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Linear equations for the transverse spin dynamics in a weakly polarized degenerate Fermi liquid are derived
from the Landau-Silin phenomenological kinetic equation with a general two-particle collision integral. Unlike
a previous treatment where the Fermi velocity and density of states were taken to be constant independent of
polarization we make no such assumption. The equations found describe the spin dynamics in a paramagnetic
Fermi liquid with finite polarization as well in an itinerant ferromagnet. The results are confirmed by field
theoretical calculations based on the integral equation for the vertex function. The transverse spin wave
frequency in a polarized paramagnetic Fermi liquid is found to be proportional to k2 with a complex diffusion
coefficient such that the damping has a finite value proportional to the quasiparticles scattering rate at T=0.
This behavior of a polarized Fermi liquid contrasts with the behavior of a Heisenberg ferromagnet in the
hydrodynamic regime where the transverse spin-wave attenuation appears in terms proportional to k4. The
reactive part of the diffusion coefficient in a paramagnetic state at T=0 proves to be inversely proportional to
the magnetization whereas in a ferromagnetic it is directly proportional to the magnetization. The dissipative
part of the diffusion coefficient at T=0 in the paramagnetic state is polarization independent, whereas in the
ferromagnetic state it is proportional to the square of the magnetization. Moreover, the spin wave spectrum in
a ferromagnetic Fermi liquid proves to be unstable demonstrating the difficulty of applying a Fermi liquid
description to itinerant ferromagnetism.
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I. INTRODUCTION

Since its appearance in the pioneering papers of Silin1 and
Leggett2 the theory of spin dynamics in spin-polarized Fermi
liquid has been intensively discussed mostly in relation to the
zero-temperature transverse spin-wave attenuation. The cal-
culations of the transverse spin-diffusion coefficient in a di-
lute degenerate Fermi gas with arbitrary polarization was
done in the papers by Jeon and Mullin3 in which the low-
temperature saturation of the corresponding relaxation time
was established. About the same time Meyerovich and
Musaelyan4,5 derived the spin kinetics in a polarized Fermi
liquid from microscopic theory and came to the same con-
clusion. A derivation and an exact solution of the kinetic
equation in the s-wave-scattering approximation for a dilute
degenerate Fermi gas with arbitrary polarization at T=0 and
for a small polarization at T�0 have been obtained also in
papers6 by Golosov and Ruckenstein. For the treatment of
this problem in a Fermi-liquid Matthiessen-type rule argu-
ments and a simple relaxation-time approximation for the
collision integral have been used.7 More recently, the deriva-
tion of the transverse spin dynamics in a spin-polarized
Fermi liquid from the Landau-Silin kinetic equation with a
general form of a two-particle collision integral has been
performed.8 The existence of zero-temperature damping of
transverse spin waves has been established. At low tempera-
tures and polarizations �H the damping is proportional to the
rate of collisions between quasiparticles

1

�
� ���H�2 + �2�T�2� . �1�

Experimentally the saturation of the transverse spin wave
diffusion constant at temperatures of about several mil-

likelvin has been registered by the spin-echo technique �see,
for instance, Ref. 9�. On the other hand, spin-wave experi-
ments demonstrate the behavior characterized rather by the
absence of transverse spin-wave damping in the same tem-
perature region.10 The latter seems to be a confirmation of
the point of view of Fomin11 who has argued that the trans-
versal spin wave spectrum is dissipationless, derived from
calculating the correction to the system energy brought about
by a gauge transformation into the coordinate system in
which the magnetization vector is constant. The calculation
of the generalized susceptibility coefficient in the expression
for the spin current found in Ref. 11 has not been performed;
only the reference of such calculations12 in superfluid 3He
were cited. Indeed, one can calculate susceptibility by appli-
cation of a similar procedure. However, due to collisions
between quasiparticles the proper Green function in a polar-
ized Fermi liquid includes the finite imaginary self-energy
part,4,5 that inevitably leads to spin-wave attenuation. The
same conclusion is obtained by the derivation of transverse
spin-wave dynamics from the kinetic equation in a rotating
reference frame13 in which the matrix function of the quasi-
particle distribution still contains an odd in momentum part
producing the spin-current relaxation so long there is a finite
rate of collisions between quasiparticles.

