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Equilibrium properties of the three-dimensional isotropic Heisenberg spin glass are studied by extensive
Monte Carlo simulations, with particular attention paid to the nature of its phase transition. A finite-size-scaling
analysis is performed for both the spin-glass (SG) and chiral-glass (CG) orders. Our results suggest that the
model exhibits the CG long-range order at finite temperatures without accompanying the conventional SG
long-range order, in contrast to some of the recent works claiming a simultaneous SG and CG transition.

Typical length and time scales which represent a crossover from the spin-chirality coupling regime at short
scales to the spin-chirality decoupling regime at long scales are introduced and examined in order to observe
the true asymptotic transition behavior. On the basis of these crossover scales, discussion is given concerning
the cause of the discrepancy between our present result and those of other recent numerical works.
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I. INTRODUCTION

Spin glasses (SG’s) have attracted the attention of re-
searchers in both experiments and theory as a prototype of
complex systems with quenched randomness.' SG’s are ran-
dom magnets in which magnetic ions interact with each other
either ferromagnetically or antiferromagnetically, depending
on their positions. Most of theoretical works have been so far
devoted to the minimal SG model—i.e., the Ising Edwards-
Anderson (EA) model. After a discussion early in the 1980s,
it is now widely believed that a three-dimensional (3D) Ising
SG model exhibits a SG phase transition at a finite tempera-
ture. Large-scale Monte Carlo (MC) simulations presented
evidence for finite-temperature SG ordering.>? Subsequently,
the critical exponents evaluated by MC simulations were
consistently compared with those evaluated experimentally
for the Ising-like SG compound FeMnTiOs.

Compared to the Ising case, the nature of the phase tran-
sition of continuous spin systems such as XY and Heisenberg
SG’s are still poorly understood. Since many SG magnets
including canonical SG possess only weak magnetic aniso-
tropy, an isotropic Heisenberg SG model, rather than the
strongly anisotropic Ising model, is expected to be a realistic
model of SG magnets. Experimentally, an equilibrium SG
phase transition has been established in real SG materials via
measurements of the divergent nonlinear susceptibility, etc.
In sharp contrast to experiments, earlier theoretical studies of
the Heisenberg SG model indicated that the standard SG
long-range order occurred only at zero temperature in three
dimensions.*-3

In order to solve this apparent puzzle, a chirality mecha-
nism of experimentally observed SG transitions was pro-
posed by Kawamura.>!? This scenario is based on the as-
sumption that an isotropic 3D Heisenberg SG exhibits a
finite-temperature chiral-glass (CG) transition without the
conventional SG order. In terms of symmetry, among the
global symmetries of the isotropic Hamiltonian, only the Z,
spin-reflection (or spin-inversion) symmetry associated with
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the chirality is spontaneously broken with keeping the SO(3)
spin-rotation symmetry. Indeed, some numerical studies'"-'?
claimed that the standard SG order associated with the freez-
ing of the Heisenberg spin occurred at a temperature lower
than the CG transition temperature—i.e.,
Tsg < Tcg—possibly with Tgg=0. It means that the spin and
chirality are decoupled on long length and time scales, al-
though the chirality is locally defined as a composite opera-
tor of the spin variables.

In this chirality scenario of experimental SG transitions,
essential features of many of the real SG transition and of the
SG ordered state are determined by the properties of the CG
transition and of the CG state of the fully isotropic system.
The role of the magnetic anisotropy is secondary, which re-
couples the spin to the chirality and reveals the CG transition
in the chiral sector as an anomaly in experimentally acces-
sible spin-related quantities. The scenario successfully ex-
plained the phase diagram under magnetic fields observed by
the recent numerical simulation'>!# and experiments.'”

More recently, however, some researchers argued a possi-
bility that in the 3D Heisenberg SG model the spin ordered at
a finite temperature simultaneously with the chirality—i.e.,
Tsg=Tcg>0.'920 Thus, the nature of the ordering of the 3D
Heisenberg SG, as well as the validity of the chirality sce-
nario, is now under debate. Under such circumstances, it
would be highly interesting to perform further extensive nu-
merical studies of the 3D Heisenberg SG in order to clarify
the true nature of its ordering. In the present study, we in-
vestigate both the SG and CG orderings of the model by
means of a large-scale equilibrium MC simulation.

