum liquids, one being
superfluid and the other being normal or superfluid at suffi-
ciently ultralow temperatures. The interface has been studied
from various viewpoints such as the interfacial tension,9 the
wetting phenomena,10 the Helmholtz-Kelvin instability,11

and the growth properties.12 In this paper, we will give the
results of our systematic study of the sound transmission
across the interface. Then, we employ the relation between
the sound transmission coefficient and the kinetic growth
coefficient in order to extract information on the growth dy-
namics of the interface in the nonequilibrium situation.

At low temperatures below �100 mK, the c phase is al-
most pure liquid 3He, the Fermi temperature being �1.6 K.

On the contrary, the d phase represents a solution of a finite
concentration of 3He in superfluid 4He down to absolute
zero. The Fermi temperature of the saturated d phase is ap-
proximately 0.4 K. At low enough temperatures the d phase
behaves as a Fermi liquid of 3He quasiparticles moving in
the background of superfluid 4He. So, at such low tempera-
tures, the interface presently studied is that between two dif-
ferent degenerate Fermi liquids. The size of their Fermi
spheres has a significant difference since

pFc � 2.3 	 pFd, �1�

where pFc and pFd represent the magnitude of the Fermi mo-
mentum in the c and d phases, respectively.

The saturated concentration of 3He in the d phase,
xs�T , P�, is known to be sensitive to the pressure,13 changing
within 0.067–0.095 in the present temperature range studied.
So a pressure modulation or sound wave injected onto the
interface can produce a phase conversion between the c and
d phases. This results in a flow of one phase into the other
across the interface, entailing the motion of the interface. We
call this motion of the interfacial boundary the interface
growth. That is, we borrow the terminology from 4He
superfluid-crystal growth,14 keeping in view some common
features in the sound transmission. Thus, studying a response
of the interface on the pressure modulation, we can obtain
information about the kinetic growth properties of the inter-
face. In the phase conversion we can discern two stages. The
first is a mass flow driven by the pressure modulation. At low
enough temperatures, it represents practically a flow of 3He
qusiparticles alone. At the second stage the quasiparticles
incoming into the d phase from the c phase should be con-
verted to the quasiparticles of the d phase and vice versa. At
this stage one may expect that a significant difference in the
Fermi momentum between the phases as Eq. �1� plays a cru-
cial role, especially in the very-low-temperature region
where 3He quasiparticles flow ballistically across the inter-
face.
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Our present experiment covers a wide temperature range
approximately 2–100 mK with the sound of 9.64, 14.4, and
32.4 MHz. In the temperature behavior of the kinetic growth
coefficient, we have observed a crossover between the hy-
drodynamic and ballistic regimes.

II. EXPERIMENT

The method of injecting an acoustic wave onto the inter-
face has widely been applied in the course of studying the
kinetic growth properties and phase-conversion phenomena
for the vapor-liquid6 and liquid-solid7,15,16 interfaces in pure
4He. The transmission of a sound wave through the interface
depends strongly on the interface mobility.

The mobility of the interface is usually discussed in terms
of the kinetic growth coefficient �. For a single-component
system, in general, � depends on temperature T and fre-
quency �—i.e., �=��T ,��. The mass conservation implies14

J = 
1�v1 − �̇� = 
2�v2 − �̇� , �2�

where J is the mass flow across the interface per unit time

and unit area, �̇ is the velocity of the interfacial boundary,
and v1,2 and 
1,2 are the fluid velocities due to sound and the
densities of the phases, respectively. By introducing � with
the equation

v1 − v2 = ��P , �3�

we have

�̇ = v1 +

2


1 − 
2
��P = v2 +


1


1 − 
2
��P �4�

and

J = �� 
1
2


1 − 
2
��P . �5�

Here �P is the pressure deviation from phase-equilibrium
pressure P�T� due to sound perturbation. From Eqs. �3�–�5�
we recognize that, if �=0, the mass flow J vanishes in spite
of the phase imbalance as for the case of two immiscible

liquids where any phase growth is absent—i.e., �̇=v1=v2.
On the other hand, if � does not vanish, we have a finite
magnitude of mass flow J and a finite difference in v1−v2.
That is, we have the growth of one of the phases. In essence,
� thus introduced determines the rate of phase conversion
and is called the kinetic growth coefficient of the interface.

The kinetic growth coefficient is known to be related to
the sound transmission and reflection coefficients. For the
oblique incidence of sound from phase 1 onto phase 2, the
transmission coefficient �1→2, defined by the ratio of the
sound pressure amplitudes of the transmitted and incident
waves, is given by

�1→2 = 2Z2 cos 1�1 − i��i
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2
2

2
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2�2�
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+

2

u2
sin 22 sin 1�	
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. �6�

Here 1 is the incident angle, 2 is the refraction angle of the
transmitted wave, and �i is the interfacial surface tension.
The acoustic impedance of the phase denotes a product of
density and sound velocity—i.e., Z1,2=
1,2u1,2.

The case of the phase-separated 3He- 4He liquid mixtures
is considered in Ref. 17. In mixtures such as a two-
component system the growth coefficient depends on the
temperature, pressure, and frequency—i.e., �=��T , P ,��.
For normal incidence, the sound transmission from the c
phase to the d phase, �c→d, reads

�c→d =
2Zd

Zc + Zd + ZcZd�
, �7�

where Zc and Zd are the acoustic impedance of the c and d
phases, respectively.

Provided the response of the interface on the pressure
modulation is slow—i.e., the phase conversion from one
phase to another is not so efficient and the interface mobility
is extremely small—the sound transmission will be the same
as for the case of two immiscible liquids with

�0,c→d =
2Zd

Zc + Zd
. �8�

On the contrary, if the phase conversion between the phases
occurs at an infinite rate and the interface has a high mobil-
ity, the system is able to retain the phase equilibrium state
and to smooth the total magnitude of the pressure modulation
at the interface down to zero. This means that a sound wave
incident onto the interface from one phase should not cause
any pressure modulation at the interface and, thus, in the
other phase. Hence, in this ideal case, the sound transmission
into the other phase vanishes. Thus the coefficients of sound
transmission and reflection at the interface may give certain
information on the rate of conversion processes between two
adjacent phases.

A. Principle of the method

The sound attenuation in the c phase is very large and that
in the d phase also is not so small. Therefore, a new idea is
required as to how to extract the information on the sound
transmission coefficient across the interface from the sound
transmitted through the bulk liquids. That is, it is necessary
to separate the bulk contribution from the transmitted signal.
For this purpose, we have developed12 a way to move the
position of the interface very slowly between two transduc-
ers with an almost constant velocity.
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As can be seen in the lower part of Fig. 1, the details of
which will be explained in Sec. II B, we have two sound
cells, cell 1 and cell 2, which are of almost the same inner
diameter. They are connected with each other by a tube. Each
cell contains a pair of transducers and has a Vycor superleak
line connected to the bottom side of the cell. A 3He line
equipped with a cold valve18 is connected to one of the cells
�cell 1 in Fig. 1� at the top side.

First, pure 4He is condensed into the cells through the
superleak lines. Then, 3He is condensed through the 3He line
and at the same time 4He flows out through the superleak
lines. After obtaining an appropriate ratio of c and d phases,
we close the cold valve in the 3He line in order to keep
constant the total amount of 3He in the cells. We stabilize the
temperature under desired pressure which can be controlled
by adding or pouring 4He out through the superleak lines.