The derivation of linear transverse spin-wave dynamics
has been undertaken in Ref. 8 at finite polarization. However,
all the Fermi-liquid characteristic parameters have been
taken as constants independent of polarization. The deriva-
tion partly free of this assumption �taking into consideration
the polarization dependence of the Fermi velocity and the
density of states� is proposed in the present article �Sec. II�.
It results not only in equations for the time-space variations
of spin and spin current densities with more general expres-
sions for all the coefficients but also reveals the origin of the
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distinction between a spin-polarized paramagnetic Fermi liq-
uid and a ferromagnetic Fermi liquid with spontaneous mag-
netization.

The transverse spin-wave frequency in a polarized para-
magnetic Fermi liquid is found to be proportional to k2 with
a complex diffusion coefficient such that the damping has a
finite value proportional to the scattering rate of quasiparti-
cles at T=0. This behavior of a polarized Fermi liquid con-
trasts with the behavior of a Heisenberg ferromagnet in the
hydrodynamic regime where the transverse spin-wave at-
tenuation appears in terms proportional to k4. The latter deri-
vation is presented in the Appendix.

The polarization dependence of the diffusion coefficient is
found to be different for a polarized Fermi liquid and for an
itinerant ferromagnet. Moreover, the spin-wave spectrum in
ferromagnetic Fermi liquids proves to be unstable, which
demonstrates the inherent failure of the Fermi-liquid descrip-
tion of itinerant ferromagnetism.

It is well known that the phenomenological Landau
Fermi-liquid theory has well established foundations based
on microscopic theory. Namely, the transport equation for the
vibrations in a Fermi liquid was derived from an integral
equation for the vertex function and the general relationship
between the amplitude of forward scattering and the Fermi-
liquid interaction parameters was found.14 There also exist
several publications where the kinetic equation and field
theoretical methods based on Landau Fermi-liquid theory
have been applied to the treatment of itinerant isotropic
ferromagnet.15–17 In particular the derivation of a dissipation-
less �up to the terms of order �k4� spin-wave spectrum has
been announced.16

In the present article in the frame of microscopic theory
we reconsider the problem of transverse spin waves in a
spin-polarized Fermi liquid �Sec. III� and in itinerant ferro-
magnet taking into account the divergence of the static sus-
ceptibility �Sec. IV�. It is shown that in both cases the mi-
croscopic derivation leads to the same conclusions as found
by means of kinetic equation with a two-particle collision
integral �Sec. II�.

II. SPIN-WAVE DISPERSION

The quasiparticle distribution function as well as quasi-
particle energy are given by 2�2 matrix in spin space

n̂k�r,t� = nk�r,t�Î + �k�r,t��̂ , �2�

�̂k�r,t� = �k�r,t�Î + hk�r,t��̂ . �3�

Here �̂= ��̂x , �̂y , �̂z� are Pauli matrices. As long as we con-
sider small deviations of the magnetization direction from its
equilibrium direction the equation for the scalar part of the
distribution function nk�r , t� decouples from the equation for
the vector part of the distribution function �k�r , t� and we
may put nk equal to its equilibrium value, namely, the usual
Fermi function. Hence, the equation for the �k�r , t� has the
form

��k

�t
+

��k

�ki

��k

�xi
−

�hk

�xi

�nk

�ki
− 2�hk � �k� = � ��k

�t
�

coll
.

�4�

We divide all the matrices into equilibrium and nonequilib-
rium parts

n̂k = n̂k
0 + 	n̂k, �5�

�̂k = �̂k
0 + 	�̂k, �6�

where

n̂k
0 = n̄0��k�Î +

1

2

n0��k��m̂�̂� �7�

is the equilibrium distribution function of the polarized
Fermi liquid and

�̂k
0 = �kÎ −

1

2
��B�̂� �8�

is the equilibrium quasiparticle energy. Here, the functions

n̄0��k� =
1

2
�n0

+ + n0
−� �9�

and


n0��k� = n0
+ − n0

− �10�

are determined through two Fermi distribution functions

n0
±��k� = n0��k �

�H

2
� =

1

exp��k �
�H

2
− �

T
	 + 1

,

�11�

� is the gyromagnetic ratio, and Planck’s constant =1
throughout the paper. The polarization direction is deter-
mined by the unit vector m̂=H /H.