Interestingly, recent experiments reported on a qualitative
difference in aging phenomena between a canonical
Heisenberg-like SG and an Ising-like SG.2! We also expect
that a full understanding of the equilibrium properties of the
3D Heisenberg SG will also give valuable insight into these
off-equilibrium properties of SG’s.

The article is organized as follows. In Sec. II, we give the
background of the present numerical study. In Sec. II A, we
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explain first the basics of the chirality mechanism. In Sec.
II B, we introduce the crossover length and time scales be-
yond which the spin and chirality are decoupled with each
other. These length and time scales are crucially important in
the chirality mechanism and are also essential in properly
interpreting the numerical data of MC simulations. In Sec.
III, we explain the model and the MC method employed. In
Sec. IV, we introduce various physical quantities measured in
our MC simulations, while the results of our simulations are
presented in Sec. V. In view of our MC results, we examine
and discuss in Sec. VI the recent numerical results on the 3D
Heisenberg SG by other authors. Finally, we present a brief
summary of the results in Sec. VIIL.

II. BACKGROUND

In this section, we wish to give a background of the
present numerical study of the 3D isotropic Heisenberg SG.
First, we explain the basics of the chirality mechanism of
experimental SG transition as proposed in Refs. 9 and 10.
Then, we explain the notion of the spin-chirality decoupling,
together with the crossover length and time scales which
play a crucially important role in the chirality mechanism
and are also essential in properly interpreting the numerical
data.

A. Chirality mechanism

Chirality is an Ising-like multispin variable representing
the sense or handedness of noncollinear spin structures in-
duced by spin frustration. In frustrated magnets with continu-
ous spins, the chirality often plays an essential role in their
magnetic ordering. The local chirality x;, at the ith site in the
o direction may be defined by

Xin = Si+é#' (8; X Si—é#), (1)

é,(u=x,y,7) being a unit lattice vector along the w axis.
This quantity is often called a scalar chirality: It takes a
nonzero value only when the three neighboring spins take the
noncoplanar configuration in spin space, while it vanishes for
the collinear or the coplanar spin configuration. The chirality
defined above is a pseudoscalar variable since it is invariant
under the global SO(3) spin rotations but changes its sign
under the global Z, spin reflections or inversions.

The chirality mechanism of Refs. 9 and 10 takes the fol-
lowing two-step strategy in explaining the real SG transition:
The first step concerns with the property of the fully isotro-
pic Heisenberg SG, an idealization of experimental SG ma-
terials. The chirality scenario claims that the fully isotropic
Heisenberg SG exhibits a finite-temperature CG transition
without the conventional SG long-range order. The CG tran-
sition breaks only the Z, spin-reflection symmetry with keep-
ing the SO(3) spin-rotational symmetry. The occurrence of
the CG transition necessarily entails the spin-chirality decou-
pling.

Obviously, such a scenario does not apply to the infinite-
dimensional limit—i.e., to the mean-field Heisenberg
Sherrington-Kirkpatrick (SK) model—in which the spin it-
self, not the chirality, behaves as an order parameter of the
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transition. Due to the noncoplanar nature of the spin configu-
ration in the SG state, the SG long-range order trivially ac-
companies the CG long-range order, whereas the opposite is
not necessarily true. One should note that, in the conven-
tional case where the spin variable is a proper order param-
eter of the transition as in the case of the SK model, the
chirality, which is given by the multiple of the spin, exhibits
a less singular behavior than the spin at the SG transition. In
fact, the chirality shows only moderate behavior at the SG
transition of the mean-field Heisenberg SK model in which
the spin, not the chirality, is the order parameter of the
transition.?

In contrast to the mean-field model or the high-
dimensional Heisenberg SG models, the problem could be
very nontrivial in lower dimensions where the order-
parameter fluctuation might change the nature of ordering
dramatically. At present, there seems to be no consensus
about the lower critical dimension d5c® of the SG order,
while the corresponding upper critical dimension is expected
to be 6. The CG order, if it exists, may emerge slightly
above, at, or below d'ggD .

It has been proved that the SG long-range order does not
exist at any finite temperature in the two-dimensional
Heisenberg ~ SG.2*  The  numerical  domain-wall
renormalization-group calculation as well as the MC simula-
tion suggested that both the spin and chirality ordered only at
zero temperature.’ Interestingly, however, the estimated SG
and CG correlation-length exponents at this 7=0 transition
differ significantly from each other—i.e., vog> vgg.2* This
implies that in 2D the spin and chirality are decoupled at
long length scales, the chirality dominating the long-length
behavior.

