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We study the equilibrium statics and nonequilibrium driven dynamics of flux-line liquids in the presence of
a random pinning potential. Under the assumption of replica symmetry, we find in the static case using a
replica Gaussian variational method that the only effect of disorder is to increase the tilt modulus and the
confining “mass” of the internal modes of the flux lines, thus decreasing their thermal wandering. In the
nonequilibrium driven case, we derive the long-scale, coarse-grained equation of motion of the vortices in the
presence of disorder, which, apart from new Kardar-Parisi-Zhang nonlinearities, has the same form as the
equation of motion for unpinned vortices, with renormalized coefficients. We also compute the structure factor
of a disordered vortex liquid, and show that the disorder contributes an additive, Lorentzian squared term, to
the structure factor of the center of mass mode, otherwise leaving the functional form of terms describing the
internal modes unchanged. The expression of the static structure factor derived within our approach is consis-
tent both with experimental data and with the standard theory of elasticity of vortices in high temperature
superconductors.
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I. INTRODUCTION

During the past 15 years, the study of the properties of
flux-line liquids in high-temperature superconductors
�HTSC’s� has been one of the most active areas of research
in vortex phenomenology. Yet, despite an impressive body of
literature, both experimental and theoretical, and despite a
relatively good understanding of the overall behavior and
macroscopic properties of vortex liquids, it seems that the
important question of the actual microscopic correlations of
flux-line trajectories inside such liquids has not been fully
understood yet. Indeed, of the several theoretical approaches
that have been used to study the properties of liquid-vortex
matter, one particular approach, which has had a rather
strong impact on our present understanding of flux liquids in
HTSC’s, is boson mapping, developed by several authors,1–6

which is based on the observation7 that there is a formal
mapping between the partition function of a three-
dimensional system of interacting flux lines and the
imaginary-time partition function of quantum bosons in two
dimensions. Although boson mapping is ultimately used to
find density-density correlation functions and does not con-
tain, after coarse graining, any detailed information about
flux-line trajectories, it has been argued,2 based on the be-
havior of the structure factor derived in this and other hydro-
dynamic approaches,8 that flux lines wander throughout the
sample in a random-walk-like fashion, much in the same
way as in a hypothetical “ideal gas” of noninteracting vorti-
ces. This implies, in particular, that the internal fluctuations
of flux lines have an average spatial extent which diverges
with the sample thickness L.

The above interpretation, and in fact the whole hydrody-
namic approach to flux-line liquids, suffers from a number of
inconsistencies which have been pointed out and discussed
in detail in two recent papers by the author.9,10 In these two
articles, the author has proposed an approach to study three-
dimensional flux-line liquids in type-II superconductors
which, instead of the density, uses the actual conformation
variables of vortices as the fundamental dynamical variables

of the flux-line system. This approach, which makes contact
with the standard theory of classical fluids, is based on the
separation of the dynamical variables of flux lines into
center-of-mass �c.m.� and internal modes and on the obser-
vation that the repulsive interactions between flux lines must
lead to a certain degree of confinement of the internal modes,
whose fluctuations are shown to be bounded and to no longer
diverge with the sample thickness.9,10 This picture is obvi-
ously in contradiction with the results of the boson mapping
of Refs. 2–4.

In this paper we wish to generalize the methodology de-
veloped in these previous studies �Refs. 9 and 10� to study
the statics and dynamics of vortex liquids in the presence of
a random pinning potential. In the static case, we shall show
in particular that disorder leads to an enhancement of the tilt
modulus and the confining “mass” of the internal modes of
flux lines, thereby reducing their thermal wandering. These
static results are then generalized to the dynamics of driven
vortex liquids in the presence of a random pinning potential.
In contrast to earlier studies of this system, in which the
density was used as the fundamental dynamical variable, in
our approach flux-line trajectories, which are the true dy-
namical variables of the system, are used throughout. This
enables us to derive the coarse-grained, large-scale equation
of motion of vortices in the flux liquid in the presence of
disorder, in close analogy with earlier work on driven, disor-
dered flux lattices.11–13 We also present a detailed derivation
of the hydrodynamics of flux-lines, and show that the general
analytic form of the structure factor S�r ,z� remains un-
changed, except for a Lorentzian squared additive contribu-
tion of disorder to the structure factor of the c.m. mode of
flux lines, in disagreement with previous boson mapping3,4

and other hydrodynamic formulations.8

This article is organized as follows. In Sec. II, we use a
simple perturbative analysis to study the effect of disorder on
vortex liquids. This perturbative analysis is then refined in
Sec. III where we use the replica Gaussian variational
method14 to properly include the effect of the relatively
strong thermal fluctuations which are a common characteris-
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tic of HTSC’s. In Sec. IV, we construct an action formulation
for the dynamics of flux lines in a vortex liquid. Then, before
considering the nonequilibrium case of a driven disordered
flux liquid, we shall first be interested in the equilibrium
dynamics of flux liquids, which we will investigate in quite
some detail in Sec. V. Such an investigation is not only a
natural step toward the more complex disordered case, but is
also necessary for the developments to follow, since one
needs to correctly specify the near-equilibrium dynamics of
the unpinned interacting liquid in order to be able to tackle
the out-of-equilibrium driven, disordered case. In Sec. VI,
we derive the coarse-grained dynamics of driven, disordered
flux liquids in the limit of high drives before deriving the
structure factor of pinned flux liquids in Sec. VII. Section
VIII contains a discussion of our results along with our con-
clusions.

II. FLUX-LINE LIQUID IN THE PRESENCE
OF DISORDER: PERTURBATIVE ANALYSIS

We thus consider a flux-line liquid in d=d�+1 dimen-
sions �we use d�=2 in all explicit calculations�, in the pres-
ence of an external pinning potential. Our starting point is
the Hamiltonian1,2

H = �
i=1

N � dz�1

2
K�dri

dz
�2

+
1

2 �
j��i�

V„ri�z� − r j�z�…�
+ �

i=1

N � dzVd„ri�z�,z… , �1�

where the d�-dimensional vector ri�z� parametrizes the tra-
jectory of the ith flux line as it traverses the superconducting
sample, K is the tilt modulus of the flux lines, V�r�
=2�0K0�r /�� is the interaction potential between flux line
elements at equal height, and Vd�r ,z� is a random pinning
potential. In the above expression of V�r� ,� is the London
penetration depth in the �ab� planes, K0 is a modified Bessel
function,15 and �0= ��0 /4���2, where �0=hc /2e is the flux
quantum �here h is Planck’s constant, e the absolute value of
the electronic charge and c the speed of light in vacuum�.16

In Eq. �1� and all equations below, the origin of heights is
taken to be at the center of the sample and all z integrals are
taken from −L /2 to L /2 �L is the sample thickness�. For
simplicity, we shall consider that the probability distribution
of Vd is Gaussian, with zero mean and variance:

	Vd�r,z�Vd�r�,z��
 = ��r − r�,z − z�� . �2�

We next consider the canonical partition function of this sys-
tem �here T is temperature, and we use units such that Bolt-
zmann’s constant kB=1�,

Z =� �
i=1

N

�dri�z�
e−H/T, �3�

and average over the disorder by introducing p replicas of
the above system and making use of the well-known replica
trick,

ln Z = lim
p→0

Zp − 1

p
, �4�

upon which we obtain the following, disorder-averaged
Hamiltonian:

H̄ = �
a=1

p

�
i=1

N � dz
1

2�K�dri
a

dz
�2

+ �
j��i�

V„ri
a�z� − r j

a�z�…�
−

1

2T
�

a,b=1

p

�
i,j=1

N � dzdz��„ri
a�z� − r j

b�z��;z − z�… , �5�

where the superscripts �a ,b , . . . � label replicas. In what fol-
lows, it will prove useful to write the flux-line position at
height z, ri�z�, as the sum

ri�z� = r0i + ui�z� , �6�

where r0i= �1/L��dz ri�z� is the c.m. position of the ith flux
line, while ui�z� is the displacement of the ith flux line at
height z with respect to r0i and has the following decompo-
sition into Rouse modes17:

ui�z� = �
n�0

ui�qn�eiqnz, �7�

with the Fourier coefficients

ui�qn� =
1

L
� dz ui�z�e−iqnz. �8�

In keeping with the spirit of the calculation carried out in
Ref. 9, in this section we shall perform a simple perturbative
analysis of the physics encoded in the Hamiltonian �5� and

expand H̄ to quadratic order in the displacement field �u�.
The pure �disorder free� part of H̄ yields

H̄pure = H̄pure
�0� + H̄pure

�1� , �9�

where

H̄pure
�0� =

1

2�
a=1

p

�
i�j

LV�r0i
a − r0j

a � �10�

is the Hamiltonian of a system of perfectly straight flux lines
interacting through the potential V�r� and where

H̄pure
�1� = �

a=1

p

�
i=1

N � dz
1

2
�K�dui

a

dz
�2

+ ���
�i� ui�

a �z�ui�
a �z��

+ �
a=1

p

�
i=1

N

�
j��i�

� dz
1

2
���

�ij�ui�
a �z�uj�

a �z� �11�

represents the contribution of internal modes to the “pure”
part. In the above equation, the coefficients ���

�i� and ���
�ij� are

given by

���
�i� = �

j��i�=1

N

����V�r0i
a − r0j

a � , �12�
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���
�ij� = − ����V�r0i

a − r0j
a � . �13�

In a similar fashion, a Taylor expansion of the disorder part

of H̄ to quadratic order in the displacements �ui
a� gives a

decomposition similar to the one in Eq. �9�, namely:

H̄dis = H̄dis
�0� + H̄dis

�1�. �14�

Here, H̄dis
�0� is given by

H̄dis
�0� = −

1

2T
�
a,b

�
i,j

L�̄�r0i
a − r0j

b � �15�

and is the disorder part of the disorder-averaged Hamiltonian
of a system of perfectly straight flux lines in a Gaussian

random potential with variance �̄�r�=�−	
	 dz��r ,z�. On the

other hand, H̄dis
�1� is given by

Hdis
�1� = −

1

2T
�
a=1

p

�
i=1

N � dz� dz�
1

2
�ui�

a �z� − ui�
a �z��
�ui�

a �z�

− ui�
a �z��
������0,z − z��

−
1

2T
�
a=1

p

�
i�j
� dz� dz�

1

2
�ui�

a �z� − uj�
a �z��
�ui�

a �z�

− uj�
a �z��
������r0i

a − r0j
a ,z − z��

−
1

2T
�
a�b

�
i,j
� dz� dz�

1

2
�ui�

a �z� − uj�
a �z��
�ui�

b �z�

− uj�
b �z��
������r0i

a − r0j
b ,z − z�� . �16�

It is not difficult to see that the first term on the right-hand
side of the above equation represents same replica, single-
line contributions to the Hamiltonian of the internal modes of
vortices, while the second and third terms represent contri-

butions to H̄dis
�1� coming from same replica, different flux lines

and from different replicas, respectively.

Collecting all terms, it follows that H̄ can be written in the
form

H̄ = H̄�0� + H̄�1�, �17�

where

H̄�0� = H̄pure
�0� + H̄dis

�0�, �18a�

H̄�1� = H̄pure
�1� + H̄dis

�1�. �18b�

In the spirit of Ref. 9, we shall derive an effective Hamil-
tonian for the internal modes of the flux lines by averaging

H̄�1� over the center-of-mass positions �r0i
a �:

Hu = 	H̄�1�
0 = 	H̄pure
�1� 
0 + 	H̄dis

�1�
0, �19�

where the average is carried out with statistical weight

exp�−H̄�0� /T� /Z0 �with Z0=Tr�e−H̄�0�/T�
. The pure part of Hu

has already been evaluated in Ref. 9, with the result

Hu
pure = �

a=1

p ��
i=1

N � dz
1

2
�K�dui

a

dz
�2

+ �ui
a�z� · ui

a�z��
+ �

i=1

N

�
j��i�

� dz
1

2

�

N − 1
ui

a�z� · u j
a�z�� , �20�

where the “mass” coefficient � is given by

� =



d�
� dr g0�r���

2 V�r� �21�

and where

g0�r − r�� =
1


2�
i=1

N

�
j��i�

	��r − r0i
a ���r� − r0j

a �
0 �22�

is the pair distribution function of the two-dimensional liquid
formed by the centers of mass of flux lines belonging to the
same replica in the vortex liquid. In a similar fashion, we

show in Appendix A that Hu
dis= 	H̄dis

�1�
0 can be written in the
form

Hu
dis = �

a=1

p

�
i=1

N � dz�1

2
�K��zui

a�2 +
1

2
���ui

a�z��2�
+ �

a=1

p

�
i�j
� dz� dz���ij

�a��z − z��ui
a�z� · u j

a�z��

+ �
a�b

�
i,j
� dz� dz���ij

�ab��z − z��ui
a�z� · u j

b�z�� . �23�

Here the long-wavelength disorder contribution �K to the tilt
modulus of the flux lines is given by

�K = � −
1

d�T
�

−	

	

dzz2��
2 ��r,z��

r=0

, �24�

and the “mass” coefficients �� are given by

�� = −



d�T
� dr�

b=1

p

g0,ab�r���
2 �̄�r� , �25a�

��ij
�a��z� =




�N − 1�d�T
� drg0�r���

2 ��r,z� , �25b�

��ij
�ab��z� =




Nd�T
� drg0,a�b�r���

2 ��r,z� . �25c�

We immediately note that the two-body coefficients
��ij

�a��z� and ��ij
�ab��z� vanish in the thermodynamic

�N→	� limit. In Eq. �25a� above, the sum �b=1
p g0,ab�r� de-

notes the quantity

�
b=1

p

g0,ab�r� = g0�r� + �
b��a�=1

p

g0,a�b�r� , �26�

where
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g0,a�b�r − r�� =
1


2�
i=1

N

�
j=1

N

	��r − r0i
a ���r� − r0j

b �
0 �27�

is the pair distribution function of the c.m. mode of flux lines
from different replicas. Now, in Eq. �25a� and under the as-
sumption of replica symmetry, all pair distribution functions
g0,a�b�r� are equal to the same function g̃0�r�, and we may
replace the sum �b�ag0,a�b by �p−1�g̃0, with Eq. �25a� be-
coming

�� = −



d�T
� dr�g0�r� + �p − 1�g̃0�r�
��

2 �̄�r� ,

which, in the limit p→0 reduces to

����p→0 = −



d�T
� dr�g0�r� − g̃0�r�
��

2 �̄�r� . �28�

In the replica-symmetric ground state considered here, the
diagonal and off-diagonal �in replica space� pair distribution
functions should be equal,

g0�r� = g̃0�r� , �29�

and we therefore obtain that the correction �� identically
vanishes, which shows that the bare mass � generated by
interactions between flux lines is unrenormalized by disor-
der.