We have introduced two magnetic fields H and B and
shall assume that they are parallel to each other. The field H
determining the shift of the quasiparticle distribution func-
tion corresponds to the magnetization created by the external
magnetic field H0 and by the pumping18 in a paramagnetic
Fermi liquid. The pumped part in view of a very long time
for longitudinal relaxation should be considered as equiva-
lent to the equilibrium part of the magnetization. In a ferro-
magnetic Fermi liquid H is spontaneous magnetic field ex-
isting even in absence of an external field and pumping. The
field B determines the shift in energy of quasiparticles con-
sisting of the external magnetic field H0 and the Fermi-liquid
molecular field. To define B we must consider the equilib-
rium distribution matrix �7� and equilibrium energy matrix
�8� to give the deviations from the corresponding matrices
for an unpolarized Fermi liquid

n̂k
0 = n0��k�Î + 	n̂k

0 , �12�
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�̂k
0 = �kÎ −

1

2
��B�̂� = �kÎ −

1

2
��H0�̂� +

1

2
Sp�
 d��fk·k�

���	n̂k�
�0,

�13�

where d�=2dk / �2��3 and fk·k�
��� is the Fermi-liquid interac-

tion matrix.
As was discussed in8 for a finite polarization and a general

form of fk·k�
��� the vector B proves to be energy dependent.

This means that a description of the spin dynamics in terms
of closed system of differential equations for spin and spin
current densities is not possible. To circumvent these diffi-
culties as in the paper8 we assume the functions fk·k� to be
independent of energy and take them to have the simplified
form

fk·k�
��� = fk·k�

s ÎÎ� + �f0
a + f1

a�k̂ · k̂����̂�̂�. �14�

Now, from Eqs. �13� and �14� we obtain an equation that can
be used to determine B;

�B = �H0 − m̂f0
a
 d�
n0. �15�

For small polarizations and taking for simplicity T=0 one
can rewrite Eq. �15� as

B = H0 − HF0
a�1 −

1

6
��H

4�
�2� . �16�

Here and below

Fi
a = N0f i

a, i = 0,1… ,

and N0=m*kF /�2 is the density of states at zero polarization.
In the absence of a pumped magnetization the field B

=H and Eq. �16� is just the self-consistency equation for the
field H as a function of an external field H0 giving in the
lowest order

H =
H0

1 + F0
a . �17�

As a particular case one can consider a ferromagnetic state
when F0

a=−1−	. The solution of Eq. �16�,

1

6
��H

4�
�2

=
1 + F0

a

F0
a �18�

then exists even in the absence of an external field. The
spontaneous polarization is directly proportional to the mag-
netization �an order parameter� of the ferromagnet

M =
�N0

4
H . �19�

According to Eq. �18� it is determined by the Fermi-liquid
interaction. Note also, and we shall use it below, that in a
weakly polarized ferromagnetic Fermi liquid the deviation of
F0

a from −1 is quadratic in the polarization.

When part of the magnetization is created by pumping, H
is an independent value and the total energy shift ��B�̂� /2 is
determined from two fields: external field H0 and “effective”
field H.

We discuss only perpendicular deviations from the initial
equilibrium state

	n̂k = 	�k�r,t��̂, �m̂	�k� = 0. �20�

Then the energy deviation matrix has the form

	�̂k = 	hk�̂, 	hk =
 d��fk·k�
a 	�k� �21�

and the kinetic equation �4� can be rewritten as

�	�k

�t
+

��k
0

�ki

�	�k

�xi
−

� n̄0

�ki

�	hk

�xi
− 2��−

1

2
�B + 	hk�

� �1

2
m̂
n0+̂ 	�k�� = � ��k

�t
�

coll
. �22�

To derive a closed system of equations for the spin den-
sity M and the spin current density Ji in the case of finite
polarization we make an assumption which is plausible for a
weakly polarized Fermi liquid that the energy dependence of

	�k�r , t� can be factorized from the space and direction k̂
dependences:

	�k�r,t� = A�r,t����� + Bi�r,t�k̂i���� . �23�

In terms of these functions one can write the spin density

M�r,t� =
1

2

 d�	�k =

1

2
A�r,t� 
 d����� , �24�

and the spin current density

Ji�r,t� =
1

2

 d��vi	�k −

�n0

�ki
	hk� =

1

2
�
 d�vi	�k

=
1

6
Bi�r,t� 
 d�vi�������� −

f1
a

3

� n̄0

��

 d������ ,

�25�

where vi���=��k /�ki and

� =

 d�v�������� −

f1
a

3

� n̄0

��

 d������


 d�v�������
. �26�

Carrying out the integrations in kinetic equation �22�,
�d� /2 and �d�vi /2, we obtain after some simple algebra

�M

�t
+

�Ji

�xi
− M � �H0 = 0, �27�

�Ji

�t
+

w2

3

�M

�xi
− Ji � �H0 + Ji � C =

�

2

 d�vi� ��k

�t
�

coll
.

�28�

Here
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w2 = ��
 d�v2�������


 d�����
− f0

a
 d�v2���
� n̄0

�� � �29�

and

C = m̂� f0
a
 d�
n0��� −

f1
a
 d����� 
 d�v���
n0���

3
 d�����v��� � .

�30�

Equations �27� and �28� have the same form as in the case
of vanishingly small polarization.2,8 The correspondence be-
comes exact if we put

���� � ���� � 
n0��� . �31�

Thus, one can work with Eq. �28� taking more specific defi-
nitions for

� =

 d�v����
n0��� −

f1
a

3

� n̄0

��

 d�
n0����


 d�v���
n0���
, �32�

w2 = ��
 d�v2���
n0���


 d�
n0���
− f0

a
 d�v2���
� n̄0

�� � , �33�

and

C =
m̂

N0
�F0

a −
F1

a

3
� 
 d�
n0��� . �34�

At last, using the calculations of the paper8 for the collision
integral in a weakly polarized liquid we come to the equation
for the spin current density

�Ji

�t
+

w2

3

�M

�xi
− Ji � �H0 + Ji � C = −

Ji

�
, �35�

where the current relaxation time is

1

�
=

m*3

6�2��5 �2W1 + W2���2�T�2 + ��H�2� . �36�

Although Eq. �35� has the form of the typical so called “re-
laxation time approximation” we must stress here that it is
derived from kinetic equation and general form of two par-
ticle collision integral.8

In the frame rotating with the local Larmor frequency
�L=�H0 the quasistationary solution of Eq. �35� has the
form

Ji = D�m̂ � �iM − D��iM . �37�

and the dispersion law of the transverse spin waves follow-
ing from Eqs. �27� and �35� is �see, for instance, Ref. 19�

� = �L + �D� − iD��k2, �38�

where

D� =
w2�

3�1 + �C��2�
�

w2

3C2�
�39�

is the dissipative part of the diffusion coefficient and

D� = C�D� �
w2

3C
�40�

is its reactive part. Here the approximate values of D� and D�
correspond to the limit C��1.

For a weakly polarized fluid C= �F0
a−F1

a /3��H and �=1
+F1

a /3. The expression for w2 depends on the state. One can
find it analytically in the case of weak polarization. In a
paramagnetic Fermi liquid it is

w2 = vF
2�1 + F0

a��1 +
F1

a

3
� , �41�

where vF is the Fermi velocity in the unpolarized liquid. In a
ferromagnetic Fermi liquid �if an external field is smaller
than the spontaneous field� we find from Eq. �33� with help
of Eq. �15�

w2 = − vF
2�1 +

F1
a

3
���H

4�
�2

. �42�

Thus, the reactive part of the diffusion coefficient in a
paramagnetic state at T=0 proves to be inversely propor-
tional to the magnetization

D� =
vF

2�1 + F0
a��1 + F1

a/3�
3�F0

a − F1
a/3��H

, �43�

whereas in ferromagnetic state it is directly proportional to
the magnetization

D� =
vF

2�H

3�4�F�2 . �44�

The latter is in exact correspondence with the known result
obtained by Moriya in framework of the Stoner-Hubbard
model.20

The dissipative part of the diffusion coefficient given by
Eq. �39� at T=0 in a paramagnetic state is polarization inde-
pendent, whereas in a ferromagnetic state it is proportional to
the square of the magnetization. More importantly, the
imaginary part of the dispersion law in a Fermi liquid with
spontaneous magnetization proves to be positive. This means
that there is an intrinsic instability in a Fermi liquid with
spontaneous magnetization. The latter rules out a description
of itinerant ferromagnetism based on a polarized Fermi liq-
uid or, in other words, on the Hubbard-Stoner model with
short range repulsion between Fermi particles with the oppo-
site spins.