In view of these transition behaviors of the Heisenberg
SG’s, it appears likely that the principal player in long-scale
phenomena changes from the spin to the chirality as the spa-
cial dimensionality is decreased. Thus, the behavior in di-
mension 3 is the current issue, which is the subject of the
present work.

The second step of the chirality mechanism is concerned
with the effect of the random magnetic anisotropy which
inevitably exists in real SG magnets. The random anisotropy
energetically breaks the SO(3) spin-rotation symmetry in the
Hamiltonian, retaining the Z, inversion symmetry only.
When the anisotropic system exhibits CG long-range order
with spontaneously breaking the Z, inversion symmetry,
there no longer remains any global symmetry degree of free-
dom to leave the system in the paramagnetic phase. Hence,
once the CG order occurs in the presence of the random
anisotropy, the spin degree of freedom also behaves like the
chirality. This is the spin-chirality recoupling due to the ran-
dom magnetic anisotropy.

Such an anomaly revealed in the spin sector via the ran-
dom magnetic anisotropy can be detected experimentally by
standard magnetic measurements—e.g., as a divergence of
the nonlinear susceptibility, etc.—whereas the CG long-
range order is difficult to observe experimentally.

We note that in this mechanism the anisotropy plays only
a secondary role: The anisotropy certainly reduces the sym-
metry of the Hamiltonian relative to the fully isotropic sys-
tem, but does not change the broken symmetry of the transi-

144416-2



MONTE CARLO SIMULATIONS OF THE PHASE...

Chiral Glass
1Y Spin Glass ===
Q 3
3
=
S
on
=
9
o Lx or tx
.o S,
5 ——
— ..
ol N T e
h i
I}
Q
TsG Tcag Tx Temperature

FIG. 1. A schematic figure of the crossover between the spin-
glass and chiral-glass correlation lengths (correlation times) ex-
pected in the chirality mechanism. According to the chirality
mechanism, the CG correlation length (correlation time) diverges
toward the CG transition temperature 7=7cg, while the SG one
diverges at a lower temperature 7=Tgg < Tcg-

tion. The critical properties of the CG transition and of the
low-temperature CG phase are expected to be not affected by
the magnetic anisotropy, which, however, are now directly
observable via the standard spin-related quantities. This
chirality scenario predicts that experimentally observed SG
transitions belong to the same universality class as that of the
the CG transition of the fully isotropic model. It is thus
highly interesting to clarify the nature of the phase transition
of the ideal isotropic Heisenberg SG.

B. Spin-chirality decoupling-coupling scenario

As mentioned above, in lower dimensions, a relevant de-
gree of freedom which dominates the long-scale phenomena
might well change from the spin to the chirality. The chiral-
ity scenario expects that in 3D there exists a crossover tem-
perature T which separates the two temperature regimes, as
illustrated in Fig. 1. In the higher-temperature regime, the SG
correlation length is longer than the CG correlation length,
dominating the long-scale phenomena. This is simply due to
the fact that a sensible definition of the local chirality re-
quires the development of a spin short-range order of at least
a few lattice spacings. As the temperature is decreased, both
the SG and CG correlation lengths grow, but at different
rates, so that the CG correlation length eventually outgrows
the SG correlation length at the crossover temperature 7T'y.
An example of such a crossover behavior between the spin
and chiral correlations can be seen explicitly in a certain toy
model: See Fig. 10 of Ref. 25. Then, the relevant degree of
freedom for the long-scale behavior changes at T from the
spin to the chirality. Below T, the long-scale phenomena
are governed by the CG correlation, not by the SG one. This
is the spin-chirality decoupling expected to occur in the fully
isotropic model.