As superfluid 4He flows into cell 1 through its superleak
line, the interface in cell 1 moves up. At the same time su-
perfluid 4He flows out from cell 2 through its superleak line
and the interface in cell 2 shifts down. The process can also
be done in a reversed way. The flow-controlling system out-
side of the cryostat is designed so as to realize the motion of
the interface with almost constant velocity under nearly con-
stant pressure.

Let us consider, as is shown in Fig. 2, one of the cells in
which the sound is transmitted from the upper transducer and
received with the lower one separated by the distance L. We
start moving the interface from the position far above the
upper transducer �Fig. 2�a��. As we have only the saturated d
phase between the transducers, we can write the following
relation between the rf voltage applied to the transmitter
transducer, Ai, and that induced at the receiver transducer,
Ad, as

Ad =
aup���
alow���

Ai�t→d�d→t exp�− �dL�exp�− i�L/ud� . �9�

Here, ud and �d are the velocity and attenuation coefficients
of sound in the d phase, respectively. The transmission coef-
ficient of sound from the transducer to the d phase is denoted
with �t→d and that from the d phase to the transducer with
�d→t. The notations aup��� and alow��� represent the conver-
sion factors from the rf voltage signals, Ai and Ad, to the
sound signals in the corresponding transducers, Aup and Alow,
respectively. Thus, for the situation of Fig. 2�a� we may have

Aup = aup���Ai and Alow = alow���Ad. �10�

When the interface moves down and enters into the region
between the transducers �Fig. 2�b��, the rf voltage from the
receiver transducer, Ac→d, is expressed as

Ac→d =
aup���
alow���

Ai�t→c�c→d�d→t exp�− �clc�exp�− �d�L − lc��

	 exp�− i�lc/uc + �L − lc�/ud�� , �11�

where �c→d is the transmission coefficient of sound through
the interface. This is the quantity we want to obtain. In Eq.
�11�, lc is the distance between the upper transducer and the
interface as shown in Fig. 2�b�, uc and �c are the velocity and
the attenuation coefficients of sound in the c phase, respec-
tively, and �t→c is the transmission coefficient from the trans-
ducer to the c phase.

The transmission coefficient �c→d is, in general, a
complex-valued quantity with the modulus and argument

FIG. 1. Schematic drawing of the principal part of our
cryostat.

FIG. 2. Illustration of our method for obtaining the transmission
coefficient through the interface, �c→d, with the sound transmitted
from the upper transducer to the lower one. The rf voltage applied
to the transmitter transducer is Ai, and Ad or Ac→d is a signal in-
duced at the receiver transducer. �a� The interface lies far above the
upper transducer. �b� The interface lies between the transducers.
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�c→d = ��c→d�exp�i�c→d� . �12�

With Eqs. �9�, �11�, and �12�, we obtain

Ad

Ac→d
= � Ad

Ac→d
�exp�i�c→d� , �13�

where

ln� Ad

Ac→d
� = ln� �t→d

�t→c

1

��c→d�� + ��c − �d�lc �14�

and

�c→d = �c→d − �lc� 1

uc
−

1

ud
� . �15�

Equations �14� and �15� are schematically illustrated in Figs.
3�a� and 3�b�, where ln�Ad /Ac→d� and �c→d are plotted as a
function of lc, respectively. As can be seen from Fig. 3�a�, the
magnitude of the transmission coefficient ��c→d� is obtained
from the intercept of the straight line of slope ��c−�d� with
the ordinate lc=0. Thus, the contribution from the interface
and that from the bulk liquids become nicely separated.

From Eq. �14�, one may recognize another important ad-
vantageous aspect of the present method; namely, signal Ad
is always utilized as a reference to Ac→d for obtaining ��c→d�.
This provides a critical check for our measurement as a
whole. In principle, the information on the interface dynam-
ics can also be obtained by measuring the reflection of sound
from the interface. In that case, however, one does not have
such reference quantity.

B. Experimental setup

The principal part of our cryostat is schematically shown
in Fig. 1. The two sound cells are fastened to a copper

nuclear stage which is almost the same as in Refs. 4 and 19.
The heat exchanger is about 14 g of sintered silver powder in
each cell. The effective volume of each cell for the bulk
liquids is about 10 cm3. Each cell contains crystal transduc-
ers in pairs separated with a sapphire spacer of L�5 mm in
thickness. The parallelism between the spacer’s faces is bet-
ter than 2	10−4. The transducers in cell 1 are quartz of the
fundamental frequency around 10 MHz, and those in cell 2
are LiNbO3 of around 15 MHz. The nominal diameter of the
active electrode of each transducer is about 4 mm.

The thermometry is fulfilled with a 3He melting-curve
thermometer �MCT�, a Pt-NMR thermometer, and a com-
mercial RuO2 thermometer �calibrated down to 50 mK; SI,
Inc.�. The thermometers are attached to a thick copper plate
fastened tightly to the nuclear stage. Carbon resistance ther-
mometers �Matsushita 47 � and 100 �� are put inside of the
cells for monitoring stabilization of the temperature in the
liquids during measurements. The final check of our ther-
mometry is made by observing the superfluid transition of
the phase-separated c phase with the NMR measurement in
the similar way as described in Ref. 19. For this purpose, the
tube connecting the cells, Cu-Ni tube of 1.8 mm i.d., is
crossed at the middle part with a Stycast-1266 tube around
which the 3He-NMR pickup coil is wound. Using the Grey-
wall’s temperature scale for the MCT and the superfluid tran-
sition temperature of 3He,20 we find that the accuracy of our
thermometry keeps within 3% in the whole range of the tem-
perature presently studied.

The pressure of the liquids in the cell is measured with a
Straty-Adams-type strain gauge.21 Its construction can be
found in Ref. 22. The cold valves in the 4He superleak lines
are used to avoid any pressure disturbance in the course of
the transfer of liquid helium every 4 days.

C. Procedure and arguments on the accuracy

A block diagram of our sound measuring system is shown
in Fig. 4. We apply the method of the two-channel phase-
sensitive detection23 �PSD� with a pulse-modulated rf volt-
age controlled by a computer. This enables us to obtain si-
multaneously two components, cosine and sine, of the sound
signal. The amplitude and phase of the signal are calculated
by using these both components. Then, we obtain the attenu-
ation coefficient and the change of velocity.

The experiment is performed in sequence from �i� to �v�.
The arguments are given in �vi�, �vii�, and �viii� on the basic
numerical values of various physical quantities necessary to
obtain the growth coefficient � from the transmitted sound
signal.

�i� We condense pure 4He through the superleak lines. The
transmission of sound in each cell is measured within the
temperature range from about 30 mK to 1 K under the satu-
rated vapor pressure �svp�. The observed temperature depen-
dence of the sound velocity, u4�T , P=svp,9.64 MHz�, is in a
good agreement with the data published in Ref. 24 at
12 MHz by taking the absolute value at zero temperature as
u4�T=0, P=0�=238.3 m/s from Ref. 25. Thus, the resolu-
tion of our system for the phase variation is such that we can
detect a relative change of the sound velocity within limits of
about 10−5.

FIG. 3. Schematic illustrations for Eq. �14� in �a� and for Eq.
�15� in �b�. Here lc is the thickness of the c phase under the trans-
mitter transducer. The region lc�0 means that the interface is
above the upper transducer.
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Consider the same situation as in Fig. 2�a� with pure liq-
uid 4He instead of a 3He- 4He mixture. The rf voltage from
the receiver transducer, A4, is expressed as

A4 =
aup���
alow���

Ai�t→4�4→t exp�− �4L�exp�− i�L/u4� .