Physically the instability found originates from the Fermi
liquid interaction. Indeed, the negative value of 1+F0

a causes
the appearance of spontaneous magnetization and also �in
isotropic case� it stimulates a transverse deviation of magne-
tization from equilibrium direction.
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The transverse spin waves frequency in a polarized para-
magnetic Fermi liquid is found to be proportional to k2 with
a complex diffusion coefficient. This behavior contrasts with
the behavior in a Heisenberg ferromagnet in the hydrody-
namic regime21–23 �see the Appendix�, where the transverse
spin wave attenuation appears in terms proportional to k4.
The damping in a polarized Fermi liquid for

�H� � 1 �45�

has a finite value proportional to the scattering rate of qua-
siparticles at T=0. As it was pointed out in Ref. 8 the latter is
formally analogous with ultrasound attenuation in the colli-
sionless regime. It is worth noting, however, that the param-
eter �H� has no relation to the establishment of local equi-
librium.

The results �38�–�44� are valid in assuming �i� the quasis-
tationarity condition

Dk2� � 1, �46�

which is the case both in spin-echo9 and spin-wave10 experi-
ments, and �ii�

Dk2 � �H �47�

that is the condition of validity of two moment approxima-
tion for the solution of the kinetic equation.2

III. MICROSCOPIC DERIVATION OF SPIN-WAVE
SPECTRUM IN A POLARIZED FERMI LIQUID

The Landau-type derivation of transverse spin dynamics
in a weakly spin-polarized Fermi liquid from microscopic
theory has been performed in the paper.5 Here we make a
similar derivation to stress the conditions required for its
validity, to compare the answer with that obtained from the
kinetic equation at nonzero temperatures, and to juxtapose
this with the derivation for a ferromagnetic Fermi liquid17

which we also reproduce afterwards.
As in the original paper by Landau14 we consider a sys-

tem of fermions at T=0, with arbitrary short range interac-
tion forces. The presence of polarization means that sub-
systems of spin-up and spin-down particles have different
chemical potentials �±=�±�B /2 and the distribution func-
tions are based on different Fermi momenta p±
= p0±�H /2vF. The polarization in general is nonequilibrium
and, as in previous section, we shall distinguish the fields H
and B. Here, we shall not consider the polarization depen-
dence of the Fermi velocity and density of states and limit
the discussion to a weakly polarized paramagnetic Fermi liq-
uid. The ferromagnetic case shall be discussed in the next
section. So, the Fermi velocity is vF=���p� /�p�p=p0

and p0

= �p++ p−� /2.
The Green functions near �p�= p± and ��p�=�± have the

form

G±�p,�� =
a

� − ��p� + �± + ibvF
2�p − p±��p − p±�

. �48�

We assume a weak polarization vF�p+− p−���F and also that
both the Fermi distributions are characterized by the same

Landau Fermi-liquid parameters. We introduce here the gen-
eral form of the imaginary part of self-energy24 which is a
quadratic function of the difference �p− p±� and changes its
sign at p= p± correspondingly. The assumption of small po-
larization means in particular that G+ is given by the expres-
sion �48� not only near �p�= p+ and ��p�=�+ but in the entire
intervals p−� p� p+ and �−���p���+ and also near �p�
= p− and ��p�=�−. The same is true for G−.