We now can write the following expression for the effec-
tive Hamiltonian Hu=Hu

pure+Hu
dis of the internal fluctuations

of flux lines in a vortex liquid:

Hu � �
a=1

p

�
i=1

N � dz
1

2
�KR��zui

a�2 + �„ui
a�z�…2
 , �30�

where we discarded the terms proportional to 1/N �which
vanish in the thermodynamic limit; see Eqs. �25b� and �25c�

and where the renormalized tilt modulus K is given by

KR = K + �K , �31�

with �K given by Eq. �24�. At this stage, an explicit expres-
sion for the disorder correlator ��r ,z� is called for. For point
disorder such as oxygen vacancies in HTSC’s, we shall take
��r ,z�=�0 exp�−�r2+z2� /2�2
 �with the understanding that
the disorder correlation length � is much smaller than the
average intervortex distance a=1/�
�, upon which we obtain
the following expression for the effective tilt modulus:

KR = K +
�2��0�

d�T
. �32�

This expression shows that a flux-line liquid in the presence
of a weak pinning potential is equivalent to an unpinned
liquid but with a higher tilt modulus—i.e., that flux lines are
stiffened by weak point disorder—which is what one would
expect based on physical intuition.

For disorder that is correlated along the direction of flux
lines—e.g., columnar pins18—the variance ��r ,z� is z inde-
pendent. Upon using for this case a disorder correlator of the
form ��r ,z�=�0 exp�−r2 /2�2�, we obtain

KR = K +
L3�0

3d�T�2 , �33�

which shows that the tilt modulus is much strongly renormal-
ized by correlated disorder than it is by ordinary point disor-
der, in agreement with the predictions of Refs. 19 and 20.
The divergence of the right-hand side of the above equation,
however, signals the breakdown of perturbation theory for
correlated disorder, which is best treated with other, nonper-
turbative methods19 that are better suited to strong pinning
situations.

III. VARIATIONAL APPROACH

We now generalize the analysis of the previous section to
take into account the effect of possible large fluctuations of
flux-line trajectories by using the replica Gaussian varia-
tional approach for elastic manifolds.14 For compactness, we
shall only give the salient features of the calculation and
refer the reader interested in more details to Ref. 10, where a
similar calculation was done for the pure case, the generali-
zation to the disordered case being straightforward.

We start by introducing the following variational Hamil-
tonian:

Hv = H0��r0i�
 + H1��u0i�
 , �34�

where H0 and H1 are trial Hamiltonians for the c.m. and
internal modes, respectively, and are to be determined varia-
tionally. Although one can, in principle, use a very general
trial Hamiltonian for the internal modes of flux lines of the
form

H1 = �
a,b

�
i,j
� dzdz��G−1�qn�
ij,ab

�� uia
� �qn�ujb

� �− qn� , �35�

the insight we gained from the perturbative solution suggests
the following, simplified form:

H1 = �
a,i

�
n�0

G−1�qn��uia�qn��2. �36�

Variation of the trial free energy

F1 = − T ln Z1 + 	H̄ − Hv
1, �37�

where Z1=Tr�exp�−H1 /T�
 and 	¯
1 denotes averaging with
statistical weight exp�−H1 /T� /Z1, with respect to the c.m.
Hamiltonian H0, leads to the result that the optimal choice
for H0 is given by �we henceforth use the shorthand notation
�q=�dd�q / �2��d�


H̃0 =
L

2 �
i,j
��

n�0
d�pT�G0

−1�qn� − G−1�qn�
G�qn�

+ �
a=1

p �
q

V�q�eiq·�r0i
a −r0j

a �e�−q2/2d���ij�0�

−
1

T
�
a,b
�

q
� dz��q,z�eiq·�r0i

a −r0j
b �e�−q2/2d���ij�z�� , �38�

where we defined �ij�z�= 	�ui�z�−u j�0�
2
. Further variation
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of the resulting free energy Fv=−T ln �Z1�H0=H̃0
with respect

to G�qn� leads to the following result:

G̃−1�qn� = qn
2 −




d�
�

q
q2V�q�g0�q�e−q2G�0�

+
1

d�T
�

q
dzq2��q,z��1 − cos�qnz�
e−q2��z�/2d�

+



2
�

q
dzq2��q,z��g0�q� + �p − 1�g̃0�q�
e−q2��z�/2d�,

�39�

where now ��z� denotes the relative displacement of internal
modes within the same flux line, ��z�= 	�ui�z�−ui�0�
2
, and

where the tilde indicates that G̃−1�qn� has been averaged over
all possible configurations of the c.m. positions �r0i

a � which
are compatible with a liquid structure.9,10 Under the assump-
tion of replica symmetry �which implies that g̃0�q�=g0�q�
,
the last term vanishes again in the limit p→0, and we obtain

G̃−1�qn� = qn
2 −




d�
�

q
q2V�q�g0�q�e−q2	u2
/d�

+
1

d�T
�

q
dz q2��q,z��1 − cos�qnz�
e�−q2/2d����z�.

�40�

The last term on the right-hand side of the above expression
leads to the following renormalized value of the tilt modulus
of flux lines in the long-wavelength limit:

KR = K +
1

d�T
�

q
� dz q2z2��q,z�e−q2��z�/2d�. �41�

We thus see that the inverse propagator for the elastic distor-
tions of flux lines in the vortex liquid is given by the generic
form

G̃−1�qn� = L�KRqn
2 + �R� , �42�

where the effective “mass” coefficient of internal modes
fluctuations �R is identical to the quantity derived in Ref. 10:

�R = −



d�
�

q
q2V�q�g0�q�e−q2	u2
/d�, �43�

except that it now depends on KR �through 	u2
� and hence
on the disorder strength �0.

In Eq. �41�, the relative displacement of the internal
modes of a given flux line,

��z� = d�T�
n�0

G̃�qn��1 − cos�qnz�
 �44a�

=
d�T

��KR

�1 − exp�− ��/KR�z��
 , �44b�

depends on KR, and we therefore see that Eq. �41� is in fact
a self-consistent equation for the effective tilt modulus. For

the explicit evaluation of �R�T� and KR, we shall make use of
the analytical ansatz of Ref. 9 for the pair correlation func-
tion g0�r�, which is given by

g0�r� = 1 − 
 exp�− �r2/a2� , �45�

where � is a constant of order unity and 0�
�1. The nu-
merical constant 
 quantifies the degree of correlation be-
tween c.m. positions of flux lines. It is close to unity when
flux lines are strongly anticorrelated due to the repulsive in-
teractions between their surrounding supercurrents and close
to zero in situations where there is considerable cutting and
crossing of flux lines. Using the above ansatz for g0�r�, we
obtain the following expression for the “mass” �R of the
internal modes as a function of T, �Ref. 10�:

�R�T�
�0

= ��1 + � �T

4a2�KR�0
�2

− � �T

4a2�KR�0
��2

, �46�

where �0=�R�T=0�=2
�
�0 /d�. Since �R is a monotoni-
cally decreasing function10 of the parameter �
= ��T /4a2�KR�0�, we arrive at the important conclusion that
pinning disorder �which increases the value of the tilt modu-
lus from its bare value K to the effective value KR�K� in-
creases the value of �, thereby reducing even further �than
the sole increase in K� the thermal wandering of flux lines.
This effect, which did not appear in the elementary treatment
of Sec. II is expected to be rather weak for the weak disorder
considered in this work, but may nevertheless reveal itself in
actual experiments.

Going back to the effective tilt modulus of the pinned flux
line liquid, we see that due to the highly nonlinear character
of the self-consistency equation �41�, it is not possible to
solve this equation for KR and obtain a general expression for
the effective tilt modulus in closed analytic form. For weak
disorder, however, such that �0�KT /�, one can evaluate the
second term in Eq. �41� perturbatively in �0, by using for
��z� its expression in the absence of disorder, Eq. �44b�, with
K instead of KR. In the limit of small correlation lenght �, we
obtain

KR = K�1 +
���0K�3

2�2d�T2 � . �47�

Comparison with the results of the previous section shows
that the correction to the bare tilt modulus K goes to zero at
high temperature more rapidly than in the simple Taylor re-
sult of Eq. �32� �1/T2 as opposed to 1/T�. This discrepancy
is due to the fact that the Taylor expansion of Sec. II does not
take proper account of thermal fluctuations of the internal
modes of flux lines, as opposed to the self-consistent ap-
proach of this section which in fact can be shown14 to be-
come exact in the limit d�→	.

IV. ACTION FORMULATION OF THE DYNAMICS
OF FLUX-LINE LIQUIDS

We now turn our attention to the dynamics of vortex liq-
uids. The general dynamical behavior of flux-line assemblies
�solids and liquids� in a random pinning environment has
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attracted a lot of attention in recent years due, on the one
hand, to the considerable technological implications of un-
derstanding the flow of vortices in HTSC’s and, on the other
hand, because of the fundamental theoretical questions and
variety of physical regimes displayed by these systems. Most
of the above-mentioned attention has focused on the dynam-
ics of flux solids, with questions about the degree of crystal-
line and temporal order in the driven regime, and glassiness
in the absence of external drive, at the forefront of theoretical
issues that have been addressed. Although there have been a
number of studies of the dynamics of disordered flux liquids,
these studies were either done within hydrodynamic ap-
proaches, which, by definition �since they involve a coarse
graining procedure�, are unable to give information about
actual flux-line trajectories inside the superconducting
sample, or used qualitative arguments to separate length and
time scales in the plastic regime near the melting point.21

While the latter approach is very valuable in that it helps
draw a good qualitative picture of the physics of driven flux
liquids, it assumes that the vortex liquid is very viscous and
hence only applies very close to the melting point. As we
mentioned in the Introduction, here our goal is to go beyond
these previous treatments and establish a general framework
for a systematic perturbative study of driven flux-line liquids
in presence of weak disorder.