�16�

This corresponds to Eq. �9� for the d phase in which sub-
script 4 is substituted by d. Within the resolution of our mea-
suring system as a whole with the present spacer of the thick-
ness L�5 mm, we can detect any significant dependence of
the signal on temperature only above about 150 mK because
the lower limit of our attenuation measurement is about
0.01 Np/cm. Employing analogous arguments made in Ref.
24 as to how to determine the absolute value of �4, we may
safely assume a sufficient smallness of �4 at �30 mK in
order to have �4�T�30 mK, P�1 bar,��L=0. Accordingly,
we can put

exp�− �4�T � 30 mK,P � 1 bar ,��L� = 1. �17�

This enables us to determine the factor

aup���
alow���

�t→4�4→t �18�

in Eq. �16� since Ai is known and A4 is measured at
�30 mK.

As is described in Sec. II A, the measurement of the
sound transmission through the saturated d phase is crucial
for the present investigation. In order to obtain the absolute
value of �d with Eq. �9�, it is necessary to fix the magnitude
of a factor

aup���
alow���

�t→d�d→t. �19�

For this purpose, we use the magnitude determined in Eq.
�18� since it is reasonable to assume within the satisfactory
accuracy

�t→d = �t→4 and �d→t = �4→t, �20�

This is due to the weak dependence of the sound velocity on
the 3He concentration and the large difference of the sound
velocities in helium and transducer material.

�ii� When the saturated d phase is entirely between the
transducers as in Fig. 2�a�, we make various checks to deter-
mine the width and amplitude of the pulse-modulated rf volt-
age applied to the transmitter transducer, �pulse and �Ai�, ap-
propriate for the present experiment. First, the amplitude of
the receiver signal �Ad� is plotted as a function of �pulse with
the various constant values of �Ai� larger than 4 mV. It is
found that �Ad� does not show any appreciable dependence on
�pulse when �pulse exceeds 6 �s. So, in the present study, we
always use the pulse width of �pulse=7 �s.

Then, the heating effect due to the input of the sound
power is checked for this pulse width at various constant
temperatures above �14 mK. The repetition rate is always
one pulse per second. It is found that we have no detectable
heating effect when �Ai� does not exceed �3 V. So, in the
present study, the magnitude �Ai� is always between 4 mV
and 1 V.

The restraints mentioned above restrict the upper limit of
the attenuation coefficient measurable with the present sys-
tem.

�iii� As the attenuation coefficient varies with the tempera-
ture, pressure, and frequency, the magnitude �Ai� must be
changed according to the situation. So the measuring system
must have a good linear behavior in the wide ranges. Such
checks are made for various attenuators and amplifiers.

�iv� For the present aim to obtain the transmission coeffi-
cient with high accuracy, it was very important to realize the
condition of the normal incidence of sound onto the interface
�see Eq. �6��. The cryostat is mounted on air springs which
act not only to reduce the effect from the external vibrations
but also to have a good horizontal positioning of the inter-
face. That positioning is carefully controlled, and a satisfac-
tory normal incidence is achieved within about 0.04°. It is
monitored continuously by using digital gauges combined
with display units �Sony Precision Technology, Inc.� to keep
almost the same condition during the whole experiment.

FIG. 4. Block diagram of our sound measur-
ing system.

PHASE CONVERSION AND INTERFACE GROWTH IN… PHYSICAL REVIEW B 72, 144509 �2005�

144509-5



�v� After finishing all the procedures �i�–�iv�, the measure-
ment is performed by starting from the situation of Fig. 2�a�
and then by moving the interface as shown in Fig. 2�b�. We
stop the motion at the position of the interface far enough
below the upper transducer, usually within the range about
0.1–2 mm, depending on the magnitude of the attenuation
coefficient in the c phase. Then, the process is reversed—i.e.,
from Fig. 2�b� to Fig. 2�a�. The velocity of the interface is
about 1 �m/s throughout the present experiment.

�vi� As will be discussed minutely in Sec. III B, the value
of lc is determined with Eq. �15�. For this purpose, it is
necessary to have the values of uc�T , P� and ud�T , P�.

Within our accuracy it is sufficient to replace ud with u4 as
a difference between them is negligible; i.e., the fractional
variation in the sound velocity is smaller than �5	10−4

within the temperature range of the present experiment.26,27

The evaluation of u4�T , P� can be made with the help of Ref.
28, according to which we can neglect the temperature varia-
tion of sound velocity and take the value

ud�T,P = 1 bar� = 246 m/s �21�

for the experiments performed at the pressure around 1 bar.
As the c phase below about 100 mK represents almost

pure 3He, we can safely replace uc�T , P� with u3�T , P�, the
velocity of first sound in liquid 3He. Referring to the experi-
mental and calculated results in Refs. 29 and 30, we also
neglect the temperature dependence of sound velocity and
take the value

uc�T,P = 1 bar� = 201 m/s �22�

throughout the present study made at a pressure of around
1 bar.

�vii� In order to obtain the growth coefficient � from the
transmission coefficient �c→d of Eq. �7�, it is necessary to
know the values of acoustic impedance,

Zc�T,P� = 
c�T,P�uc�T,P�, Zd�T,P� = 
d�T,P�ud�T,P� .

�23�

Here, 
c and 
d are the density of the coexisting c and d
phases, respectively. The value of 
c�T , P� can be replaced
with 
3�T , P�, the density of pure liquid 3He,29 as is men-
tioned above. The value of 
d�T , P ,xs� is calculated straight-
forwardly since we have an empirical expression for the mo-
lar volume of the d phase, Vd�T , P ,x�, as will be mentioned
in Sec. III A with Eq. �25�.

�viii� Since the c phase in the present temperature range is
almost pure liquid 3He, we expect the crossover of a propa-
gating sound between the hydrodymamic first-sound and
zero-sound modes. The acoustic impedance for the zero-
sound mode is discussed in Ref. 31 by defining the general-
ized acoustic impedance as a ratio of the momentum flux to
the mass flux and density. Then, one may have Zc=
cu0c for
the longitudinal zero sound to a fairly good approximation.
Here, u0c is the zero-sound velocity in the c phase. Thus, we
can use the expression for the sound transmission coefficient
as Eqs. �7� and �8� regardless of the type of sound modes.

The difference of sound velocities between uc and u0c is
estimated with the formula given for pure liquid 3He.32 We

have the estimation as �u0c−uc� /uc�0.03 for the pressure
P=1 bar. In the following, we neglect this small difference
and use the value of Eq. �22� for the sound velocity in the c
phase at a pressure of around 1 bar throughout the present
whole temperature range.

The transmission coefficient through the interface can
also be obtained by transmitting the sound from the lower
transducer to the upper one. This yields �d→c. We made such
measurements and confirmed that both �c→d and �d→c give
the same result for � as it should. See, for example, Ref. 12.
In this paper, we present results based mainly on the data of
�c→d.

III. RESULTS FOR �d, �c, AND �c\d

We have performed experiments with sound of 9.64, 14.4,
and 32.4 MHz. The absolute value of the attenuation coeffi-
cient in the saturated d phase is determined from Eq. �9� with
the procedure described in Sec. II C. In addition to the mea-
surements performed at every beginning of each run in order
to displace the position of the interface at constant tempera-
ture, the measurement is also made by sweeping the tem-
perature when the interface is always kept far above the up-
per transducer. A comparison between the results of two
measurements provides a convincing check of our measure-
ments.