Following Landau, let us write the equation for the vertex
function describing the scattering of two particles with op-
posite spin directions and a small transfer of four-momentum
K= �k ,��

��P1,P2,K� = �1�P1,P2� −
i

�2��4 
 �1�P1,Q�

�G+�Q�G−�Q + K���Q,P2,K�d4Q . �49�

If K is small and the polarization is also small, the poles of
the two Green functions are close to each other. Let us as-
sume that all other quantities in the integrand are slowly
varying with respect to Q: their energy and momentum
scales of variation are larger than max��H ,�� and
max��H /vF ,k� correspondingly. Then one can perform the
integration in Eq. �49� at fixed values of q= p0 , �=0 in the
arguments of the � and �1 functions. In other words, one can
substitute in Eq. �49�

G+�Q�G−�Q + K�

= G+�q,��G−�q + k,� + ��

=
2�ia2

vF
	���	��q� − p0�

�
�H + k · vF

� − �L + �HF0
a + ib��H�2/2 − k · vF + ib�Hk · vF

+ �reg. �50�

For elimination �1 from Eq. �49� we shall rewrite this equa-
tion in the operator form

� = �1 − i�1�i� + �reg�� , �51�

where product is interpreted as an integral, and i� denotes
the first term from the right-hand side Eq. �50�. In Eq. �51�,
we transpose the term involving �reg to the left-hand side,
and then apply the operator �1+ i�1�reg�−1, obtaining

� = �� + ���� , �52�

where

�� = �1 + i�1�reg�−1�1. �53�

As it is known,14 ���H=0� is directly related to the function
determining the Fermi-liquid interaction

���H = 0� = ����k�/�� → 0,H = 0� =
Fn·n�

a2N0
. �54�
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At finite H the �� function can be expanded over the polar-
ization as

a2N0�� = Fn·n� + ib�HCn·n� + O�H2� . �55�

From Eqs. �52� and �55�, we come, according to a well
known procedure,14 to the kinetic equation

�� − �L + �HF0
a +

ib��H�2

2
− k · nvF + ibk · nvF�H���n�

= ��H + k · nvF� 
 dn�

4�
�Fn·n� + ib�HCn·n����n�� . �56�

We limit ourself to the first two harmonics in the Landau
interaction function Fn·n�=F0

a+ �n ·n��F1
a and Cn·n�=C0

+ �n ·n��C1. To obtain the spectrum of the spin waves �see
below� obeying the Larmor theorem: the system of spins in a
homogeneous magnetic field executes precessional motion at
the Larmor frequency �L=�H0, the coefficient C0 has to be
chosen25 equal to 1/2.

Introducing the expansion of the distribution function
��n� over spherical harmonics of direction n=vF /vF, one can
find from Eq. �56� that the ratio of amplitudes of the succes-
sive harmonics with l�1 is of the order of kvF /�H. Hence if
this ratio is assumed to be a small parameter one can work
with distribution function taken to have the form2 ��n�=�0

+ �n · k̂��1. The functions �0 and �1 obey the following sys-
tem of linear equations:

�� − �L��0 −
kvF

3
�1 +

F1
a

3
− ib�1 −

C1

3
��H��1 = 0,

�57�

− kvF�1 + F0
a −

ib�H

2
��0

+ �� − �L + �F0
a −

F1
a

3
��H + ib�1

2
−

C1

3
���H�2��1 = 0.

�58�

The vanishing of the determinant of this system gives the
spin waves dispersion law. At long enough wavelengths
when the dispersive part of the ��k� dependence is much less
than �L and neglecting the terms ��b�H�2, we have

� = �L + �D� − iD��k2, �59�

where

D� =
vF

2�1 + F0
a��1 + F1

a/3�
3�F0

a − F1
a/3��H

�60�

is a reactive part of the diffusion coefficient. It is exactly the
same as given by Eq. �43�. The dissipative part of the diffu-
sion coefficient is

D� =
bvF

2��1 − C1/3��1 + F0
a�2 − �1 + F1

a/3�2/2�
3�F0

a − F1
a/3�2 . �61�

It is polarization independent and proportional to the quasi-
particle scattering rate in correspondence with Eq. �39�. We

derived Eqs. �60� and �61� assuming of �F0
a−F1

a /3��0.
The expressions for D� and D� have been obtained first by

the same method by Meyerovich and Musaelyan.5 The
former result literally coincides with that found in this paper,
the latter has the same parametric dependence but depends in
a different way on the Fermi-liquid parameters. This is per-
haps due to “off-shell” vertex corrections26 taken into ac-
count in Ref. 5 where one can also find a comparison with
the solution obtained for the weakly interacting gases.

Thus, the general microscopic derivation confirms the
statement about the existence of zero-temperature spin waves
attenuation in a polarized Fermi liquid. The value of the
dissipative part of spin diffusion D� is determined by the
amplitude “b” of the imaginary part of self-energy. It origi-
nates from collisions between quasiparticles.