We shall assume that the motion of flux lines in the liquid
state in presence of an external driving force F is governed
by the following, overdamped Langevin equation:

��tri�z,t� = −
�H

�ri�z,t�
+ F + �i�z,t� . �48�

For simplicity, the distribution of the thermal noise �i�z , t�
will be taken to be Gaussian, with zero mean and correla-
tions �we use units such that kB=1�

	�i��z,t�� j��z�,t��
 = 2�T�ij�����z − z����t − t�� . �49�

In the above equations, the parameter � is the microscopic
friction coefficient characteristic of the interaction of the sys-
tem with the degrees of freedom of the surrounding heat
bath. In our case of flux lines in a type-II superconductor, �
describes the drag on a flux line due to the interactions of the
electrons in the normal vortex cores with the underlying
solid and is given by the Bardeen-Stephen expression16,22

� =

h2

8�e2�ab
2 �n, �50�

where 
 is the average density of flux lines, �ab is the super-
conducting coherence length in the �ab� planes, and �n is the
normal-state conductivity. �Throughout this paper, we as-
sume that the average direction of the flux-lines is parallel to
the ĉ axis of the HTSC.�

The dynamics represented by Eq. �48� is best studied us-
ing the action formulation of Martin, Siggia, and Rose23–26

�MSR�, whereby disorder-averaged observables are obtained
from the following, disorder-averaged generating
functional:8

Z =� �
i=1

N

�dri�z,t�
�d r̃i�z,t�
e−A. �51�

Here, the MSR dynamical “action” can be written in the
form

A = A free + Aint + Adis, �52�

where the “free” part

A free = �
i=1

N � dzdt�1

2
�2�T�r̃i

2�z,t� + i r̃i�z,t� · ���tri�z,t�

− K�z
2ri�z,t�
� �53�

corresponds to an “ideal gas” of noninteracting flux lines and

Aint = �
i�j
� dzdt i r̃i�z,t� · �V„ri�z,t� − r j�z,t�… �54�

is the part of the action describing the interactions between
vortices. The last term in Eq. �52� decribes the pinning of
flux lines by the underlying disorder potential and is given
by

Adis = −
1

2�
n,m

� dzdt� dz�dt�r̃n��z,t�r̃m��z�,t��

� �����„rn�z,t� − rm�z�,t��… . �55�

�In the above equations and in what follows, �i�j stands for
the double summation �i=1

N � j��i�.� Our main goal in the next
two sections will be to find a way to calculate expectation
values of dynamical observables in the liquid phase �like, for
example, the dynamic structure factor of the flux-line liquid�
by integrating directly over the conformation variables
�r̃i�z , t� ,ri�z , t�� using the MSR generating functional of Eq.
�51�, and not by integrating over the density operators, as is
done in the �static� boson analogy2 and other hydrodynamic
approaches.8 This means that we have to avoid writing the
dynamical action A in terms of the density operator

̂�r ,z ; t�=�i=1

N �(r−ri�z , t�) and instead keep the conforma-
tion variables �r̃i�z , t� ,ri�z , t�� as the true and only dynamical
variables in the problem. Our strategy will be very similar to
the strategy adopted in the previous two sections, which con-
sists in separating out the center of mass from the internal
modes of flux lines and trying to find a decoupled approxi-
mation to the dynamic action A,

A = A�0� + A�u�, �56�

such that A�0� and A�u� depend only on the c.m. and on the
internal modes, respectively. Since our ability to perform
functional integrations is limited to Gaussians, for a decom-
position of the form �56� to be useful at all we will need to
write A�u� as a bilinear form in the displacement fields
�ũi�z , t� ,ui�z , t�� fields. Such a decomposition will allow us
to evaluate averages of the form
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̂�r,z;t�
̂�r�,z�;t��
 = �
n,m

	�„r − r0n�t� − un�z,t�…

��„r� − r0m�t�� − um�z�,t��…
 �57�

by integrating over the c.m. modes �r0i�t� , r̃0i�t�� and internal
conformation variables �ũi�z , t� ,ui�z , t�� of flux lines, which
are the true dynamical variables of the system, rather than
the averaged density 
�r ,z ; t�= 	
̂�r ,z ; t�
, which is a coarse-
grained density with no detailed information on these con-
formation variables. We shall first start by considering the
case of a pure �disorder free� flux liquid at equilibrium,
which will serve as a starting point to our treatment of the
disordered case to be considered in Sec. VI and needs there-
fore to be as accurately specified and perfectly understood as
possible.

V. EQUILIBRIUM DYNAMICS OF PURE FLUX LIQUIDS

In the free part A free of the action, Eq. �53�, we rewrite the
flux-line trajectories �ri�z , t�� and conjugate fileds �r̃i�z , t�� in
the form

ri�z,t� = r0i�t� + ui�z,t� , �58a�

r̃i�z,t� = r̃0i�t� + ũi�z,t� . �58b�

Using the fact that �dzui�z , t�=�dzũi�z , t�=0, we easily ob-
tain that the free part of the action A free can be written as the
sum

A free = A free
�0� + A free

�u� , �59�

where

A free
�0� = �

i=1

N � dt �1
2

�2L�T�r̃0i
2 �t� + ir̃0i�t�L��tr0i�t��

�60�

depends only on c.m. variables, while

A free
�u� = �

i=1

N � dzdt �1
2

�2�T�ũi
2�z,t� + iũi�z,t����tui�z,t�

− K�z
2ui�z,t�
�

is the free action for the internal modes of the flux lines.
From Eq. �60�, it is not difficult to see that the c.m. mode of
flux lines is characterized by a friction coefficient �0=L�
and, hence, that the diffusion constant D0 of a free flux line is
inversely proportional to the thickness L of the sample, as
already pointed out in Refs. 8 and 27:

D0 =
1

L�
. �61�

In the interaction part of the action Aint, we expand the in-
teraction potential V(ri�z , t�−r j�z , t�) to linear order in the
displacement field:

V„ri�z,t� − r j�z,t�… = V„r0i�t� − r0j�t�… + �ui�z,t�

− u j�z,t�
 · �V„r0i�t� − r0j�t�… .

The interaction part Aint can then be written in the form

Aint = Aint
�0� + Aint

�1�, �62�

with

Aint
�0� = �

i�j
� dt iLr̃0i�t� · �V„r0i�t� − r0j�t�… , �63a�

Aint
�1� = �

i�j
� dzdt iũi��z,t��ui��z,t� − uj��z,t�


�����V„r0i�t� − r0j�t�… . �63b�

Combining Eqs. �59� and �62�, we see that we can already
write the total action A in the form A=A�0�+A�1�, where

A�0� = A free
�0� + Aint

�0�

= �
i=1

N � dt�1
2

�2L�T�r̃0i
2 �t� + ir̃0i�t� · �L��tr0i�t�

+ L � V„r0i�t� − r0j�t�…
� �64�

depends exclusively on c.m. variables and can be thought of
as the dynamical MSR action of a liquid of hard rods of
length L interacting through the potential V0�r�=LV�r�. The
effective action A�1� is, on the other hand, given by

A�1� = �
i=1

N � dzdt�1

2
�2�T�ũi�z,t� + iũi�z,t� · ���tui�z,t�

− K�z
2ui�z,t�
 + iũi��z,t��� �

k��i�
����V„r0i�t�

− r0k�t�…��ij − �
j��i�

����V„r0i�t� − r0j�t�…�uj��z,t��
�65�

and describes the internal fluctuations of the flux lines. As it
stands, however, A�1� still contains c.m. dynamical variables.
In order to obtain an effective action which depends only on
the internal modes, we need to take the average of A�1� over
all configurations of the c.m. coordinates �r0i�t�� which are
compatible with a liquid structure. In the spirit of a cumulant
expansion,9 we shall write A�u�= 	A�1�
0, where the average
here is taken with statistical weight exp�−A�0��, A�0� being
the dynamical action for the c.m. mode �Eq. �64�
. Perform-
ing the above Gaussian average, we obtain

THEORY OF DISORDERED FLUX-LINE LIQUIDS PHYSICAL REVIEW B 72, 144502 �2005�

144502-7



A�u� = �
i=1

N � dzdt�1

2
�2�T�ũi

2�z,t� + iũi��z,t�

������t − K�z
2���� + ���

�i� 
ui��z,t�

+ �
j��i�

���
�ij�uj��z,t��� , �66�

where we defined9

���
�i� = ��

i�j

����V„r0i�t� − r0j�t�…�
0

, �67a�

���
�ij� = − 	����V„r0i�t� − r0j�t�…
0. �67b�

It is easy to see that

���
�i� =� drdr�����V�r − r����

i�j

�„r − r0i�t�…

��„r� − r0j�t�…�
0

= 
2� drdr�����V�r − r��g0�r − r�� , �68�

where

g0�r − r�� =
1


2��
i�j

�„r − r0i�t�…�„r� − r0j�t�…�
0

�69�

is the �equal-time� equilibrium pair distribution function of
the c.m. mode of the flux-line liquid. Using the rotational
symmetry of both g0�r� and V�r�, we obtain that ���

�i�

=���� with9

� =



d�
� drg0�r��2V�r� , �70�

which is the result �21� of Sec. II, and similarly that9

���
�ij� = −

����

N − 1
. �71�

The above results lead to the following expression for the
effective action of the internal modes of flux lines:

A�u� = �
i=1

N � dzdt� 1

2
�2�T�ũi

2�z,t� + �
j=1

N

iũi��z,t�����t − K�z
2

+
N

N − 1
���ij −

�

N − 1
�uj��z,t�� . �72�

The above effective action can be written in Fourier space in
the form

A�u� = �
i,j

�
n�0

�
�
�1

2
ũi�qn,���̃ij�qn,�� · ũ j�− qn,− ��

+ iũi�qn,���ij�qn,�� · u j�− qn,− ��� , �73�

where the shorthand �� stands for �−	
	 d� /2� and where the

dynamical kernels �̃ij�qn ,�� and �ij�qn ,�� are given by

�̃ij�qn,�� = 2�TL�ij , �74a�

�ij�qn,�� = L��− i�� + Kqn
2 +

N

N − 1
���ij −

�

N − 1
� .

�74b�

In the thermodynamic limit N→	, the kernel �ij�qn ,�� re-
duces to the diagonal form

�ij�qn,�� � L�− i�� + Kqn
2 + ���ij . �75�

We hence obtain in our perturbative approach that the inter-
nal modes of different flux lines are effectively decoupled: in
the thermodynamic N→	 limit, the effect of the interactions
between vortices on their internal fluctuations is entirely en-
coded in the � term, which acts as a quadratic confining
potential �� 1

2�ui
2� for the internal modes of individual flux

lines �in total agreement with the findings of the static ap-
proach of Ref. 9�.

Knowledge of the propagator �ij�qn ,�� allows us to find
the reponse and correlation functions Rij�qn ,�� and
Cij�qn ,��, respectively, which we define as follows:

Rij�z − z�,t − t�� =
�	ui��z,t�

�� j��z�,t��

=
1

d�

	ui�z,t� · iũ j�z�,t��
 ,

�76a�

Cij�z − z�,t − t�� =
1

d�

	ui�z,t� · u j�z�,t��
 . �76b�

Within the mean-field approach of this section and in the
thermodynamic limit N→	, the above functions are both
diagonal in the vortex labels i , j. If we denote by ��z , t�,
R�z , t�, and C�z , t� the diagonal parts of the vertex, response,
and correlation functions, respectively, in such a way that
�ij�z , t�=��z , t��ij, Rij�z−z� , t− t��=R�z , t��ij, and Cij�z
−z� , t− t��=C�z , t��ij, then one can easily verify that11–13

R�qn,�� =
1

��qn,��
, �77a�

C�qn,�� =
�̃�qn,��

���qn,���2
. �77b�

In the thermodynamic �N→	� limit, we obtain from Eqs.
�75� and �77a� that the response function R�qn ,�� is given by

R�qn,�� �
1

L�− i�� + Kqn
2 + ��

, qn � 0. �78�

Performing a partial Fourier transform back to the variable t,
we obtain

R�qn,t� =
��t�
�L

e−��+Kqn
2�t/�, �79�

where � is Heaviside’s unit-step function. On the other hand,
from Eq. �77b�, we readily obtain for the correlation function
C�qn , t� the following expression:
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C�qn,t� =
T

L�Kqn
2 + ��

e−��+Kqn
2��t�/�, qn � 0. �80�

It is easy to verify that the fluctuation-dissipation relation

��t��tC�qn,t� = − TR�qn,t�, qn � 0, �81�

holds for the internal modes of flux lines, which indicates
that these modes will eventually reach thermal equilibrium at
long enough times. We however should emphasize that the
above expressions of the response and correlation functions
are only valid for the internal modes of the flux lines. The
c.m. mode of vortices, as described by the effective action
�64�, is still diffusive, although with a diffusion constant D
which we expect to be reduced by the interactions to a value
that is smaller28 than the bare diffusion constant of free, non-
interacting vortices D0=1/ ��L� of Eq. �61�. Indeed, from
Ref. 28, one can estimate the value of the interacting diffu-
sion constant D in the absence of disorder to be of order
�here �ab is the superconducting coherence length�:

D �
D0

1 + 2�
�ab
2 g0�2a�

, �82�

which is smaller than the bare diffusion constant D0 for all
values of applied magnetic fields smaller than the upper criti-
cal field Hc2=�0 /2��ab

2 .
Having derived the equilbrium dynamics of pure flux liq-

uids, we now turn our attention to the more general case of
driven vortex liquids in the presence of a random pinning
potential. It should be pointed out at this stage that the
“mass” coefficient � given in Eq. �70� can be generalized to
take into account large vortex distortions, as was done for the
static case in Ref. 10. This generalization is performed

within a dynamic Hartree approximation in Appendix B.