A. Results for �d

The results under a constant pressure of �1 bar are
shown in Fig. 5 in which �d is plotted as a function of tem-
perature for the three frequencies studied. As can be seen
from the figure, �d shows a maximum at the temperature
Td,m��� which depends on the frequency. Below Td,m���, �d

decreases with the temperature in proportion to T2 and the
frequency dependence disappears.

The attenuation of first sound in the d phase was theoreti-
cally discussed in Ref. 33. The theoretical expression for the

FIG. 5. The attenuation coefficient of the first-sound mode in the
saturated d phase as a function of the temperature at a pressure of
�1 bar. The solid curves are the fitting with Eq. �24�, �d�T , P
=1 bar,xs ,��, in which the fitting parameter �d is taken according
to Eq. �27�.
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attenuation coefficient of the d phase of 3He molar concen-
tration x is given as27

�d�T,P,x,�� =
2

3

PF�T,P,x�
n4�T,P,x�m*�P�ud

2�T,P,x�
m4

m*�P�ud�T,P,x�

	 �1 + �BBP�T,P,x� +
m*�P� − m3

m4
�2

	
�2�d�T,P,x�

1 + �2�d
2�T,P,x�

. �24�

Here, PF is usually called the Fermi pressure,34 which can be
calculated as accurately as one wants, and m*=m*�P� is the
effective mass of 3He quasiparticles in the dilute limit x
→0. The quantities m3 and m4 are the bare mass of 3He and
4He, respectively. The parameter �BBP is usually called the
Bardeen-Baym-Pines �BBP� parameter35 whose meaning is
to relate the molar volumes of the d phase Vd�T , P ,x� and
pure 4He phase V40�T , P� as

Vd�T,P,x� = V40�T,P��1 + �BBP�T,P,x�x� . �25�

With Avogadro’s number NA, the number density of 4He, n4,
is expressed as

n4 = n − n3 with n � NA/Vd and n3 = nx . �26�

The empirical formulas for �BBP�T , P ,x�, m*�P�, and the
saturated 3He concentration xs�T , P� can be found in Ref. 36.
That of V40�T , P� is given in Ref. 22. For ud�T , P
=1 bar,xs�, we use the value of Eq. �21�. The time �d, which
appears in the expression for first viscosity, has a meaning of
the relaxation time for 3He quasiparticles in the d phase due
to 3He- 3He collisions.

Then, the numerical calculation of the attenuation coeffi-
cient in the saturated d phase, �d(T , P ,xs�T , P� ,�), can be
made straightforwardly with Eq. �24� in which we take �d as
a fitting parameter, neglecting its dependence on x=xs�T , P�.
This assumption can be justified because a relative change of
xs�T ,1 bar� within the temperature range 0–100 mK is about
9%.36 The results at the pressure P=1 bar are shown in Fig.
5 with the solid curves for which the fitting parameter �d is
taken as

�d�T,P = 1 bar,xs�T2 = 12 	 10−12 �s K2� . �27�

As can be seen from Fig. 5, the overall agreement is quite
good. Furthermore, the magnitude of �dT2 in Eq. �27� deter-
mined from the best fitting seems reasonable compared with
the data published—for example,

�d�T,P � 0,x = 0.050�T2

= 24 	 10−12 �s K2� �Ref. 37�

17.8 	 10−12 �s K2� �Ref 38� ,

�d�T,P � 0,x = 0.013�T2

= 20 	 10−12 �s K2�

15.0 	 10−12 �s K2� , �28�

�Refs. 37 and 38� and

�d�T,P � 0,x = 0.050�T2 = 20 	 10−12 �s K2� . �29�

�Ref. 27�. We believe that such reasonable agreements sup-
port the accuracy of our measurements as a whole.

The existence of Td,m��� in the �d vs T plot has been
reported by several groups.26,39–41 We believe, however, that
the present data given in Fig. 5 are the first which convinc-
ingly show the T2 dependence of �d in a wide temperature
range below Td,m���—i.e., in the region ��d�1.

B. Results for �c and �c\d

The transmission coefficient �c→d is obtained from Eqs.
�12�–�15� with the procedures described in Secs. II A and
II C. The examples of actual data are shown in Figs. 6 and 7.
In each figure, the magnitudes of ln�Ad /Ac→d� and �c→d are
plotted in �a� and �b�, respectively, as a function of time t,
during which the position of the interface is moved with an
almost constant velocity. In the plot of �c→d, we take the
origin of the axis, �c→d=0, for the receiver signal obtained
when we have only the saturated d phase between the trans-
ducers �see Fig. 2�a��. As can be seen from Figs. 6�a� and
7�a�, in the region between �t1 and �t2, ln�Ad /Ac→d� shows
a curious deviation from the linear t dependence observed for
t� t2 or from a zero value for t� t1. Similar behavior is also
seen when the interface movement is reversed. We believe
that the appearance of such behavior may be due to some
complicated motion of the interface when it starts leaving or
touching the transducer surface. In particular, a nonuniform
and nonsimultaneous break of the interface from the trans-
ducer surface is very likely.

On the other hand, as can be seen from Figs. 6�b� and
7�b�, �c→d approaches a zero value rather smoothly. So we
may safely take

�c→d = 0 �30�

in Eq. �15�. That is, the transmission coefficient �c→d proves
to be a real quantity �see Eq. �12��. Then, Eq. �15� is rewrit-
ten as

�c→d = − �lc� 1

uc
−

1

ud
� . �31�

Thus, we can obtain the value of lc�t� from that of �c→d�t�.
We fix the origin of the lc axis as illustrated in Figs. 6�b�

and 7�b�. First, we estimate the time t= t0 at which the inter-
face would arrive at the transducer surface as if there were
no interaction between the interface and transducer surface
mentioned above; i.e., we assume that the interface continues
its steady motion for t� t2. So, as is shown in Figs. 6�b� and
7�b�, t0 is fixed as the time moment corresponding to the
intersection point of the horizontal line �c→d=0 with the
extrapolated straight line of �c→d�t� obtained by a fit in the
region t� t2. Then, we take lc�t0�=0. From the figures, it is
recognized that t0 thus fixed nearly coincides with t2.

Then, we can convert Figs. 6�a� and 7�a� into the figures
in which ln�Ad /Ac→d� is plotted versus lc, as is shown in Figs.
6�c� and 7�c�, respectively. The value of lc�t� in the region
t1� t� t2 is obtained according to the extrapolated lines of
�c→d�t� mentioned above; i.e., in the region t1� t� t0, we
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take lc�t�=0. Note that plots such as Figs. 6�c� and 7�c� can
be meaningful only in the region lc�0 since we have no
actual experimental information on the interface position
above the upper transducer, which is formally related to the
region lc�0 as illustrated in Fig. 3. One may recognize that
the characteristic features of Figs. 6�c� and 7�c� resemble the
schematic illustration given in Fig. 3�a� with the exception of
the curious behavior around lc=0. One can see from Figs.

6�c� and 7�c� that such curious behavior of ln�Ad /Ac→d� has
almost negligible effect for determining the intersection of
the straight line continued from the region lc�0 with the
ordinate lc=0.

As is noted for Eq. �14� and Fig. 3�a�, the slope of the
straight line fitted for the region lc�0 in Figs. 6�c� and 7�c�
gives the value of ��c−�d�. Since we already have the data
of �d as is described in the preceding section, we can deter-
mine �c from the slope. Thus the obtained �c�T , P
�1 bar,�� is shown in Fig. 8 as a function of temperature.
As can be seen from the figure, the results for the c-phase
attenuation coefficient may be summarized as follows:

�i� �c shows a maximum at the temperature Tc,m��� which
depends on the frequency.