IV. MICROSCOPIC DERIVATION TAKING
INTO ACCOUNT THE TRANSVERSE STATIC

SUSCEPTIBILITY DIVERGENCY

There are several known investigations of an isotropic
itinerant ferromagnetic state as some peculiar type of Fermi
liquid. This subject was discussed phenomenologically by
Abrikosov and Dzyaloshinskii15 and then microscopically by
Kondratenko.16 These authors did not include in the theory a
finite scattering rate between quasiparticles and as result they
obtained dissipationless transverse spin wave dispersion laws
as expected in an isotropic ferromagnet. The derivation15 was
criticized by Herring27 who pointed out the existence of a
finite scattering rate. Later Dzyaloshinskii and
Kondratenko17 rederived the spin-wave dispersion law in fer-
romagnets. Making use as the starting point the Landau
equation for the vertex function for the scattering of two
particles with opposite spins and a small transfer of four-
momentum they have redefined the product of two Green
functions G+G− in such a manner that its resonant part was
taken equal to zero at �=0. This trick allows one to use the
1/k2 divergency of transverse static susceptibility, which is
an inherent property of degenerate systems and occurs both
in an isotropic ferromagnet, and in a spin-polarized paramag-
netic Fermi liquid in the absence of interactions violating
total magnetization conservation. As in the previous
papers,15,16 the authors of Ref. 17 did not introduce a finite
quasiparticle attenuation in momentum space between the
Fermi surfaces for the particles with opposite spins.

Similar derivation including calculation of a reactive part
spin diffusion constant has been performed by Moriya20 in
the framework of Stoner-Hubbard microscopic model. The
dissipative part of dispersion law has not been found.

Let us see now what kind of modifications appear if we
reproduce the derivation proposed in Ref. 17 with the Green
functions �48� taking into account the finite quasiparticle at-
tenuation in the whole interval p−� p� p+. We discuss an
isotropic ferromagnet at equilibrium B=H first in the ab-
sence of external field. Following17 we write
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G+�Q�G−�Q + K�

= G+�q,��G−�q + k,� + ��

=
2�ia2

vF
	���	��q� − p0�

�
�

� − �H + ib��H�2/2 − k · vF + ibk · vF�H
+ �̃reg.

�62�

Now Eq. �49� is written as

� = �1 − i�1�i�̃ + �̃reg�� , �63�

where i�̃ denotes the first term on the right-hand side of Eq.
�62�. The equivalent form of this equation is

� = �k + �k�̃� , �64�

where

�k = �� �

�k�
→ 0� = �1 + i�1�̃reg�−1�1. �65�

The isotropic part of �k is proportional to the static trans-
verse susceptibility. Hence it has a singular form17

�k � −
1

N0�ck�2 . �66�

Here, c is a parameter with the dimensions of length. One
can show by direct calculation of static transverse suscepti-
bility in the Stoner ferromagnet20 that c is the polarization
independent

c �
1

p0
. �67�

At the same time similar calculations for a polarized para-
magnetic Fermi liquid gives the value of c inversely propor-
tional to polarization

c �
vF

�H
�68�

such that the divergency �66� disappears in an unpolarized
liquid when �H→0.

Substitution of Eq. �66� into Eq. �64� gives the transverse
spin-wave dispersion law

� = �H�ck�2�1 −
ib�H

2
� . �69�

One can take into consideration a static external field, by
working in the rotating with Larmor frequency frame that is
equivalent to the substitution �→�−�L �see also Ref. 17�.
As a result, we obtain the dispersion law

� = �L + �H�ck�2�1 −
ib�H

2
� �70�

that has the same form as Eq. �38�. Taking into account the
relations �67� and �68� one can verify that the polarization
dependences of reactive and dissipative parts of the diffusion

constants in ferromagnetic Fermi liquids and in polarized
paramagnetic Fermi liquids coincide with those found at the
end of the Sec. II. The present derivation does not contain a
self-consistent calculation of the “b” coefficient, that is why,
unlike to the Sec. II, here we cannot comment on the insta-
bility in a Fermi liquid with spontaneous magnetization.