VI. DYNAMICS OF DRIVEN FLUX-LINE LIQUIDS:
PERTURBATION THEORY

A. Coarse-grained effective action for flux-line dynamics

Following Refs. 11–13, we decompose the internal modes
of flux lines into short- and long-wavelength parts,

ui�z,t� = ui
��z,t� + ui

��z,t� , �83�

where �we here for convenience adopt a continuous notation
for the qn summations�

ui
��z,t� = �

q���

ui�qz,t�eiqzz, �84a�

ui
��z,t� = �

���q��

ui�qz,t�eiqzz. �84b�

In the above equations, � and �� are high- and low-
momentum cutoffs, respectively. The ultraviolet cutoff � is
given in terms of the superconducting coherence length �c
along the direction of the flux lines by �=� /�c. Inserting the
above decomposition, Eq. �83�, and a similar decomposition
for the response field ũi�z , t�, into the dynamical action, we
find after integrating out the short-wavelength modes
�ui

� , ũi
�� that the long-wavelength effective action, to first-

order perturbation theory, is given by

Aef f = Apure + 	Adis�ũ� + ũ�,u� + u�

�, �85�

where

	Adis
� =
1

2�
i,j
� dzdt� dz�dt�r̃i�

��z,t���̃ij
���z,t;z�,t��r̃ j�

� �z�,t�� + �
i
� dzdt i r̃i�

��z,t���i��z,t� , �86�

where we defined

��̃ij
���z,t;z�,t�� = �

q
iq�iq���q,z − z��

�eiq·�ri
��z,t�−rj

��z�,t��
e−q�q��ij
���z,t;z�,t��/2,

�87a�

��i��z,t;z�,t�� = �− i��
j
� dz�dt�Rij�z,t;z�,t��

��
q

q�q2��q,z − z��eiq·�ri
��z,t�−rj

��z�,t��


�e−q�q��ij
���z,t;z�,t��/2, �87b�

with the definition �ij
���z , t ;z� , t��= 	�ui��z , t�−ui��z� , t��


��uj��z , t�−uj��z� , t��

. In perturbation theory, valid at large
driving forces, it is convenient to take the limit ��→0 and
use for the response and correlation functions the expressions
�79� and �80�, which are spatially invariant and diagonal in
vortex indices, in which case expressions �87a� and �87b� are
greatly simplified and become

��̃ij
���z,t;z�,t�� = �

q
iq�iq���q,z − z��

�eiq·�ri
��z,t�−rj

��z�,t��
e�−q2/2d����z−z�,t−t��,

�88a�
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��i
��z,t;z�,t�� =

− i

d�
� dz�dt�R�z − z�;t − t��

��
q

iq�q2��q,z − z��eiq·�ri
��z,t�−rj

��z�,t��


�e�−q2/2d����z−z�;t−t��. �88b�

In the above expression, ��z , t� denotes the quantity

��z,t� = �0�t� + ��z,t� , �89�

where �0�t�= 	�r0�t�−r0�0�
2
0 is the relative displacement of
the c.m. mode, while

��z,t� = 	�ui�z,t� − ui�0,0�
2


=
2Td�

L
�
n=1

	
1 − cos�qnz�e−�Kqn

2+���t�/�

Kqn
2 + �

�90�

is the relative displacement of the internal mode u of a given
flux line in the vortex liquid.

Using Eqs. �85�, �86�, and �88b�, effective equations of
motion for the c.m. and internal modes of flux lines can be
derived in a standard way.11–13 For the internal modes, we
obtain

�̃���tui��z,t� = �− ���� + K̃���z
2�ui� −

1

2
�����zui��zui�

+ �i�z,t� , �91�

where now, in addition to the usual �but renormalized� elastic
tension term, new non-linear Kardar-Parisi-Zhang �KPZ�
terms have appeared. The c.m. mode, on the other hand,
obeys the following equation of motion:

�̃���tr0i��t� = F� − Ffr,�, �92�

where the friction force F fr arises from the additional drag
experienced by the vortex liquid as a result of the presence of
the random pinning potential. In the following subsection,
we outline the main steps of the coarse-graining procedure
which leads to the above equation of motion, before moving
on in Sec. VII to calculating the dynamic structure factor of
the flux-line liquid in the presence of disorder.

B. Derivation of renormalized quantities

1. Friction force

The first-order correction to the friction force is extracted
from the �O�r̃0i� terms of the effective action of Eq. �85�:

Aef f�r̃0i
 =
1

d�
�

i
� dt Lr̃0i��t� � dz�

q
q�q2��q,z�

� R�z,t�eiqvt−�q2/2d����z,t�. �93�

This term is of the form

Aef f�r̃0i
 = �
i
� dt iLr̃0i��t�Ffr,�, �94�

with the effective friction force

Ffr,� =� dzdt�
q

q�q2

d�

��q,z�R�z,t�sin�q · vt�e�−q2/2d����z,t�.

�95�

This expression is identical to previously derived
expressions21 for the friction force on individual flux lines in
the presence of disorder, except that here the response and
correlation functions to be used for an explicit evaluation of
Ffr,� should be ones that are relevant to a flux liquid—e.g.,
Eqs. �79� and �80�, respectively.

2. Friction coefficient

The disorder-correction to the friction coefficient is ex-
tracted from the effective action as follows. In the expression
�88b� of the effective kernel ��i�, we make use of the ex-
pansion

eiq·�ui�z,t�−uj�z�,t��
 � 1 + iq��ui��z,t� − uj��z�,t��


−
1

2
q�q��ui� − uj�
�ui� − uj�
 + ¯ .

�96�

We further shall assume that the disorder is weak, so that the
internal displacements of flux lines vary slowly on the scale
of the equilibrium kernel ��z , t�—i.e., on the scale of �� /K.
In this case, one can make use of the following gradient
expansion:

ui��z,t� − uj��z�,t�� � �t − t���tui��z,t� + �z − z���zui�

−
1

2
�z − z��2�z

2ui�. �97�

Using both expansions �96� and �97� in Eq. �88b�, we obtain
that the effective action Aef f contains a term of the form

Aef f = �
i
� dzdt i r̃i�

��z,t�������tui��z,t�
 �98�

and, hence, that the effective friction coefficient �̃�� in Eq.
�91� is given by

�̃�� = ���� + ����, �99�

with

���� =� dzdt�
q

q�q�q2

d�

��q,z�tR�z,t�eiq·vt−�q2/2d����z,t�.

�100�

Note that in the absence of drive �v=0�, �̃�� is isotropic,
�̃��= ��+������, where now

�� =
1

d�
2 � dzdt�

q
q4��q,z�tR�z,t�e�−q2/2d����z,t�.

�101�

3. Elastic dispersion

It also follows from Eqs. �96� and �97� that the elastic
coefficients appearing in Eq. �91� can be written in the form
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K̃�� = K��� + �K��, �102�

where the disorder-dependent correction �K�� is given by

�K�� =
1

2d�
� dzdt�

q
q�q�q2z2��q,z�R�z,t�

� eiq·vt−�q2/2d����z,t�. �103�

This equation can be rewritten, using the fluctuation-
dissipation theorem, Eq. �81�, in the form

�K�� = −� dz�
q

q�q�z2��q,z�

� �
0

	

dt eiq·vt−�q2/2d���0�t��te
�−q2/2d����z,t�.

�104�

In the static �v=0� limit, the above correction to the tilt
modulus becomes isotropic, �K��=�K���, with

�K =
1

d�T
� dz�

q
q2z2��q,z�e�−q2/2d����z,0� + O�1/L� ,

�105�

which is the result �41� that we obtained in Sec. III within a
static replica approach.

The Taylor expansion �97� also yields convective terms of
the form ����zui��z , t� on the right-hand side of Eq. �91�. It is
easy to see, however, that the coefficients of these convective
terms,

��� =
1

2d�
� dzdt�

q
q�q�q2z��q,z�R�z,t�

� eiq·vte�−q2/2d����z,t�, �106�

vanish identically by virtue of the fact that the integrand is
odd in the integration variable z �provided that the disorder
correlator is even in z—i.e., ��r ,−z�=��r ,z�
.

4. KPZ nonlinearity

The effective action �85� contains an additional contribu-
tion of the form

Aef f�ũu2
 = �
i
� dzdt ir̃i�

��z,t��−
1

2
���
��zu��z,t�


���zu
�z,t�
� , �107�

with

���� =
− i

d�
� dzdt�

q
q�q�q�q2z2��q,z�R�z,t�

� eiq·vte�−q2/2d����z,t�. �108�

This means that disorder induces a KPZ nonlinearity in the
driven state, much as it does for driven vortex solids. In fact,

the emergence of nonlinear KPZ terms in driven flux-line
liquids was predicted a long time ago within a macroscopic
approach by Hwa,29 who found that these terms affect the
dynamics of the flux liquid on long length scales, with the
vortices forming a smooth, laminar phase at small drives and
a rough, turbulent phase at large values of the applied force.
We shall not study the effect of the KPZ terms in any more
detail here and instead refer the reader to the above-
mentioned paper for more details on this particular topic.

VII. DYNAMIC STRUCTURE FACTOR OF DISORDERED
FLUX-LINE LIQUIDS

We are now in a position to calculate the dynamic struc-
ture factor S�r ,z ; t� of our flux-line liquid. By definition,

S�r,z;t� = 	
̂�r,z;t�
̂�0,0;0�
 , �109�

where 	¯
 now stands for averaging over both c.m. and
internal conformation variables of vortices and where space
translational invariance of the flux liquid has been assumed.
In what follows, it will be convenient to consider the partial
Fourier transform

S�q,z;t� =
1

L�
d�

	
̂�q,z;t�
̂�− q,0;0�
 , �110�

where L� is the size of the system in the plane perpendicular
to flux lines. Using the definition of the density operator at
time t,


̂�r,z;t� = �
i=1

N

�„r − ri�z,t�… , �111�

we readily obtain that the Fourier transform S�q ,z ; t� is given
by

S�q,z;t� =
1

L�
d�

�
i=1

N

�
j=1

N

	e−iq·�ri�z,t�−rj�0,0�

 . �112�

We now separate the c.m. mode from the internal modes of
the flux lines and assume that the dynamical action A has
been written in the decoupled form

A = A�0� + A�u�, �113�

where A�0� depends only on the c.m. variables �r0i�t��, while
A�u� only depends on the internal modes �ui�z , t��. It then
follows that the average on the right-hand side of Eq. �112�
can be written in the form

	e−iq·�ri�z,t�−rj�z�,t��

 = 	e−iq·�r0i�t�−r0j�t��

0

� e�−1/2d��q2	�ui�z, t� − uj�z�, t��
2
u.

�114�

In the above expressions, 	¯
0 and 	¯
u denote averages
with statistical weights exp�−A�0�� and exp�−A�u��, respec-
tively. Now, in the approaches of Secs. IV and VI, the inter-
nal modes of different flux lines are decoupled, which im-
plies that, for i� j,
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	�ui�z,t� − u j�z�,t��
2
 = 2	u2�z,t�
 , �115�

and so expression �112� of S�q ,qz ; t� becomes

S�q,z;t� =
1

L�
d�
��

i=1

N

	e−iq·�r0i�t�−r0i�0�

0e�−q2/d����z,t�

+ �
i=1

N

�
j�i

	e−iq·�r0i�t�−r0j�0�

0e�−q2/d��	u2�z,t�
� .

�116�

Given that all vortices in the flux liquid are equivalent to
each other in our mean-field approach, we see that the first
term on the right-hand side of Eq. �116� involves the sum of
N identical terms, which we can simply write as NF�q , t�,
with30

F�q,t� =
1

N
�
i=1

N

	eiq·�r0i�t�−r0i�0�

0 � e�−q2/2d���0�t�. �117�

On the other hand, it is easy to verify that

�
i�j

	e−iq·�r0i�t�−r0j�t��

0 = L�
d�
2g0�q,t − t�� , �118�

where g0�q ; t− t�� is the Fourier transform of the time-
dependent version of the pair distribution function of stan-
dard liquid-state theory, which, in real space, is given by

g0�r − r�,t − t�� =
1


2�
i�j

	�„r − r0i�t�…�„r� − r0j�t��…
0.

�119�

Using the fact that N=L�
d�
, we finally obtain

S�q,z,t� = 
e�−1/2d��q2��z,t� + 
2g0�q,t − t��e�−1/d��q2	u2�z,t�
.

�120�

A principal difficulty with the expression above is to find a
good approximation for the time-dependent pair correlation
function g�q , t− t��. The simplest such approximation is the
so-called “convolution approximation,” which was intro-
duced many years ago by Vineyard31 and which consists in
writing for g0�q , t� the following expression:

g0�q,t� = g0�q�F�q,t� . �121�

Here g0�q�=g0�q , t=0� is the ordinary �equal-time� pair dis-
tribution function of static liquid-state theory and F�q , t� is
the quantity defined in Eq. �117�. Using this approximation
in Eq. �120� above leads to the following result:

S�q,z;t� = 
e�−q2/2d���0�t��
g0�q�e�−q2/d��	u2
 + e�−q2/2d����z,t�� ,

�122�

where we used Eq. �117� to express F�q , t� in terms of �0�t�.
In the case where the c.m. mode of the flux lines obeys a
simple diffusion law of the form

�0�t� = 2d�TD�t� , �123�

we obtain the following expression for the structure factor
S�q ,z ; t�:

S�q,z;t� = 
e−DT�t�q2
�
g0�q�e�−1/d��q2	u2
 + e�−q2/2d����z,t�
 .

�124�

In the following, last section, we shall discuss some limiting
cases and compare our theoretical prediction for the static
structure factor to experimental results.