FIG. 6. Example of the actual data taken at T�5.5 mK under a
pressure of �1 bar with the sound of 9.64 MHz. �a� Logarithm of
amplitude ratio ln�Ad /Ac→d� is plotted as a function of time, t. �b�
The phase change �c→d is plotted as a function of time t. The time
t0 is determined from the intersection point between the fitted
t-linear line and the horizontal line �c→d=0. �c� Logarithm of am-
plitude ratio ln�Ad /Ac→d� shown in �a� is plotted as a function of the
c-phase thickness lc.

FIG. 7. Same as Fig. 6 for the sound of 14.4 MHz at T
�36 mK under a pressure of �1 bar.
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�ii� Above Tc,m���, �c decreases with the increase of the
temperature as

�c�T,P � 1 bar,�� = B1�2/T2. �32�

�iii� Below Tc,m���, �c diminishes as the temperature de-
creases,

�c�T,P � 1 bar,�� = B0T2, �33�

and the frequency dependence vanishes.
One may easily recognize that the features observed are

the same as those reported for the sound attenuation coeffi-
cient in pure liquid 3He.42 Such an observation is quite rea-
sonable as the c phase below about 100 mK represents in
essence pure liquid 3He. Under simplest assumptions,
Tc,m��� may correspond to

��c„T = Tc,m���,P � 1 bar… = 1, �34�

where �c�T , P� is the relaxation time of 3He quasiparticles in
the c phase and can be identified with that appearing in the
first viscosity coefficient. With the fitting lines plotted in Fig.
8, we obtain

�c�T,P � 1 bar�T2 = 1.22 	 10−12 �s K2� . �35�

As is mentioned in Sec. II C �viii�, we always use the value
uc given by Eq. �22� throughout the whole temperature range
of the present experiment performed under a pressure of
�1 bar in the procedure for determining the value lc with
Eq. �31� in order to obtain the results shown in Figs. 6�c� and
7�c�; i.e., we do not distinguish a small difference in veloci-
ties of the first- and zero-sound modes.

The magnitude of �cT
2, thus obtained, seems reasonable

as compared with those for pure liquid 3He derived from the
sound attenuation42 and those from the viscosity which give
the relaxation time ��,3.43 After Ref. 42, above T3,m��� in the
region of the first-sound mode, one has

�1�T,P = 0.32 atm�T2 = 1.5 	 10−12 �s K2� , �36�

and below T3,m���—i.e., in the region of the zero-sound
mode—one obtains

�0�T,P = 0.32 atm�T2 = 1.1 	 10−12 �s K2� . �37�

In general, �1 and �0 are different. However, we neglect this
difference, taking some average, since this difference is
small and the use of single time �c instead of two ones
should not give large errors. From Ref. 43 for the viscosity
data, one finds

��,3�T,P = 0�T2 = 1.24 	 10−12 �s K2� ,

��,3�T,P = 3 bar�T2 = 1.15 	 10−12 �s K2� . �38�

We believe that such reasonable agreement shows well the
reliableness of the experimental method presently developed.

To obtain value ��c→d� with Eq. �14�, it is necessary to fix
the ratio �t→d /�t→c. Although �c→d is treated like a real quan-
tity according to Eqs. �30� and �31�, we keep the notation of
the absolute value for convenience of referring to Eq. �14�.
This ratio can be written as

�t→d

�t→c
= � 2Zd

Zt + Zd
� 	 � 2Zc

Zt + Zc
�−1

, �39�

where Zt is the acoustic impedance of the transducer. As Zt
�Zc ,Zd, Eq. �39� is evaluated as

�t→d

�t→c
�

Zd

Zc
=


dud


cuc
� 2.08 at P = 1 bar. �40�

Here we used approximations �vi� and �vii� discussed in Sec.
II C.

The transmission coefficient of the interface, thus deter-
mined at pressure �1 bar, ��c→d�T , P�1 bar,���, is plotted
in Fig. 9 as a function of temperature. In the figure, ��c→d� is
normalized by the usual acoustic-mismatch coefficient �0,c→d
in order to represent distinctly the effect of the phase con-
version. We emphasize that ��c→d� /�0,c→d�1 means an exis-
tence of the phase conversion induced by the sound pressure
wave. The value of �0,c→d�T ,1 bar��1.35 is obtained with
the same approximations used for Eq. �40�.

FIG. 8. The sound attenuation coefficient in the saturated c
phase as a function of the temperature at a pressure of �1 bar. The
values of �c�T , P�1 bar,�� are obtained from the slope of the
fitting line as is described in the text for Eq. �14� and Figs. 3�a�,
6�c�, and 7�c�. The solid lines represent Eq. �32� with B1�P
�1 bar�=1.2	10−18 �s2 K2 Np cm−1�. The dotted line expresses
Eq. �33� with B0�P�1 bar�=0.8	106 �K−2 Np cm−1�.

FIG. 9. The sound transmission coefficient through the inter-
face, ��c→d�T , P�1 bar,���, versus temperature. Note that the data
are normalized by the standard acoustic-mismatch coefficient
�0,c→d�T , P=1 bar�.
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From Fig. 9, the most interesting observations are that
��c→d� /�0,c→d has a frequency-dependent minimum at some
temperature T�,min��� and that the reduction at this point is
almost a factor of 10 or much more depending on the fre-
quency. In the following section, we will derive the kinetic
growth coefficient of the interface from the data shown in
Fig. 9 and give various discussions on the results.

IV. RESULTS FOR �„T ,P ,�… AND DISCUSSIONS

A. Results for �„T ,PÈ1 bar,�…

From the data of ��c→d�T , P�1 bar,��� described in the
preceding section, we derive the kinetic growth coefficient of
the interface, ��T , P�1 bar,��, by using Eq. �7�. For this
derivation, we use the numerical values of Eq. �40� for Zd /Zc
and Zd�T ,1 bar�=Zd�0,1 bar�=3.54	103 g cm−2 s−1. The
results are shown in Fig. 10, in which, for convenient com-
parison, the dimensionless quantity

��T,P � 1 bar,�� 	 Zd�0,1 bar� �41�

is plotted as a function of temperature. We take Zd�0,1 bar�
as a typical magnitude for the acoustic impedance of the
present system at �1 bar. As can be recognized from Eq. �7�,
the inaccuracy of the value of � thus derived is enhanced as
��c→d� /�0,c→d approaches unity. So, in Fig. 10, the plot is
shown for �Zd down to �0.5.

As can be seen from the figure, � shows a maximum at the
temperature Tm��� corresponding to T�,min��� in Fig. 9—i.e.,
at �9 mK for 9.64 MHz, �10 mK for 14.4 MHz, and
�15 mK for 32.4 MHz. The most prominent features are as
follows.

�i� Above Tm���, the growth coefficient is frequency de-
pendent and falls with an increase of the temperature as

��T,P � 1 bar,��Zd�0,1 bar� = A1�5/2T −3. �42�

�ii� Below Tm���, the growth coefficient becomes fre-
quency independent and also diminishes as the temperature
is lowered:

��T,P � 1 bar,��Zd�0,1 bar� = A0T3. �43�

�iii� The values of Tm��� nearly coincide with those of
Tc,m��� in Fig. 8 at the same frequency.

These characteristic features strongly suggest that we ob-
serve a crossover between the hydrodynamic and ballistic
regimes for the kinetic growth coefficient determined from
the sound transmission within the frequency range presently
studied. In the following sections, we will discuss what kind
of kinetic processes can be involved in the phase-conversion
and crossover phenomena at the interface and how we can
understand the observed dependence of � on the temperature
and frequency. Before starting the discussion, we will present
the pressure dependence of � at a fixed temperature.