V. CONCLUSION

In conclusion we stress once again that the transverse spin
wave dispersion in a polarized paramagnetic Fermi liquid is
found to be attenuating. The spin wave frequency is propor-
tional to k2 with complex diffusion coefficient such that the
damping at T=0 has a finite value proportional to the scat-
tering rate of quasiparticles. This behavior of a polarized
paramagnetic Fermi liquid contrasts with the behavior of a
Heisenberg ferromagnet in the hydrodynamic regime where
the transverse spin wave attenuation appears in terms propor-
tional to k4 �see the Appendix�. At the phenomenological
level this difference originates from the diffusive current
which exists in the mixture of spin-up and spin-down Fermi
liquids even at zero temperature. Unlike for a polarized para-
magnetic Fermi liquid the spectrum of transverse spin waves
in a ferromagnetic Fermi liquid has an inherent instability
that a pure Fermi-liquid description of itinerant ferromag-
netism is not necessarily possible.
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APPENDIX: TRANSVERSE SPIN WAVES
IN HEISENBERG FERROMAGNET

The treatment of transverse spin waves hydrodynamics
has been undertaken by several authors �see, e.g., Refs.
21–23�. We rederive it here in a different manner. With this
purpose we shall use a phenomenological expression for the
free energy

F =
 dr� f�M� − M · H0 +
a

2
��iM�2� , �A1�

where the minimum of homogeneous energy density f�M�
gives the equilibrium value of magnetization M in ferromag-
netic state and H0 is an external magnetic field. Being inter-
ested in the dispersion law of small transverse vibrations of
magnetization 	M�=e�����M�, where � is a vector of in-
finitesimal rotation lying in the plane perpendicular to M, we
rewrite the free energy in terms of these angles

F =
 dr� f�M� − M · H0 +
a

2
M2��i��2� . �A2�

Then, by introducing the magnetization current as
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Ji = −
	F

	�i�
= a�M � �iM� , �A3�

we obtain the equation of motion of magnetization or the
equation of spin-density conservation

�M

�t
+

�Ji

�xi
− M � �H0 = 0 �A4�

known as Landau-Lifshits equation.28 The simple derivation
from Eqs. �A3� and �A4� results in dispersion law of linear
transverse spin waves

� = �L + aMk2. �A5�

Here �L=�H0 is the Larmor frequency.
So, the reactive part of spin-wave dispersion proves to be

directly proportional to the magnetization value. This general
property of Landau-Lifshits equation is sometimes formu-
lated as a result of finite domain wall rigidity.

The dissipation can be also taken into consideration. It is
only necessary to generalize the spin-current expression

Ji = −
	F

	�i�
+ Ji

diss, Ji
diss = −

	R

	�i�
, �A6�

where

R =
1

2 /
drdr�b�r − r��e���M��i� j���r��i�� j����r��

�A7�

is the dissipation function which according to general rules is
chosen being quadratic on gradients of spin velocity �i� �it

is variable conjugated to the spin current� and such that the
Onsager principle

b�r − r��e���M� = b�r� − r�e����− M�� �A8�

has to be fulfilled. Here b�r� is a short-range even function.
Now the total spin current density is

Ji = a�M � �iM� + b�i
M , �A9�

and taking it into account we obtain from Landau-Lifshits
equation the transverse spin-wave dispersion law with dissi-
pation

� = �L + aMk2 − ibk4. �A10�

The microscopic calculation29,30 gives the value of coeffi-
cient b� ln�T /k2� / �M�3 meaning the nonanalytic wave vector
dependence of dispersion law. We stress also that all the
results found here are valid in hydrodynamic or local equi-
librium regime that is under the following condition:

aMk2� � 1. �A11�

Unlike Heisenberg ferromagnet �A9� the spin-current den-
sity in a ferromagnetic Fermi liquid has the following form
�see Eq. �37��

Ji = D�m̂ � �iM − D��iM . �A12�

The first reactive �time reversal invariant� terms in two cases
just coincide. While the second terms describing the dissipa-
tive flow and odd in respect of time reversal are different.
The dissipative current of the first order in gradients is absent
in a Heisenberg ferromagnet but it is always present in spin
polarized Fermi liquid as diffusion current in the solution of
Fermi liquids with up and down spins.
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