VIII. DISCUSSION AND CONCLUSIONS

We now discuss the meaning and phsical implications of
our results. We shall start by addressing the nature of the
unusual massive phonon mode of the internal fluctuations of
flux lines, which seems to violate translational invariance.
The first occurrence of this massive mode is in Eq. �11�, and
it is very easy to verify that this equation is translationally
invariant �even though this is not obvious from the way it is
written�. In Eq. �30�, the off-diagonal �ij terms, which are
necessary to maintain translational invariance, were dis-
carded for simplicity. Keeping these off-diagonal terms only
leads to corrections of order 1/N to the elastic propagator �as
was shown in detail in Ref. 9� which vanish in the thermo-
dynamic limit. In fact, even though a massive term may
seem unusual, it is very well known that massive phonon
modes do appear in ordinary crystal lattices if the lattice has
a basis �these are the so-called32 “optical phonons”�. In the
case of flux liquids, the internal modes of the flux lines are
the analogs of atoms belonging to the basis, and the � terms
may be thought of as the analogues of “optical phonons” in
crystals.

We now turn our attention to the static structure factor
S�r ,z� of the flux line liquid, which is defined as

S�r,z� = 	
̂�r,z�
̂�0,0�
 . �125�

In Ref. 10, we have shown that for an effective Hamiltonian
Hu of the general form

Hu =
1

2�
i=1

N

�
n�0

G−1�qn��ui�qn��2, �126�

the structure factor is given by

S�q,z� = 
2g0�q�e−q2	u2
/d� + 
e�−1/2d��q2��z�, �127�

where the mean-square relative displacement ��z� has al-
ready been evaluated in Eq. �44b� and where the mean pro-
jected area 	u2
 of a given flux line is given in terms of the
elastic propagator G by

	u2
 = d�T�
n�0

G�qn� . �128�

In the present case of a disordered vortex liquid with the
inverse elastic propagator of Eq. �42�, the above expression
for 	u2
 yields

	u2
 =
d�T

2��RKR

. �129�

We thus obtain for the structure factor the following expres-
sion:
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S�q,z� = 
2g0�q�exp�−
Tq2

2��RKR
�

+ 
 exp�−
Tq2

2��RKR

�1 − e−�z���R/KR
� . �130�

The above result for the structure factor is very different
from the result obtained by previous authors in the hydrody-
namic formulations of Refs. 2–4, 6, and 8 which is given by

S�q,qz� =

Tq2/K

qz
2 + �2�q�/T2 + ��q,qz�� 
q2/K

qz
2 + �2�q�/T2�2

,

�131�

where the excitation spectrum has the usual bosonic33 form

��q�
T

= ��Tq2

2K
�2

+

V�q�q2

K
�1/2

. �132�

In Ref. 10 we made a number of comments on the structure
factor of interacting, but otherwise disorder-free flux-line liq-
uids derived in the boson mapping approach, Eq. �131� and
revealed that it had a number of quite disturbing inconsisten-
cies. We here make the similar observation that while the
form �127� follows from the very general assumption that a
decomposition of the form �34� �with an arbitrary elastic
propagator G�qn� in Eq. �36�
 can be written for the Hamil-
tonian of the vortex liquid, the structure factor of Eq. �131�
does not correspond to any choice of elastic propagator
G�qn� and cannot be derived from a microscopic approach
like ours. In Appendix C we show that an expression for the
structure factor that is similar to Eq. �131� �with an additive
contribution proportional to disorder� can be derived for the
correlations of the density of the center-of-mass coordinates
of flux lines. One may therefore conclude that the discrep-
ancy between our results and those of Refs. 2–4 and 6 are
due to the fact that in these previous studies the nondiffusive
internal modes of vortices were treated on equal footing with
the c.m. mode �a diffusive mode for which hydrodynamics is
naturally expected to be valid�. A more detailed discussion of
the formulation of Gaussian hydrodynamics of continuous
media and of the shortcomings of previous attempts to for-
mulate the hydrodynamics of flux-line liquids can be found
in Appendix C.

We now consider some limiting cases. For a “perfect gas”
of noninteracting flux lines, g0�r�=1, and Eq. �122� reduces
to

S�q,z;t� = �2��2
2��q� + 
e−D0T�t�q2
e�−q2/2d����z,t�,

�133�

with the diffusion constant of the noninteracting c.m. mode
D0=1/ ��L�. For noninteracting flux lines, the correlation
function ��z , t� is given by

��z,t� =
2Td�

L
�
n=1

	
1

Kqn
2�1 − cos�qnz�e−Kqn

2�t�/�
 . �134�

At times shorter than the characteristic Rouse time tRouse
=�L2 /K, the sum can be transformed into an integral, with
the result8

��t� =
2Td�

K
�z�f�K�t�

�z2 � , �135�

where f is the function given by �here ��a ,x� is the incom-
plete gamma function16


f�u� =
1

�
�

0

	 dx

x2 �1 − e−ux2
cos x
 =

1

2
+

1

4��
��−

1

2
,

1

4u
� ,

�136�

with the limiting behavior f�u��1/2 for u→0 and f�u�
��u /� for u�1. On the other hand, at long enough times
t� tRouse, the sum in Eq. �134� is rapidly converging to the
limiting value

��t � tRouse� =
2Td�

LK
�
n=1

	
1

qn
2 =

LTd�

12K
. �137�

It thus follows that, at long times �t� tRouse�, the structure
factor of noninteracting flux lines can be written in the form

S�q,z;t� = 
e−D0T�t�q2
�1 + �2��2
��q�
e−LTq2/24K,

� �2��2
2��q� . �138�

Let us now consider the other limiting case of a liquid of
infinitely rigid flux lines. If we formally let K→	 in our
equations, it is not difficult to verify that 	u2
=0 and
��z , t�= 	�ui�z , t�−ui�0,0�
2
=0, and thus Eq. �122� reduces
to the appropriate expression for a liquid of point particles, in
this case the liquid formed by the centers of mass of the
different vortices:

S�q,z;t� = 
e�−1/2d��q2�0�t��1 + 
g0�q�
 . �139�

Note that the z dependence has dropped from this last equa-
tion. Now, since by definition �0�0�=0, we see that the
equal-time structure factors S�q ,z ; t=0� of Eqs. �122�, �124�,
and �139� reduce to the corresponding quantities obtained in
Refs. 9 and 10. In particular, for a liquid of rigid flux lines,
Eq. �139� reduces to the correct expression of the static struc-
ture factor of standard liquid-state theory,

S�q,z� = 
�1 + 
g0�q�
 , �140�

an expression which cannot be reproduced using boson map-
ping and other hydrodynamic methods.

We now turn our attention to the interacting structure fac-
tor of Eq. �122�. By contrast to the case of noninteracting
flux lines treated above, we see here that due to the presence
of the confining term �, the relaxation of the internal modes
is extremely fast: on time scales larger than the characteristic
time t�=� /�, the correlation function ��z , t� of Eq. �90�
reaches its limiting value
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��z,t � t�� =
2Td�

�
�

0

	 dq

Kq2 + �
=

Td�

�K�
, �141�

which implies that the low-frequency behavior of the corre-
lation function S�q ,z ;�� is given by

S�q,z;�� =
2
DTq2

�2 + DT2q4 �1 + 
g0�q�
e−Tq2/�K�. �142�

By taking the limit K→	, we again see that the low-
frequency behavior of the dynamic structure factor of an in-
teracting liquid of hard rods is identical to the frequency
behavior of the corresponding noninteracting system, pro-
vided the bare diffusion constant D0 is replaced by the renor-
malized quantity D and that the static structure of the liquid
is taken into account through the factor �1+
g0�q�
. For fi-
nite K, the only effect of the internal fluctuations of the vor-
tices on the structure factor on long time scales is to intro-
duce the additional “Debye-Waller” factor exp�−Tq2 /�K��.
In the limit of noninteracting flux lines, where �→0 and
D→D0, the exponent �Tq2 /�K�� in this last factor goes to
its upper bound �LTq2 /24K�, the pair distribution function
g0�q�→��q�, and we recover the result �138� of an ideal gas
of vortices.

Going beyond the above limiting cases, we here would
like to comment on the experiments of Yao et al.34 and Yoon
et al.35 who measured the structure factor of the vortex liquid
in Bi2Sr2CaCu2O8 �BSCCO� and attempt a quantitative fit of
experimental data using our theoretical prediction. For the
extremely dilute vortex liquid studied in these experiments,
the tilt modulus K is given by the single-vortex value K
��0, which has the numerical value21 �0�K/Å�=1.964
�108/ ���Å�
2. Figure 1 shows a plot of cosh−1�S�q ,z
=0� /S�q ,z=L�
 using the experimental parameters of Ref.
35: namely,

a � 1.5 � 104 Å, �143a�

� � 0.62 � 104 Å, �143b�

L � 0.2 mm, �143c�

T = 80 K, �143d�

and with the fit parameters �=1 and 
=0.2. Comparing our
plot with the experimental curves �Fig. 2 of Ref. 35�, we see
that our mean-field approach is able to produce a reasonably
good qualitative fit of the data, which is quite surprising,
given the rather simplified form of our model Hamiltonian,
Eq. �1�, and of our analytic ansatz for the pair distribution
function g0�r�, Eq. �45�.

It is worth nothing at this point that the confining coeffi-
cient � can be reproduced �up to numerical factors of order
unity� by taking the short-wavelength limit q→qBZ �short-
wavelength fluctuations being the dominant ones in a liquid
and qBZ= �4� /�3a� being the wave vector at the Brillouin
zone boundary of a solid at the same density
 of the com-
pression modulus c11�q�=B2 /4��1+�2q2� of usual elasticity
theory.36 That we are able to fit the experimental data with a
value of the compression modulus that qualitatively agrees
with elasticity theory is rather reassuring and strongly sup-
ports our claim that an approach based on conformation vari-
ables of vortices is more adequate to describe flux-line liq-
uids than boson mapping methods which by contrast, when
used to fit the data of Yoon et al.,35 give a result for c11
which is smaller than the theoretical prediction by three or-
ders of magnitude.35,37

The failure of hydrodynamic approaches to describe ex-
perimental data in a way that is consistent with standard
elasticity theory is further indication of the importance of
separating the internal modes and the c.m. variables of the
vortices in the liquid state. Indeed, there is a very important
qualitative distinction between the c.m. mode on the one
hand and the internal modes on the other, for while the c.m.
mode is diffusive, internal modes of continuous media are
nondiffusive �due to the elastic restoring forces and this re-
gardless of whether the confining mass � is zero or not�. The
results of the present study outline the importance of sepa-
rating the nondiffusive modes from the diffusive ones that
can be studied using hydrodynamic treatments.

Another quantity which deserves attention is the friction
force experienced by the flux liquid driven in presence of
disorder. For a flux liquid in presence of point disorder with
correlations ��r ,z�=�0 exp�−r2 /2�2���z� /2��2 we obtain,
in the large-v limit and in d=3 dimensions,

Ffr � �0

��/K

�̃9/2

1
�v

, �144�

where factors of order unity have been dropped and where

we defined the length �̃ such that �̃2=�2+ 	u2
. We see that
the friction force vanishes at large drives in agreement with
previous predictions for vortex lattices and liquids in the
plastic regime near the melting temperature.21

In summary, in this paper, we have extended the approach
developed in Refs. 9 and 10 to the case of a flux liquid in the
presence of a random pinning potential. This approach,

FIG. 1. �Color online� Solid line: plot of cosh−1�S�q ,0� /S�q ,L�

vs q, using our result for the static structure factor, Eq. �130�.
Dashed line: approximate experimental curve, from Ref. 35. As in
this last reference, the wave vector q is measured in units of qBZ

= �4� /�3a�.
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which is based on the use of the conformation variables
�rn�z�� as the true dynamical variables in terms of which a
Gaussian approximation is taken, gives physically more rea-
sonable results9,10 than the boson mapping3 or other hydro-
dynamic approaches8 which, instead, use the density as the
basic dynamical variable of the vortex liquid. Within our
approach, we find that the only effect of the pinning potential
in the static equilibrium case is to renormalize the tilt modu-
lus and the confining potential of the internal modes of the
flux lines, increasing their stiffness and reducing their ther-
mal wandering. In a similar fashion, we find that in presence
of pinning, apart from the appearance of nonlinear KPZ
terms and standard renormalization of the coefficients, the
equation of motion of flux lines keeps the same form as in an
unpinned vortex liquid. As a consequence, and unlike the
hydrodynamic approximations,2–4,8 we find that the structure
factor S�r ,z� has the same functional form as in a liquid of
interacting but unpinned flux lines, with suitably renormal-
ized parameters. Our formulation of the equilibrium dynam-
ics of vortex liquids is in full agreement with the standard
dynamical theory of classical liquids and, through the pair
distribution function g0�r� of the c.m. mode, takes into ac-
count nontrivial correlations in the positions of flux lines. In
particular, we find that the long-time dynamics of a liquid of
interacting flux lines is qualitatively similar to the dynamics
of an ordinary classical liquid of hard rods with a renormal-
ized diffusion coefficient D �which is reduced by the inter-
actions with respect to the free value D0�, the only effect of
internal fluctuations of flux lines at long-time scales being to
reduce the structure factor of the vortex liquid through the
introduction of a Debye-Waller-like thermal smearing term.
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APPENDIX A: EFFECTIVE HAMILTONIAN OF THE
INTERNAL MODES OF FLUX LINES

In this appendix, we show details of how we perform the
average 	Hdis

�1�
0, where Hdis
�1� is the disorder part of the Hamil-

tonian of the internal modes of the flux lines and where
the average is taken with statistical weight

exp�−H̄�0� /T� /Tr�exp− H̄�0� /T�. As can be seen from Eq.
�16�, the first term of the Hamiltonian Hdis

�1� does not depend
on the c.m. coordinates. Assuming long-wavelength elastic
distorsions of the flux lines, we shall write38

ui
a�z� − ui

a�z�� � �z − z���zui�z� , �A1�

upon which one can see that the first term on the right-hand
side of Eq. �16� can be written in the form

�
a=1

p

�
i=1

N � dz
1

2
�K„�zui

a�z�…2, �A2�

where the long-wavelength disorder contribution �K to the
tilt modulus of the flux lines is given by

�K = −
1

d�T
�

−	

	

dz z2��
2 ���r,z��r=0 �A3�

and vanishes for an ultralocal �in z� disorder, with a variance
��r ,z����z�.