B. Results for �„TÈ30 mK,P ,�…

Besides the temperature dependence of �c→d at a pressure
of around 1 bar, we have measured the dependence of �c→d
on the phase-separation pressure P�cs ,T=const� at a fixed
temperature of about 30 mK. Here, c denotes the mass con-
centration of 3He in the d phase and cs corresponds to xs.
From the data, we obtain the dependence of � on the slope
��cs /�P�T shown in Fig. 11. Note that � increases in propor-
tion to ��cs /�P�T

2. This fact unambiguously evidences that �
determined with the present method really reflects the inter-
face dynamics as a result of the phase conversion induced by
the sound pressure. The empirical formula36 of xs�T , P� gives
(�cs�T , P� /�P)T�dcs�0, P� /dP within the present tempera-
ture range. That is, the observed dependence of � on the
slope ��cs /�P�T does not imply any extra temperature depen-
dence of � in the present study.

C. Arguments on the interfacial mode

The existence of phase conversion between the adjacent
phases may imply possible excitations of interfacial wave,
which could affect the interface mobility. For the present
system, such a wave may be called a phase-separation wave.
The damping coefficient of the wave may be given as

FIG. 10. The temperature dependence of kinetic growth coeffi-
cient ��T , P�1 bar,��. The data are shown in the dimensionless
units of Eq. �41�. The solid lines represent Eq. �42� with A1�P
�1 bar�=1.04	10−24 �s5/2 K3�. The dotted line expresses Eq. �43�
with A0�P�1 bar�=5.2	107 �K−3�.

FIG. 11. The dependence of � on the phase-separation pressure
at the fixed temperature �30 mK for a pressure above �1 bar. The
data are reduced to the growth coefficient at T�30 mK and P
�1 bar and given as a function of concentration slope ��cs /�P�T.
The solid curve is the fitted one proportional to ��cs /�P�T

2. For
convenience in recognizing the pressure dependence of ��cs /�P�T,
the corresponding phase-separation pressure P is given at the upper
horizontal axis.
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� = 2��c + �d��4/3/�
c + 
d�1/3�i
2/3, �44�

where �i is the interface-tension coefficient and �c and �d
are the viscosity coefficient of the c and d phases, respec-
tively. The characteristic features of the present system are
that �i is so small as 0.02 erg/cm2 and that within the
present temperature range �c is so large, as can be recog-
nized from the magnitude of �cT

2, Eq. �35�. Furthermore, our
sound frequencies are rather high. So, for the present experi-
mental situation, we have ���; i.e., the interfacial wave is a
highly damped mode. In addition, we have a good normal
incidence of sound onto the interface. Furthermore, inequal-
ity ��i / �u1u2��Zc,d is well satisfied for the present system.
Thus, we can neglect the terms with the interfacial tension in
Eq. �6� even for large incidence angles. On the whole, we
may conclude that the interfacial mode does not concern the
present investigation on �.

D. Discussions on the region T�Tm

We start from the very striking T3 dependence of � in the
temperature region T�Tm. At such sufficiently low tempera-
tures, as can be recognized from Figs. 5 and 8, the relaxation
time of 3He quasiparticles is much longer than �d�Td,m� and
�c�Tc,m�. So we may consider the situation in which we have
the ballistic flow of 3He quasiparticles across the interface
driven by the pressure modulation. For the coexisting c and d
phases, we have a requirement of the equality of the chemi-
cal potentials as

�Fc = �Fd, �45�

where �Fc and �Fd are the chemical potential per particle of
3He in the c and d phases, respectively. On the other hand,
we have a potential jump U in the Fermi energies of quasi-
particles belonging to the different phases as

EFc = EFd + U . �46�

Here EFc and EFd are the Fermi energy of the c and d phases,
respectively. However, the presence of the potential step has
almost negligible effect on the flow of 3He quasiparticles
with Fermi momenta since the quantum-mechanical trans-
mission coefficient through such a potential does not much
differ from unity.44

As an illustration, we consider the flow from the c phase
to the d phase. As usual for degenerate Fermi systems, it is
reasonable to consider quasiparticles lying near the Fermi
surface of each phase within the range of thermal broaden-
ing, ±kBT. Suppose that a quasiparticle of momentum p1,c is
driven to flow across the interface from the c phase to the d
phase. The phase-conversion phenomenon for this quasipar-
ticle means the process in which it collides with the d-phase
quasiparticles and finally relaxes to a d-phase quasiparticle in
thermal equilibrium with the surrounding bulk liquids. That
is, in order to have phase conversion, we must have colli-
sions among quasiparticles. So it seems very reasonable that
� falls with a decrease of the temperature, since the lower the
temperature, the lesser the frequency of collisions.

With the physical picture mentioned above, we try to un-
derstand the temperature dependence observed in Eq. �43�.
Consider the n-particle collision specified by

�p1,c� + �p1,d� + ¯ + �pn−1,d� → �p�1,d� + ¯ + �p�n,d� ,

�47�

where subscript d means the d-phase quasiparticle. The law
of momentum conservation is expressed as

p1,c + �
i=1

n−1

pi,d = �
i=1

n

p�i,d. �48�

For the magnitude of the momentum, we may write

�p1,c� � pFc and �pi,d� � �p�i,d� � pFd. �49�

As is noted in Sec. I with Eq. �1�, there is a large difference
between pFc and pFd. In such a situation, the two-particle
collision cannot be effective for the phase-conversion pro-
cess since it requires some definite angle of scattering to
fulfill the conservation of momentum, Eq. �48�, under the
restriction of Eq. �49�. Note that the law of energy conserva-
tion does not impose any significant restraints on the scheme
of the collision process because of Eq. �46�. It affects the
temperature dependence of the relaxation time of 3He quasi-
particles. That is, due to the Pauli exclusion principle, the
n-particle collision of Eq. �47� may give the relaxation time
��n� as45

��n� � T −2�n−1�, �50�

when we consider quasiparticles near the Fermi surface
within the range ±kBT.

Since the two-particle collision seems ineffective for the
phase-conversion phenomena in the present system, we con-
sider, as a natural step, the next-higher-order process—i.e.,
the three-particle collision which may not be strongly af-
fected by the restrictions due to Eqs. �48� and �49�. From Eq.
�50� with n=3, we have

��3� � T −4. �51�

From the dimensional point of view, ��3� should be aEF
3 /T 4.

Here a is a quantity associated with the amplitude of the
three-fermion interaction.

As is noted above, the d-phase quasiparticle converted
from the incoming c phase one must finally be in thermal
equilibrium with the surrounding bulk liquids for completion
of the phase conversion. Such a process of thermal relaxation
implies that the three-particle collision mentioned above is
followed by subsequent two-particle collisions through the
bulk liquids. This is the stage of thermal conduction through
the bulk liquids and is governed by the magnitude of the
thermal conductivity, �. From the kinetic theory of gases, we
have the order-of-magnitude estimate

� � CvF
2� , �52�

where C is the specific heat, vF is the Fermi velocity, and � is
the relaxation time of the particle. For degenerate bulk Fermi
liquids, we may take ��2� for � in Eq. �52� and C is propor-
tional to T. The same arguments can be applied for the op-
posite case in which a quasiparticle passes from the d phase
to the c phase.
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Therefore, we may conclude that the growth coefficient of
the interface in the ballistic regime is, as a whole, propor-
tional to

��3�
−1� � T 4T −1 = T3. �53�

This result agrees with the temperature dependence observed
in Eq. �43�.