Let us discuss in some detail the finite-size effect inherent
to the simulation data in the critical region. The situation
here is not simple because the system has two length scales,
each associated with the spin and with the chirality. Suppose
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FIG. 2. A schematic figure of the time evolution of the spin-
glass and chiral-glass two-time autocorrelation functions.

autocorrelation function

that the CG transition occurs at T=Tg without the conven-
tional SG long-range order. Then, the crossover temperature
Ty at which the CG correlation length outgrows the SG cor-
relation length should be located somewhat above Tg: See
Fig. 1. A necessary condition for detecting the spin-chirality
decoupling is that the measurement temperature must lie be-
low T. It is, however, not enough. At a temperature below
T, one needs to probe the system beyond the crossover
length above which the spin-chirality decoupling becomes
eminent. Thus, a large-size simulation exceeding the cross-
over length is required in order to detect the spin-chirality
decoupling. Unfortunately, the crossover length scale is un-
known a priori and is to be investigated by numerical simu-
lations. A natural criterion might be that it is given by the SG
correlation length at the crossover temperature 7 as shown
in Fig. 1. Even in the CG ordered phase, the spin-chirality
decoupling might hardly be observable at the length scale
below the crossover length. Rather, it is natural to expect that
the trivial spin-chirality coupling is observed below the
crossover length scale because the chirality is a composite
operator of the spin on the short scale of lattice spacing not
independent of the spin, roughly being xy =~ S°.

In the CG critical region, the chirality-related quantities
should exhibit true asymptotic critical behavior—e.g., a
power-law singularity characterized by the associated CG
exponents. At short length scales below the crossover length
scale, due to the trivial coupling between the spin and chiral-
ity, even the spin-related quantities are expected to exhibit
the similar critical behavior to the chirality-related quantities.
Namely, up to the crossover length scale, it seems as if the
SG order developed as a long-range order. It is intrinsically
difficult at shorter length scales to distinguish such a pseud-
ocritical behavior induced by the CG long-range order from
the true SG long-range order. Hence, it is crucially important
to estimate the crossover length scale and to study the long-
scale behavior of the system beyond this length scale.

Essentially the same argument also applies to the case of
the temporal scale. As an example, we discuss here the be-
havior of the autocorrelation functions based on the notion of
the crossover time scale. Figure 2 shows the schematic rep-
resentation of the behavior of the SG and CG autocorrelation
functions below T expected from the spin-chirality
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coupling-decoupling picture. In the long-time limit, the
chirality autocorrelation function is expected to saturate to a
certain finite value after an initial fast decay, while the spin
autocorrelation function is expected to decay toward zero
asymptotically. A comment is in order concerning the tran-
sient behavior of the spin autocorrelation function at time
scales shorter than the crossover time scale: At shorter time
scales, the spin autocorrelation function might exhibit the
pseudo-ordering feature dictated by the CG one through the
trivial spin-chirality coupling. This might well lead to a hum-
plike pseudo-ordering structure in the time dependence of
the spin autocorrelation function as shown in Fig. 2, which,
however, does not persist in the long-time limit beyond the
crossover time scale. This means that, in order to properly
discuss the true asymptotic behavior of the dynamics of the
model, particular attention should be paid to the crossover
time scale.

III. MODEL AND MONTE CARLO METHOD

We study a classical Heisenberg model defined by the
Hamiltonian

H(S)=- 27,5+ S;, (2)
(ij)

where S;=(S;,57,55) is a three-component unit vector and
the summation runs over all nearest-neighbor pairs. The lat-
tice is a simple cubic lattice with the total number of N=L3
sites. The nearest-neighbor couplings J;; take the values £/
randomly with equal probability. Periodic boundary condi-
tions are imposed for all directions. The lattice sizes studied
are L=8, 12, 16, and 20, where the sample average is taken
over 976 (L=8), 964 (L=12), 280 (L=16), and 32 (L=20)
independent bond realizations.

We perform an equilibrium MC simulation of the model.
In our simulation, we make use of the exchange MC
method,”® which is also called parallel tempering.”’ In the
exchange MC method, one MC step consists of two elemen-
tary updates, a standard single-spin heat-bath flip,® and an
exchange trial of spin configurations at neighboring tempera-
tures. The latter reduces the slow relaxation at low tempera-
tures with the help of the high-temperature fast dynamics.
The method has turned out to be quite efficient in thermaliz-
ing a wide class of hardly relaxing systems such as SG sys-
tems and proteins. We ensure equilibration by checking that
various observables attain stable values, no longer changing
with the amount of MC steps: See Refs. 22 and 28 for further
details of the equilibration procedure. Our MC simulations
have been performed up to the size L=20 and up to the
temperature 7/J=0.15. This could be achieved only by using
the exchange MC method. The numbers of temperature
points used in our exchange MC method are 32 for L=8, 12,
16, and 48 for L=20.