Now, for the second and third terms of Hdis
�1�, we need to

evaluate averages of the form

	f ij
ab
0 = 	f�r0i

a − r0j
b �
0, �A4�

where f�r� is an arbitrary function of the space variable r.
We have

	f ij
ab
0 = Z̄−1� �

c,k
droi

c f�r0i
a − r0j

b �e−�H̄, �A5�

where Z̄=Tr�exp�−�H̄�
. Separating out the integrations over
r0i

a and r0j
b , we obtain

	f ij
ab
0 =� dr0i

a dr0j
b f�r0i

a − r0j
b �Z̄−1� �

c,k
�dr0k

c e−�H̄,

�A6�

where the prime on the product indicates that the variables
r0i

a and r0j
b do not appear in the integration measure. Now,

two cases have to be distinguished.
�i� If a=b, i.e., r0i

a and r0j
b belong to the same replica, then

the quantity in the second line on the right-hand side of Eq.
�A6� is given by �see also Ref. 9�


2

N�N − 1�
g0�r0i

a − r0j
a � , �A7�

where g0�r� is the pair distribution function of the c.m. of a
given replica in the flux liquid. This leads to the following
result for 	f ij

aa
0:

	f ij
aa
0 =




N − 1
� dr f�r�g0�r� . �A8�

�ii� If a�b �r0i
a and r0j

b belong to different replicas�, then
the quantity on the second line of Eq. �A6� is now given by


2

N2 g̃0�r0i
a − r0j

b � , �A9�

where g̃0�r� is the pair distribution function of particles be-
longing to different replicas, Eq. �27�. This leads to the result

	f ij
ab
0 =




N
� dr f�r�g̃0�r� . �A10�

Using the results �A8�–�A10� to take the average of the
second and third terms on the right-hand side of Eq. �16� and
rearranging the resulting sums, we obtain, after a few ma-
nipulations, the result �23� of the text.
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APPENDIX B: HARTREE APPROXIMATION FOR THE
EQUILIBRIUM DYNAMICS OF UNDISORDERED

VORTEX LIQUIDS

In this appendix, we show how the result of Sec. V for the
effective “mass” term �, where we used a simple Taylor
expansion in the flux-line displacements �u�, can be general-
ized to take into account the potentially large excursions of
the vortices around their c.m. positions which are possible in
a vortex liquid. Here we shall use a Hartree approximation,
which is analogous to the approach introduced a long time
ago in the context of spin glasses39 and was extended more
recently to the spherical p-spin model40 and to fluctuating
manifolds in random media.41 We begin by rewriting the
interaction part Aint of Eq. �54� in the form

Aint = Aint
�0� + Aint

�u�, �B1�

where

Aint
�0� = �

i�j
� dzdt�

q
V�q�iq�ir̃0i��t�eiq·�r0i�t�−r0j�t�


� eiq·�ui�z,t�−uj�z,t�
 �B2�

is the c.m. part of the interacting action and where

Aint
�u� = �

i�j
� dzdt�

q
V�q�iq�iũi��z,t�eiq·�ri�z,t�−rj�z,t�


= �
i�j
� dzdt�

q
V�q�iq�iũi��z,t�eiq·�r0i�t�−r0j�t�


� eiq·�ui�z,t�−uj�z,t�
 �B3�

is the internal modes contribution to Aint. In the c.m. piece,
we get rid of the �u� dependence by making the replacement

eiq·�ui�z,t�−uj�z,t�
 → e−q�q��ij
���z,t;z,t�/2, �B4�

where we defined the correlation function �i,j
���z , t ;z� , t��

= 	�ui��z , t�−uj��z� , t��
�ui��z , t�−uj��z� , t��

. This yields,
for the c.m. part Aint

�0�,

Aint
�0� � �

i�j
� dt�

q
Ṽ�q�iq�iLr̃0i��t�eiq·�r0i�t�−r0j�t�
, �B5�

with the effective interaction potential per unit length be-
tween vortices,

Ṽ�q� = V�q�e−q�q��ij
���z,t;z,t�/2, �B6�

which is smeared with respect to the original potential V�q�
by thermal fluctuations of the internal modes of flux lines.

We now turn our attention to the relatively more involved
task of constructing a self-consistent Gaussian approxima-
tion for Aint

�u�. Following Scheidl �who derived a similar self
consistent approach for a flux-line lattice pinned by
disorder42�, we expand the exponential with respect to the
displacements and contract the fields in all possible ways
pairwise until one or two fields remain uncontracted. For
even and odd terms in the displacement, this yields

i r̃i��z,t�
1

�2n�!
�iq · �ui�z,t� − u j�z,t�
�2n

→ ir̃i��z,t�
1

n!
�−

1

2
q�q��i,j

���z,t;z,t��n

,

i r̃i��z,t�
1

�2n + 1�!
�iq · �ui�z,t� − u j�z,t�
�2n+1

→ ir̃i��z,t��iq · �ui�z,t� − u j�z,t�
�

�
1

n!
�−

1

2
q�q��i,j

���z,t;z,t��n

.

Resummation yields

Aint
�u� � �

i�j
� dzdtir̃i

��z,t��Vi,j
� �z,t;z,t�

+ �ui��z,t� − uj��z,t�
Vi,j
�,��z,t;z,t�� , �B7�

where we defined, for convenience,

Vi,j
� �z,t;z,t� = �

q
V�q�iq�eiq·�r0i�t�−r0j�t�
e−q�q��i,j

���z,t;z,t�/2,

�B8a�

Vi,j
�,��z,t;z,t� = �

q
V�q�iq�iq�eiq·�r0i�t�−r0j�t�
e−q�q��i,j

���z,t;z,t�/2.

�B8b�

The term Vi,j
�,��t� represents a force acting on particle i and

arising from particle j, which is proportional to the small
displacement uj

�.
With hindsight from the results of Sec. V, we shall assume

that 	ui��z , t�uj��z , t�
=�ij���	ui�
2 
, which implies that, for i

� j,

�i,j
���z,t;z,t� =

2

d�

���	u2
 . �B9�

The effective smeared interaction potential of Eq. �B6� be-
comes

Ṽ�q� = V�q�e�−1/d��	u2
. �B10�

The quantities Vij
� and Vij

�� in Eqs. �B8a� and �B8b�, on the
other hand, are now given by

Vi,j
� �z,t;z,t� = �

q
V�q�iq�eiq·�r0i�t�−r0j�t�
−�q2/2d��	u2
,

�B11�

Vi,j
�,��z,t;z,t� = �

q
V�q�iq�iq�eiq·�r0i�t�−r0j�t�
−�q2/2d��	u2
.

Taking the average of Aint over the center-of-mass positions
with statistical weight e−A0, we obtain the following effective
interaction action:
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Aint
�u� � �

i�j
� dzdtiũi

��z,t��Ṽi,j
� �z,t;z,t�

+ �ui��z,t� − uj��z,t�
Ṽi,j
�,��z,t;z,t�� , �B12�

where now

Vi,j
� �z,t;z,t� = �

q
V�q�iq�g0�q�e�−q2/2d��	u2
, �B13a�

Vi,j
�,��z,t;z,t� = �

q
V�q�iq�iq�g0�q�e�−q2/2d��	u2
,

�B13b�

and where we used the fact that

	eiq·�r0i�t�−r0j�t�

0 =



�N − 1�
g0�q� . �B14�

It is not difficult to see that Ṽ� vanishes due to spherical
symmetry of the interaction potential, V�q�=V�q�. Putting
together all terms in Eq. �B12�, one obtains that the effective
action for the internal modes of flux lines can be again re-
written in the quadratic form of Eqs. �72�, �73�, �74a�, and
�74b�, with now the mass coefficient � given by the self-
consistent equation

� = −



d�
�

q
q2V�q�g0�q�e−q2	u2
/d�, �B15�

which is identical to the result obtained in Ref. 10 using a
static variational approach.

APPENDIX C: GAUSSIAN HYDRODYNAMICS OF FLUX
LINES REVISITED

In this section, we revisit the Gaussian hydronamic for-
mulation of the statistical mechanics of flux liquids, which
will make it easier for us to compare the results of our mi-
croscopic approach to the results of previous
publications,2–4,6 which were mostly based on macroscopic
coarse-graining methods. We shall first consider the case of a
liquid of rigid flux lines, before considering the general case
of a liquid of flexible vortices.

1. Hydrodynamics of rigid flux lines

Let us consider a system of rigid flux lines, described by
the following Hamiltonian:

H =
1

2�
i,j

V0�ri − r j� + �
i

Vext�ri� , �C1�

where V0�r�=LV�r� and where we introduced a one-body
external potential Vext�r�. The hydrodynamics of the liquid
described by the above Hamiltonian is constructed in a stan-
dard way43 as follows. First, one introduces a variational
Hamiltonian, consisting of the sum of noninteracting single-
vortex Hamiltonians:

Hv = �
i=1

N

H1�ri� , �C2�

with the Hamiltonian H1 to be determined by minimization
of the variational free energy F
 �the significance of the sub-
script 
 will become clear shortly�, which is given by

F
 = − T ln Zv + 	H − Hv
v. �C3�

In the above expression, 	¯
v denotes averaging with statis-
tical weight e−�Hv /Zv and Zv is the partition function associ-
ated with the Hamiltonian Hv and is given by

Zv =� dr1 ¯ drN exp�− ��
i=1

N

H1�ri�� = �� dre−�H1�r��N

.

�C4�

In the same way, it is easy to show that

	Hv
v =

N� dr H1�r�e−�H1�r�

� dr e−�H1�r�

. �C5�

Now, the variational average of the density operator 
�r�
= 	�i=1

N ��r−ri�
v is given by


�r� =
Ne−�H1�r�

� dr e−�H1�r�

, �C6�

so that

ln�
�r�
N

� = − �H1�r� − ln�� dr e−�H1�r�� . �C7�

Hence

� drT
�r�ln�
�r�
N

� = −

N� dr H1�r�e−�H1�r�

� dr e−�H1�r�

− NT ln�� dr e−�H1�r�� . �C8�

Comparing the above equation with Eqs. �C4� and �C5�, we
see that

� dr T
�r�ln�
�r�
N

� = − T ln Zv − 	Hv
v. �C9�

On the other hand, it is not difficult to show that the varia-
tional average of the original Hamiltonian H is given by

	H
v =
1

2
� drdr�
�r�V0�r − r��
�r�� +� drVext�r�
�r� .

�C10�
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Collecting together the results �C9� and �C10�, it follows that
the variational free energy of Eq. �C3� can be written as a
functional of the averaged density 
�r� �hence the subscript 

in F
� and is given by

F
 =� dr T
�r�ln�
�r�
N

� +� drVext�r�
�r�

+
1

2
� drdr�
�r�V0�r − r��
�r�� . �C11�

The first term on the right-hand side of the above equation is
the entropic contribution to the free energy of the liquid,
which is qualitatively important �we shall see below that this
term modifies the temperature dependence of the density re-
sponse and correlation functions—see Eqs. �C18� and
�C20�
, but which has been systematically overlooked in pre-
vious studies of flux-line liquids.2–4,6 We now need to mini-
mize the variational free energy F
 with respect to the den-
sity 
�r�, which may be thought of as an “order parameter,”
with the constraint that the total number of particles N is held
fixed. This amounts to minimizing the variational version of
the grand potential,

�
 = F
 − �� dr 
�r� , �C12�

with respect to variations in the density 
�r�, using44

��


�
�r�
= 0, �C13�

with the Lagrange multiplier � �chemical potential� in Eq.
�C12� fixed by the condition �dr
�r�=N. This minimization
procedure leads43 to an expression for the one-body density

�r� which is identical to Eq. �C6� above, with H1 given by

H1�r� = Vext�r� +� dr�V0�r − r��
�r�� . �C14�

Now, the density response function is given by43

��r,r�� = −
�
�r�

�Vext�r��
. �C15�

Taking the functional derivative of 
�r� in Eq. �C6� with
respect to Vext�r��, one can easily show that

��r,r�� = �
�r�
�H1�r�

�Vext�r��
−

�
�r�
N

� dr1
�r1�
�H1�r1�
�Vext�r��

� �
�r�
�H1�r�

�Vext�r��
, �C16�

where, in going from the first to the second equality, we
discarded a term proportional to 1/N which vanishes in the
thermodynamic N→	 limit. Now, using the result �C14� for
H1 into Eq. �C16�, we obtain

��r,r�� = �
�r����r − r�� −� dr�V0�r − r����r�,r��� .