E. Discussions on the region T�Tm

The transmission of sound across the superfluid-normal
interface of 3He- 4He liquid mixtures is theoretically dis-
cussed in Ref. 17 within the framework of hydrodynamic
approximation. Even in the region T�Tm, we may safely
consider the c phase to be almost pure liquid 3He within the
temperature range presently studied. As is discussed in Ref.
17, in the d phase we have not only a first-sound mode but
also a second-sound one. Furthermore, there is a diffusive
mode of 3He which will decay at the diffusion length defined
as

�D��� = �D/� , �54�

where D denotes the mass diffusion coefficient of 3He atoms
in the d phase. Then, the kinetic growth coefficient is given
as17

� = �u2d
2 − i�D


�Z
�c

� �cs�T,P�
�P

�
T

2

, �55�

where u2d is the second-sound velocity in the d phase and Z
is the thermodynamic potential conjugated to the mass con-
centration c. Neglecting the entropy term, we have the ex-
pression for u2d as46

u2d
2 =

c2
s


n

�Z
�c

, �56�

where 
s and 
n are the density of the superfluid and normal
fluid components, respectively.

In the hydrodynamic limit ��d�1, the attenuation coeffi-
cient of second sound �2d is given as47

�2d =
2

3

�2

u2d
3 
n

��3d + diffusion and heat conduction terms� .

�57�

Here, �3d is the 3He viscosity in the d phase. If we take the
viscosity term alone, we can estimate the magnitude of �2d
from �d of Eq. �24� with the approximation 
n=n3m* as

�2d � �d�ud/u2d�3�n4/n3��m*/m4� . �58�

For example, taking the values of u2d�100 mK��13 m/s
from Ref. 48 and our �d�100 mK,9.64 MHz��0.1 Np/cm,
we have �2d�100 mK,9.64 MHz��1.6	104 Np/cm. The
estimation of the magnitude of �2d�T ,9.64 MHz� may also
be made by using Eq. �57� and the experimental re-
sults in Ref. 48 performed at 25 kHz. For example,
taking the value �2d�100 mK,25 kHz��0.3 Np/cm,48 we
have �2d�100 mK,9.64 MHz��5	104 Np/cm.

Therefore, the frequencies of sound in the present study
seem too high to consider the second-sound mode as a well-
defined propagating mode. So we may safely neglect the
term of u2d

2 in the argument of square root of Eq. �55�. Then,
the dependence of � of Eq. �55� on the temperature and fre-
quency may be given as

��D�1/2 � ����2��1/2 � �1/2T −1. �59�

This does not agree with the observed result of Eq. �42�.
Furthermore, Eq. �55� gives the growth coefficient as a
complex-valued quantity, which means a complex-valued
transmission coefficient �c→d. Such behavior also does not
agree with our observation �Sec. III B�.

On the other hand, as is noted in Sec. IV B with Fig. 11,
� behaves at a fixed temperature in proportion to ��cs /�P�T

2.
This behavior is in accordance with Eq. �55�. In this regard,
though qualitatively and partly, the results shown in Fig. 11
may support the procedure of deriving Eq. �55�. Note that the
��cs /�P�T

2 dependence in that equation results from the as-
sumption of the phase equilibrium at the interface.17

We now try to find the reason of the disagreement be-
tween Eqs. �42� and �59� with respect to the dependence on
the temperature and frequency. At first, without the sound
injection, we have an equilibrium state at temperature T and
the overall pressure P= P0 as shown in Fig. 12�a�. Then,
suppose that an extra pressure �P is applied to the interface.
The situation considered in Ref. 17 for this condition is il-
lustrated in Fig. 12�b�. As is mentioned above, it is assumed
that one has the thermodynamic equilibrium at the interface;
i.e., the 3He concentration on the d-phase side changes from
xs�T , P0� to xs�T , P0+�P� only at the interface and decreases
toward its magnitude in the bulk d-phase xs�T , P0� with the
characteristic length �D���.

We think, however, that the real situation may be such as
illustrated in Fig. 12�c�; i.e., we have a finite region of about
� beside the interface in which the equilibrium 3He concen-
tration xs�T , P0+�P� is accomplished—i.e., the phase con-
version is completed. Then, the growth rate of the interface
with the sound of frequency � may be proportional roughly
to ��—i.e.,

� � �� . �60�

One recognizes that, if one takes �D��� as �, one obtains

� � ��D��� = ��D , �61�

which coincides with the prefactor of Eq. �55� without the
term due to the second-sound mode. So it seems reasonable
to assume that � is proportional to �D���; i.e., the finite part
of the region of �D��� completes the phase conversion.

As is discussed in the preceding section, in order to com-
plete the phase conversion, we need, first, the flow of 3He
quasiparticles and, second, the process to realize the thermal
equilibrium with the surrounding bulk liquids. In the hydro-
dynamic region, the flow is a diffusion one. This fact may be
taken into account if we assume ���D��� as mentioned
above. The second process of thermal relaxation may be im-
portant to determine how large the part of the region �D���
which completes the phase conversion. This aspect is not
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fully considered in Ref. 17. Since we have both the diffusive
mode and the propagating first-sound mode in the interface
region, it may be not much unreasonable to assume that the
second process in the hydrodynamic region is concerned
with the attenuation process of the first-sound mode. Then,
Eq. �60� may be modified as

� � ��D����int, �62�

where �int is the attenuation coefficient of first sound in the
interface region. It seems reasonable to assume

�int � �2�int with �int � ��2� � T −2 �63�

in the hydrodynamic limit. Here, �int is the relaxation time of
3He quasiparticles in the interface region. Then, from Eq.
�62� we may conclude that the growth coefficient in the hy-
drodynamic regime is proportional to

��−1/2T −1�2T −2 = �5/2T −3. �64�

This result agrees with the observed dependence of � on the
temperature and frequency of Eq. �42�.

The agreement mentioned above may suggest the direc-
tion of the improvement for the theoretical considerations
made in Ref. 17. In order to obtain the formula of � as Eq.
�62�, it seems necessary to take into account an entanglement
between the diffusive mode and the first-sound mode which
coexist in the interface region. At present, we have not suc-
ceeded to formulate the situation shown in Fig. 12�c�.

The observed fact �iii� mentioned in Sec. IV A can be
understood if we approximate �int by

1

�int
�

1

�c
+

1

�d
. �65�

Since �d is always much longer than �c, �c may be most
effective for the process in the interface region.

The extension of the present study into the higher-
temperature region seems interesting since the higher the
temperature, the contribution of 4He quasiparticles to the
mass flow across the interface would become the more no-
ticeable. The phase conversion of 4He quasiparticles means
the conversion process between quasiparticles of the Bogo-
liubov type49 in the d phase and those of the Zharkov-Silin
type50 in the c phase. It would be worthwhile to see how
such a process affects the interface mobility.

V. SUMMARY

We have carried out a systematic study of the sound trans-
mission across the interface between the 3He-dilute and
3He-concentrated phases of a separated 3He- 4He liquid mix-
ture. The interface represents a new enticing object for in-
vestigating the phase transition kinetics in a quantum liquid
mixture. To obtain the interface transmission coefficient, we
have developed an original experimental method based on
displacing the interface position between two transducers
with a uniform velocity at constant temperature and pressure.