�C17�

In the absence of an external one-body potential �i.e., when
Vext=0�, the system is translationally invariant and ��r ,r��
=��r−r��. Taking the Fourier transform of Eq. �C17� then
leads to the result

��q� =
1

V0�q� + T/

. �C18�

The T /
 term in the denominator originates from the 
 ln 

entropic term in expression �C11� of the free energy. As we
mentioned above, this term, which determines the tempera-
ture variation of the density response function, was totally
ignored in previous studies of flux liquids.2–4,6 From the
above response function, the Ursell function Snn�r�
= 	
�r�
�0�
−
2 �we use the terminology and notation of
Ref. 43� is given by

Snn�r� = T��r� , �C19�

which gives, in Fourier space,

Snn�q� = T��q� =
T

V0�q� + T/

. �C20�

The above Ursell function can be obtained directly from Eq.
�C11� by writing the density 
�r� as 
�r�=
+�
�r� and ex-
panding F
 up to quadratic order in the density fluctuation
�
�r�. Taking the Gaussian average of the product
�
�r��
�0� by integrating directly over the density fluctua-
tion field �
�r�,

	�
�r,z��
�0,0�
 =
� �d„�
�r,z�…
�
�r,z��
�0,0�e−�F


� �d„�
�r,z�…
e−�F


,

�C21�

leads directly to the result �C20�. Note however that this last
procedure to obtain the Ursell function is an ad hoc one
�which is valid only because �
 is stationary with respect to
variations of the density 
�r� around its equilibrium value 


and that the most systematic and justifiable way to obtain Snn
in this variational formulation of hydrodynamics is through
extremizing the grand potential �
 with respect to the den-
sity �a step that is rigourosouly exact44� and then using the
resulting variational Hamiltonian to find the density response
function and, hence, Snn�q�, as we did in Eqs. �C11�–�C20�.
We insist that in the latter method no integration over density
variables �as in Eq. �C21�
 is performed, and we thus see that
Eq. �C21� is by no means a necessary step to obtain the
Ursell function.
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2. Hydrodynamics of flexible flux lines

We now want to generalize the approach of the above
subsection to flexible flux lines. For the sake of homogeneity
with the rest of the paper, we shall use the same Hamiltonian
as in the text, namely:

H = �
i=1

N � dz�1

2
K�dri

dz
�2

+ Vext�ri�z�,z��
+

1

2�
i,j
� dzV„ri�z� − r j�z�… , �C22�

where we again, by analogy with the previous subsection,
have introduced a one-body external potential Vext�r ,z�. In
an obvious generalization of Eq. �C2� to continuous systems,
we shall use the following variational Hamiltonian:

Hv = �
i=1

N

H1�ri�z�
 , �C23�

where H1 now is a functional of the entire trajectory ri�z� of
the ith flux line. The corresponding partition function is
given by

Zv =� �dr1�z�
 ¯ �drN�z�
exp�− ��
i=1

N

H1�ri�z�
�
= �� �dr�z�
e−�H1�r�z�
�N

. �C24�

The variational average of Hv on the other hand is given by

	Hv
v =

N� �dr�z�
H1�r�z�
e−�H1�r�z�


� �dr�z�
e−�H1�r�z�


, �C25�

in total analogy with Eq. �C5�. Let us now define the opera-
tor


̂�r�z�
 = �
i=1

N

�
z

�„r�z� − ri�z�… , �C26�

whose statistical average 	
̂�r�z�

 may be interpreted as the
average probability density for finding a vortex with a spe-
cific trajectory r�z� in the system. Now, the variational aver-
age 
�r�z�
= 	
̂�r�z�

v of this trajectory-density operator is
given by


�r�z�
 =
Ne−�H1�r�z�


� �dr�z�
e−�H1�r�z�


. �C27�

Forming T
�r�z�
ln�
�r�z�
 /N� and then taking the func-
tional integral over the trajectory r�z�, one can again easily
show that

� �dr�z�
 T
�r�z�
ln�
�r�z�

N

� = − T ln Zv − 	Hv
v.

�C28�

Now, the variational average of H can be expressed in terms
of the trajectory density 
�r�z�
 and is given by

	H
v =� dz� �dr�z�
��1

2
K�dr

dz
�2

+ Vext„r�z�,z…�
�r�z�


+ 
�r�z�
V„r�z� − r��z�…
�r��z�
� , �C29�

and hence we obtain that the variational free energy F
=
−T ln Zv+ 	H−Hv
v can be written in the form

F
 =� dz�� �dr�z�
T
�r�z�
ln�
�r�z�

N

�
+� �dr�z�
�1

2
K�dr

dz
�2

+ Vext„r�z�…�
�r�z�


+� �dr�z�
�dr��z�

�r�z�
V„r�z� − r��z�…
�r��z�
�
�C30�

and is a generalized functional of the averaged trajectory
density 
�r�z�
. In the subsequent steps of the hydrodynamic
method, which involve minimizing F
 with respect
to the density 
�r�z�
, it is convenient to discretize the z
axis, with unit step d, and think of 
�r�z�
 as a
function 
(r�0� ,r�d� , . . . ,r�Md�) of the positions
(r�0� ,r�d� , . . . ,r�Md�) of M +1 particles interacting with
each other harmonically, with a spring constant K /d. The
integration measure in this case can be defined as

�dr�z�
 = �
m=0

M

dr�md� . �C31�

Now, from Eq. �C27� we see that

� �dr�z�

�r�z�
 = N , �C32�

and hence we see that the grand potential �
=F
−�N can
be written in the form

�
 = F
 − �� �dr�z�

�r�z�
 . �C33�
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In the same way as in the previous subsection, extremization
of �
 with respect to 
�r�z�
=
(r�0� ,r�d� , . . . ,r�Md�)
�thought of as a “generalized” order parameter� under the
constraint �C32� leads to the following result for the varia-
tional Hamiltonian H1�r�z�
:

H1�r�z�
 =� dz��1

2
K�dr

dz
�2

+ Vext„r�z�…�
+� �dr��z�
V„r�z� − r��z�…
�r��z�
� .

�C34�

Like we did in the text, we now decompose the trajectory

r�z� into c.m. and internal coordinates, r�z�=r0+u�z�, with
r0=�0

Ldzr�z� being the c.m. coordinate of the trajectory r�z�,
and Taylor expand the interaction part in the small displace-
ment u�r�:

V„r�z� − r��z�… = V„r0 − r��z�… + u��z���V„r0 − r��z�…

+
1

2
u��z�u��z�����V„r0 − r��z�… . �C35�

The Hamiltonian H1 becomes

H1�r�z�
 =� dz�1

2
K�du

dz
�2

+ Vext„r�z�…� +� dz� �dr��z�
V„r0 − r��z�…
�r��z�


+� dz u��z� � �dr��z�
��V„r0 − r��z�…
�r��z�
 +
1

2
� dz u��z�u��z� � �dr��z�
����V„r0 − r��z�…
�r��z�
 . �C36�

Using the fact that �0
Ldzu�z�=0, we see that the third term on

the right-hand side of the above equation vanishes and,
therefore, that H1�r�z�
 in the absence of an external poten-
tial �Vext=0� can be written in the form

H1�r�z�
 = H1,c.m.�r0� + H1,u�u�z�
 , �C37�

where

H1,c.m.�r0� =� dz� �dr��z�
V„r0 − r��z�…
�r��z�
 ,

�C38a�

H1,u�u�z�
 =� dz�1

2
K�du

dz
�2

+
1

2
���u��z�u��z�� .

�C38b�

In the above expression of H1,u�u�z�
, we defined the confin-
ing “mass” tensor

��� =� �dr��z�
����V„r0 − r��z�…
�r��z�
 . �C39�

As defined above, the quantities ��� depend on r0. We shall,
however, verify a posteriori that in the homogeneous liquid
state this dependence drops out and the ���’s reduce to or-
dinary constants �and are in fact all equal to zero in the
hydrodynamic limit�.

An immediate consequence of the decomposition �C37� is
that the density matrix also can be written in a decoupled
form


�r�z�
 = 
c.m.�r0�
u�u�z�
 , �C40�

with


c.m.�r0� =
e−�H1,c.m.�r0�

� dr0 e−�H1,c.m.�r0�

, �C41�


u�u�z�
 =
e−�H1,u�u�z�


� �du�z�
e−�H1,u�u�z�


. �C42�

Now, if we replace the density matrix 
�r�z�
 by the decou-
pled form �C40� back into expression �C38a� of H1,c.m., we
obtain

H1,c.m.�r0� =� dr0� LṼ�r0 − r0��
c.m.�r0�� , �C43�

where we defined

Ṽ�r� =� �du��z�
V„r − u��z�…
u�u��z�
 �C44a�

=�
k

eik·r−k2	u2
/2V�k� , �C44b�

and where, in going from the first to the second line of the
last equation, we assumed that the density matrix 
u�u��z�

represents an isotropic Gaussian distribution for the displace-
ment field �u��z��. In Eq. �C44a�, the integration measure
�du�z�
 stands for
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�du�z�
 = �
m=0

M−1

du�md� . �C45�

Note that the transformation from the variables �r�md���m
=0, . . . ,M� to the variables �r0 ,u�md���m=0, . . . ,M −1� be-
ing linear, it has a constant Jacobian, which we shall hence-
forth ignore for simplicity.

Now, if we insert the decoupled form �C40� of 
�r�z�

into expression �C39�, we obtain

��� =� dr0�
c.m.�r0� � �du��z�
����V„r0 − r0� − u��z�…

�
u�u��z�


=� dr0�����Ṽ�r0 − r0��
c.m.�r0�� . �C46�

In a uniform flux liquid, the averaged c.m. density reduces to
a constant 
c.m.�r0��=
 and the above integral vanishes. This
is a direct consequence of the coarse-graining procedure, for
if instead of the averaged c.m. density 
c.m.�r0��, we were still
dealing with the c.m. density operator 
̂c.m.�r0�=�i=1

N ��r0

−r0i�, then Eq. �C46� would give us:

��� = �
i=1

N

V�r0 − r0i� , �C47�

which is very similar to the undisordered version of Eq. �12�,
which then would yield finite and isotropic “mass” coeffi-
cients ���=����.

Now, if we calculate the structure factor S�r ,z� by directly
taking the average of 	
̂�r ,z�
̂�0 ,0�
 as in Eq. �57� and using
the decoupled density matrix of Eq. �C40�, one can easily
show that the structure factor S�q ,z� of the flux-line liquid
has the form given in Eqs. �127� and �130� of the text, with
�=0, namely:

S�q,z� = 
2g0�q�e−q2	u2
/d� + 
 exp�−
Tq2

2K
�z�� . �C48�

We have


2g0�q� = �2��2
2��q� + S0,nn�q� − 
 , �C49�

where S0,nn is the Ursell function of the c.m. mode
�S0,nn�r�= 	
c.m.�r�
c.m.�0�
−
2
, which can be easily derived
from the c.m. effective Hamiltonian �C43�, following the
same steps as in the previous subsection, with the result

S0,nn�q� =
T

LṼ�q� + T/

. �C50�

Using the result �C49�, Eq. �C48� can be rewritten in the
form

S�q,z� = �2��2
2��q� + �S0,nn�q� − 

e−q2	u2
/d�

+ 
 exp�−
Tq2

2K
�z�� . �C51�

Since �=0 in the hydrodynamic limit, the mean-squared dis-

placement 	u2
�L, and hence e−q2	u2
/d� is exponentially
small for practically all values of q such that 0�q�1/a.
Hence the above expression of the structure factor becomes

S�q,z� � �2��2
2��q� + 
 exp�−
Tq2

2K
�z�� , �C52�

which implies that the Ursell function of the vortex liquid is
given by

Snn�q,z� = 
 exp�−
Tq2

2K
�z�� �C53�

and is identical, in the hydrodynamic limit, with the Ursell
function of an ideal gas of noninteracting flux lines. We thus
see that, while the present formulation of Gaussian hydrody-
namics yields a structure factor that is of the correct general
functional form, Eq. �C48� �unlike previous formulations of
Refs. 2–4 and 6�, it fails to produce a nonzero value for the
confining “mass” term, with the consequence that the ensu-
ing strong fluctuations of flux lines completely smear out the
effect of interactions between flux lines �the second term on
the right-hand side of Eq. �C51�
.

Now, one might argue that the decomposition given in Eq.
�C23�, which approximates the N-body Hamiltonian of the
system by a sum of N noninteracting one-body Hamiltonians,
is not the only possible choice for the variational Hamil-
tonian Hv of the hydrodynamic method. Indeed, another
�nonequivalent� choice, which has been implicitely used in
previous hydrodynamic treatments of this problem consists,
in the discretized scheme where the z axis is cut into M +1
equidistant slices, in using the ansatz

Hv = �
i=1

N

�
m=0

M

h„r�md�,md… , �C54�

with the Hamiltonian of a single-vortex “element”
h(r�md� ,md) at height z=md to be determined variationally.
The above ansatz amounts to assuming for the Hamiltonian
H1�r�z�
 of the preceding paragraphs the following form:

H1�r�z�
 = �
m=0

M

h„r�md�,md… . �C55�

The variational partition function Zv is now given by

Zv = �
m=0

M �� dre−�h�r,md��N

, �C56�

while the variational average 	Hv
v is given by

	Hv
v =

N�m=0

M � dr h�r,md�e−�h�r,md�

� dr e−�h�r,md�

. �C57�

If we define the density operator at height z=md, 
̂�r ,md�,
by
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̂�r,md� = �
i=1

N

�„r − ri�md�… , �C58�

then it follows that the averaged density 
�r ,md�
= 	
̂�r ,md�
v is given by


�r,md� =
Ne−�h�r,md�

� dre−�h�r,md�

. �C59�

Thus, here again we can write

� dr T
�r,md�ln�
�r,md�
N

� = −

N� dr h�r,md�e−�h�r,md�

� dr e−�h�r,md�

− TN ln�� dr e−�h�r,md�� .

�C60�

Summing over m, we obtain

�
m=0

M � dr T
�r,md�ln�
�r,md�
N

� = − T ln Zv − 	Hv
v.

�C61�

Taking the variational average 	H
v of the original Hamil-
tonian H, we finally find that the variational free energy F


=−T ln Zv+ 	H−Hv
v can be written in the form �we now
switch back to a continuum notation�

F
 =� drdz�T

d

�r,z�ln�
�r,z�

N
� +

1

2
K1t2�r,z��

+
1

2
� drdr�� dz
�r,z�V�r − r��
�r�,z�

+� drdzVext�r,z�
�r,z� , �C62�

where K1=K /
 and where we defined the “tilt” field
operator3,4

t̂�r,z� = �
i=1

N
dri

dz
�„r − ri�z�… . �C63�

The tilting field t�r ,z� and the density field 
�r ,z� are not
independent, but are related to each other by the continuity
equation3,4,6

�z
�r,z� + �� · t�r,z� = 0. �C64�

Nelson and Le Doussal3 and Benetatos and Marchetti6 obtain
density and tilt correlation functions by expanding F
 of Eq.
�C62� to quadratic order in �
�r ,z�=
�r ,z�−
 �omitting, for
some unstated reason, the entropic 
 ln 
 term� and calculat-
ing statistical averages in the manner of Eq. �C21�, with the
constraint �C64� enforced. For example, for the Ursell func-
tion Snn�r ,z�= 	�
�r ,z��
�0 ,0�
, these authors write

�Snn�r,z� =
� �d„�
�r,z�…
 � �dt�r,z�
�„�z
�r,z� + �� · t�r,z�…�
�r,z��
�0,0�e−�F


� �d��
�r,z��
 � �dt�r,z�
�„�z
�r,z� + �� · t�r,z�…e−�F


. �C65�

with the result

Snn�q,qz� =
Tq�

2

�V�q� + T/�
d�
q�
2 + K1qz

2 . �C66�

�As we mentioned earlier, in previous treatments the T /
d
term in the denominator of the above expression, which
comes from the entropic 
 ln 
 term in F
, is missing.� Un-
fortunately, the Gaussian integration in Eq. �C65� is not jus-
tifiable from the point of view of a variational approach. In
other words, correlation functions obtained by using Eq.
�C65� cannot be reproduced by a standard variational
method, which here would consist in extremizing the free
energy F
 with respect to the fields �
�r ,z� and t�r ,z�, with
steps similar to those of Eqs. �C11�–�C20� of the previous
subsection. Indeed, as we have seen in the end of Appendix
C1 above, the rationale behind the Gaussian averaging in Eq.

�C65� is that the free energy is �presumably� a functional of
�
�r ,z� and t�r ,z� that is stationary at thermal equilibrium
�with the constraint �C64� enforced
.

Technically, the standard way to implement the constraint
�C64� in a variational procedure is through the introduction
of a �functional� Lagrange multiplier ��r ,z�, whereby one
defines the following, modified grand potential �the last term
in this equation is simply −�N�:

�̃
 = F
 +� drdz ��r,z���z
�r,z� + �� · t�r,z�


−
�

L
� drdz 
�r,z� . �C67�

Extremizing �̃
 with respect to 
�r ,z� and t�r ,z� leads to the
following coupled equations:

A. M. ETTOUHAMI PHYSICAL REVIEW B 72, 144502 �2005�

144502-22



�z��r,z� =
T

d
�ln�
�r,z�

N
� + 1� + Vext�r,z�

+� dr�V�r − r��
�r�,z� +
�

L
, �C68a�

����r,z� = K1t�r,z� . �C68b�

Equation �C68b� is a vector equation of standard form,
which amounts to finding the “electric potential” ��r ,z� as-
sociated with the planar “electric field” −K1t�r ,z� and has a
well-defined solution in � if and only if ��� t=0. Since
t�r ,z� is a randomly fluctuating field that does not necessar-
ily satisfy this last condition, we arrive at the very important
conclusion that it is not legitimate to extremize the grand
potential with respect to the pair of vector fields
�
�r ,z� , t�r ,z�� and hence that it is not legitimate to calculate
statistical averages using the procedure examplified in Eq.
�C65�.

We thus see that the previous formulations of Gaussian
hydrodynamics which lead to expressions for the Ursell
function of the form given in Eq. �C66� correspond to a
convoluted and ad hoc attempt, without any rationale other
than hand-waving symmetry considerations, to generalize the
variational Gaussian hydrodynamics of point particles to
continuous systems. In fact, even if we ignore this lack of
rationale and accept the use of Eq. �C65�, one other source of
inaccuracy of the previous formulations of Gaussian hydro-
dynamics lies the underlying Hamiltonians of Eqs. �C54� and
�C55�, which these theories are all implicitly based on. These
Hamiltonians indeed represent a very crude approximation to
the Hamiltonian of a single flux line in the first place, since
H1�r�z�
 involves relatively strong �harmonic� interactions
between flux-line segments while Eq. �C55� models a single
flux line as a superposition of noninteracting elements. In
fact, a necessary condition for the applicability of the Gauss-
ian hydrodynamic approach is that the interactions be
weak.43 For continuous systems with constituent parts inter-

acting strongly, a correct formulation of Gaussian hydrody-
namics must take these strong elastic interactions into ac-
count as exactly as possible, as we did in Eqs. �C23�–�C34�,
for otherwise one may obtain abnormal behavior for z corre-
lations in the system �for example, the Ursell function
Snn�q ,z� obtained from Eq. �C66� decays more rapidly than
the corresponding quantity for an ideal gas of noninteracting
flux lines, which is very surprizing, as discussed in detail in
Ref. 10
.

3. Gaussian hydrodynamics of flexible flux lines
in the presence of disorder

We now generalize the formulation of Gaussian hydrody-
namics that we developed in the previous subsection to flex-
ible flux lines in the presence of disorder. Since the disor-
dered case involves only minor technical modifications of
the undisordered hydrodynamics, we shall only give the sa-
lient features of the calculation, leaving out the �obvious�
technical details. Our starting point is the replicated Hamil-
tonian of Eq. �5�, which we rewrite here for clarity �we re-
mind the reader that p denotes the total number of replicas�:

H̄ = �
a=1

p

�
i=1

N � dz
1

2�K�dri
a

dz
�2

+ �
j��i�

V„ri
a�z� − r j

a�z�…�
−

1

2T
�

a,b=1

p

�
i,j=1

N � dzdz��„ri
a�z� − r j

b�z��;z − z�… .

�C69�

Rewriting the above Hamiltonian in terms of the trajectory
density operator of Eq. �C26� and using a variational ansatz
for the total Hamiltonian of the system of the form

Hv = �
a=1

p

�
i=1

N

H1�ri
a�z�
 , �C70�

it is not difficult to show that the variational free energy F


=−T ln Zv+ 	H−Hv
v is given by

F
 = �
a=1

p � dz� �dr�z�
�T
a�r�z�
ln�
a�r�z�

N

� + �1

2
K�dr

dz
�2

+ Vext„r�z�…�
a�r�z�
� +
1

2�
a=1

p � dz� �dr�z�


��dr��z�

a�r�z�
V„r�z� − r��z�…
a�r��z�
 −
1

2T
�
a,b
� dzdz�� �dr�z�
�dr��z��

a�r�z�
�„r�z� − r��z��,z − z�…
b�r��z��
 .

�C71�

Extremizing F
 with respect to 
a�r�z�
=
a(r�0� , . . . ,r�Md�) leads to an expression similar to the right-hand side of Eq. �C27�
for 
a�r�z�
, with the following expression for the effective Hamiltonian H1:

H1�r�z�
 =� dz��1

2
K�dr

dz
�2

+ Vext„r�z�…� +� �dr��z�
V„r�z� − r��z�…
a�r��z�


−
1

T
�

b
� dz�� �dr��z��
�„r�z� − r��z��,z − z�…
b�r��z�
� . �C72�

We now write r�z�=r0+u�z� and Taylor expand the above Hamiltonian up to quadratic order in the small displacement field
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u�r ,z�. Here again we find that, to order O�u2�, H1 can be written in the decoupled form �C37�, with �here �̄�r�
=�−	

	 dz��r ,z�


H1,c.m.�r0� =� dz� �dr��z�
V„r0 − r��z�…
a�r��z�
 −
1

T
�

b
� dz�� �dr��z��
�̄„r0 − r��z��,z − z�…
b�r��z��
 , �C73a�

H1,u�u�z�
 =� dz�1

2
K�du

dz
�2

+
1

2
���u��z�u��z�� . �C73b�

In the above expression of H1,u�u�z�
, the confining “mass” tensor is given by

��� =� �dr��z�
����V„r0 − r��z�…
a�r��z�
 −
1

T
�

b
� dz�� �dr��z��
�����„r0 − r��z��,z − z�…
b�r��z��
 �C74�

and vanishes in hydrodynamics for the same reason as in the
undisordered case. Also, like in the pure case, the density
matrix decouples, 
�r�z�
=
c.m.�r0

u�u�z�
, and hence the
internal modes �u�� in the expression of H1,c.m.�r0� can be
integrated out, with the result

H1,c.m.�r0� = Ve
a�r0� + �

b
� dr0��ab�r0 − r0��
c.m.

b �r�� ,

�C75�

where we introduced an external “source” potential Ve
a that

depends only on the c.m. position r0 and where the kernel
�ab is given by

�ab�r0� = L�Ṽ�r0��ab −
�̃�r0�

T
� . �C76�

In the above equation, the potential Ṽ is given by Eq. �C44b�,
while �̃ is similarly given by

�̃�r� =� �du��z�
�̄�r − u��z��
u
a�u��z�
 �C77�

=�
k

eik·r−k2	u2
/2�̄�k� . �C78�

By analogy with Eqs. �C15�–�C17�, the density response
function �ab�r ,r��=−�
c.m.

a �r0� /�Ve
b�r0�� satisfies the follow-

ing equation:

�ab�r0,r0�� = �
a�r���ab��r − r��

− �
c
� dr0� �ac�r0 − r0���

cb�r0�,r0��� .

�C79�

For a homogeneous liquid �Ve=0, 
�r�=

, �ab�r0 ,r0�� is
translationally invariant, and the above equation can be cast,
in Fourier space, into the following matricial form:

�
c

�̃ac�q��cb�q� = �ab, �C80�

with

�̃ac�q� = �T



+ LṼ�q���ac −

L�̃�q�
T

. �C81�

The matrix �̃ can easily be inverted using an identity for
inverting p� p matrices of the form

�A−1�ij = a�ij + b , �C82�

namely,

Aij =
1

a
�ij −

b

a�a + pb�
. �C83�

For the response function �ab�q�, this gives in the limit p
→0 the result

�ab�q� =
1

LṼ�q� + T/

�ab +

L�̃�q�

T�LṼ�q� + T/

2
, �C84�

and hence the diagonal �in replica space� Ursell function for
the c.m. mode is given by

S0,nn�q� =
T

LṼ�q� + T/

+

L�̃�q�

�LṼ�q� + T/

2
. �C85�

We thus see that disorder produces a Lorentzian-squared cor-
rection to the Ursell function fo the c.m. mode in the hydro-
dynamic limit. The Ursell function of the flux-line liquid is,
however, unchanged with respect to the pure case �since the
confining mass � is still zero� and is given by Eq. �C53�, in
contrast to the results of Refs. 3 and 4. Note, however, that if
a finite mass coefficient � is introduced, then the Ursell func-
tion of the flux liquid in the hydrodynamic limit is given by
Eq. �C51�, which in the present context becomes
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Snn�q,z� = � T

LṼ�q� + T/

+

L�̃�q�

�LṼ�q� + T/

2
− 
�

� e−q2	u2
/d� + 
 exp�−
Tq2

2K
�z�� . �C86�

Equations �C85� and �C86� show that quenched disorder
contributes an additive term to the Ursell function of the c.m.
mode describing fluctuations in the average density of vorti-
ces. The terms of Snn that describe the internal modes of
flux-lines are only affected by disorder through the renormal-
ization of the microscopic coefficients �K and �� of the
model.
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