The measurements of the sound transmission coefficient,
performed at various temperatures, pressures, and frequen-
cies, have revealed an essential discrepancy with the stan-
dard acoustic-mismatch theory at sufficiently low tempera-
tures. We have observed an anomalous temperature- and
frequency-dependent behavior of the sound transmission co-
efficient. It shows a frequency-dependent minimum at the
temperature T�,min��� and the reduction at this minimum
point is almost a factor of 10 or much more depending on the
frequency. The results are interpreted in terms of the kinetic
growth coefficient of the interface, �. The prominent features
observed for � are as follows.

�i� The kinetic growth coefficient ��T , P ,�� shows a
frequency-dependent maximum at Tm��� which corresponds
to T�,min���.

�ii� Above Tm���, � is frequency dependent and falls with
an increase of the temperature as ���5/2T −3.

�iii� Below Tm���, � becomes frequency independent and
also diminishes as ��T3 as the temperature is lowered.

�iv� For the same frequencies, the values Tm��� nearly
coincide with the temperatures Tc,m��� at which the sound
attenuation coefficient of the c phase shows a maximum.

FIG. 12. Schematic illustration of the region near the interface.
�a� The equilibrium interface at the overall pressure P= P0. The 3He
concentration of the d phase is xs�T , P0� and that of the c phase is
xc=1. �b� The interface region considered in Ref. 17 when extra
pressure �P is applied to the interface due to incident sound wave.
The thermodynamically equilibrium value of 3He concentration
xs�T , P0+�P� is achieved only at the interface on the d-phase side.
�c� The condition for the pressure is the same as in �b�. Here, how-
ever, we have a finite region of about � in which the concentration
becomes xs�T , P0+�P�.
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�v� The measurement of the phase-separation pressure de-
pendence at a fixed temperature of about 30 mK shows that �
increases in proportion to ��cs /�P�T

2.
The crossover observed in the temperature dependence of

� ��i�� is important. Taking into account �iv�, it may be rea-
sonable to consider the temperature region T�Tm��� as the
ballistic one for 3He quasiparticles. Our discussion on item
�iii�, given in Sec. IV D, is made from this point of view.
First, we note that the collision process among quasiparticles
is necessary in order to realize and complete the phase-
conversion process. Then, it is physically very reasonable
that � decreases with a reduction of the collisional frequency.
That is, without collisions we have no phase conversion.
Second, we note that a large difference in the Fermi momen-
tum between the c and d phases, as is given by Eq. �1�, is
crucial. Two-particle collisions cannot be effective, and we
must consider higher-order three-particle collisions. Then,
taking into account the subsequent process of thermal relax-
ation necessary for completion of the phase conversion, we
can arrive at the T3 dependence of � in agreement with the
observation. We believe that the present result �iii� is the first
case of experimental observations in liquid 3He- 4He mix-
tures, which shows the importance of three-particle colli-
sions among 3He quasiparticles.

Observation �v� is also very important. First, it unambigu-
ously shows that � determined with the present method re-
flects the phase conversion induced by the sound pressure at
the interface. Second, the observed ��cs /�P�T

2 dependence is
consistent with the theoretical prediction made in Ref. 17,
Eq. �55�. In the theory, that dependence is associated with a
tendency of the system towards phase equilibrium at the in-
terface �Fig. 12�b��. However, the temperature and frequency
behavior for the prefactor of Eq. �55�, ��D�1/2��1/2T −1, on
the neglect of the contribution from the second-sound mode,
does not agree with observation �ii�. So we propose the situ-
ation of Fig. 12�c� instead of Fig. 12�b�. We have not yet
succeeded in formulating the situation of Fig. 12�c�. Assum-
ing the relation of Eq. �62� for the expression of � in Fig.
12�c�, we arrive at Eq. �64� in agreement with observation
�ii�. It is a future problem to investigate the validity of the
speculation, Eq. �62�, from a reasonable theoretical formula-
tion, which would also give the transmission coefficient �c→d
and the growth coefficient � as real-valued quantitities.

Throughout the discussions in Secs. IV D and IV E we
consider that the phase-conversion process is completed
when the phase-converted region sets in thermal equilibrium
with the surrounding bulk liquids. Then, we obtain the de-
pendence of � on the temperature and frequency which
agrees with the ones observed in both the ballistic and hy-
drodynamic regimes. So it seems that the transmitted sound
detects the interface growth as a region where the phase con-
version is completed in the sense mentioned above, at least
within the frequency range presently studied.

Here we would like to mention the important aspect of the
present results in connection with those of nucleation phe-
nonenon in supersaturated 3He- 4He superfluid mixtures.4 In
Ref. 4 it is observed that the critical supersaturation of su-
perfluid 3He- 4He mixtures is almost independent of tem-
perature below about 10 mK. Futhermore, in this tempera-

ture region, the phase separation completes very quickly
when the nucleation starts. On the other hand, the present
sound experiments reveal that the interface mobility is very
small in this low-temperature region. In order to compromise
these apparently contradicting aspects, it seems necessary to
assume the occurrence of nucleation of the c phase at greatly
many nucleation centers. Then, nucleation seeds easily coa-
lesce to form large enough droplets, much larger than the
mean free path of 3He quasiparticles. That is, the present
sound experiment strongly supports homogeneous nucleation
in the experiment of Ref. 4.

The interesting aspect of the extension of the present
study into the higher-temperature region is noted in Sec.
IV E. An extension into the lower-temperature region in the
ballistic regime also seems very interesting in connection
with the Andreev reflection phenomena.51 The existence of
the Andreev reflection is a general effect for the boundary
between the normal fluid and the Cooper-paired superfluid.
The effect is well known and was studied originally for the
normal metal-superconductor �N-S� configuration. We may
think of the analog of Andreev’s original N-S boundary for
the interface between the d and c phases provided the c
phase becomes a superfluid state. In fact, from the standpoint
of Fermi 3He quasiparticles the interface represents a bound-
ary separating normal states in the d phase and Cooper-
paired states in the superfluid c phase. Since Fermi excita-
tions in the superfluid state have an energy gap in the
spectrum, Fermi excitations in the normal state, whose en-
ergy is smaller than the energy gap, must be reflected due to
impossibility of satisfying the energy conservation law. This
affects the transmission of Fermi quasiparticles across the
interface and, correspondingly, should modify the sound
transmission and reflection coefficients. Due to different
character of the energy gap in the A and B phases, we expect
different behavior of the sound coefficients in these super-
fluid states. In this respect, it would be worthwhile to inves-
tigate how the Andreev reflection phenomena affect the
sound coefficients.

Finally, we wish to note advantageous aspects of the
present experimental way of sound measurement. First, as is
described in Sec. II C, we start the measurements with pure
liquid 4He and then condense 3He to prepare a phase-
separated mixture. So the absolute accuracy of the sound
attenuation measurements can be referred to the accuracy of
measurements in pure liquid 4He. The good agreement of our
�d�T , P ,xs ,�� with the calculated curves based on the theo-
retical formula in a wide temperature range, as is shown in
Sec. III A, supports the accuracy of our measurements. Sec-
ond, as is noted in Sec. II A for the measurement of the
transmission coefficient �c→d, we always utilize the signal Ad
transmitted through the saturated d phase. This fulfills the
role of a crucial check of the measurements with phase-
separated mixtures at every stage. The satisfactory agreement
of our �c�T , P ,�� with the data published for pure liquid 3He
evidences the reliableness of our present method as a whole.

In conclusion, we have presented a method and enticing
results which will trigger further experimental and theoreti-
cal studies of the interfacial dynamics in phase-separated
3He- 4He liquid mixtures.
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