Error bars are estimated via sample-to-sample fluctuations
for linear quantities such as the order parameters and by the
jackknife method for nonlinear quantities such as the Binder
parameter and the correlation length mentioned below.
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IV. PHYSICAL OBSERVABLES

In the present section, we introduce various physical
quantities observed in our simulations and discuss some of
their basic properties.

In glassy systems, it is often convenient to define as an
order parameter an overlap variable between two indepen-
dent systems with the same Hamiltonian. For the Heisenberg
spin, the overlap may be defined as a tensor variable between
the w and v components (u, v=x,y,z) of the Heisenberg spin
by

1 N

= 3 3 S5 o)

where the upper suffixes (1) and (2) denote the two replicas
of the system with the same interaction set.

A chiral overlap is defined in terms of the local chiral
variable (1) by

1
- (1,2
qX_ 3N[§/3 Xi,u Xi/.L . (4)

The squared SG order parameter is then given by

95 = KE qfw>], (5)

where (---) denotes a thermal average and [---] denotes an
average over the bond disorder. The corresponding squared
CG order parameter is defined by

2
NORICHly (©6)

which is normalized by the mean-square amplitude of the
local chirality,

N
o 1 )
=3y Nzi % [OG0]- (7)

The local chirality amplitude remains nonzero only when the
spins have a noncoplanar structure locally. This quantity
weakly depends on the temperature, in contrast to the
Heisenberg spin variable whose amplitude is fixed to be
unity by definition. In the high-temperature symmetric phase,
these SG and CG order parameters are essentially equivalent
to the associated SG and CG susceptibilities defined by
XSG=N‘](52()~, and XCG=3N‘](CZ()‘,’ respectively.

A standard finite-size scaling of the second-order transi-
tion for the equilibrium SG and CG order parameters takes
the form

q(2) . L—(1+77)f(|T_ TC|L1/V)’ (8)

where v is the exponent of the correlation length and 7 is the
exponent describing the decay of the correlation function at
the critical point T=T,. At T,, the order parameter decays as
a power law with the size L,

q(2) oc -1+ 9)
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One often uses the Binder parameter to estimate the criti-
cal temperature. In the Heisenberg SG, the Binder parameter
for the SG order is defined by

1 [(¢*)] ) 2 O 2
gSG_2<11_9[<q2>]2 B _%qﬂw (10)
while that for the CG oder is defined by
1 (gl )
=—|3-=2% ). 11
e 2< ()T (

In the thermodynamic limit, these Binder parameters are nor-
malized to unity in the nondegenerate ordered state and to
zero in the high-temperature disordered state. Since the
Binder parameter is a dimensionless quantity and the dimen-
sionless quantity should be size independent at the critical
temperature 7., the Binder parameters of different system
sizes plotted as a function of temperature should yield a
crossing or merging point at 7.

In terms of the k-dependent overlap variable, one can de-
fine the Fourier-transformed two-point CG and SG correla-
tion functions. For the CG, the k-dependent chiral overlap is
defined by

(k) = —E XX 2 explik - 7). (12)

in which the chiral variable along the x axis, x;,, is consid-
ered. The Fourier-transformed CG correlation function is
then defined by

acs(®) =g (o). (13)
For the SG, the k-dependent spin overlap is defined by

_ (1) ¢(2) L
q,uv(k) E Sl,u Sw eXp(lk : ri)’ (14)

whereas the Fourier-transformed SG correlation function is
defined by

420 = KZ |q,w</€>|2>]. (15)
v

Via these CG and SG Fourier-transformed correlation func-
tions, the associated CG and SG finite-system correlation
lengths are defined by

1 | 4?(0)
" 2 sin(ky/2) q<2>(;;m)_1’ (16

where k,=(27/L,0,0) and k,,=|k,|.

One can then define a dimensionless quantity, the normal-
ized correlation lengths &-g/L and &gg/L. Since &/L is di-
mensionless, it should exhibit the same scaling property as
the Binder parameter. Thus, the ratio &/L for different L
should cross or merge at the critical temperature.

In probing the nature of the low-temperature glassy or-
dered phase, one useful quantity is the distribution of the
overlap. The chiral-overlap distribution is defined by
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P(q,) =[{(q, — q))]. (17)

The squared CG order parameter q(czé defined above is the
second moment of the chiral-overlap distribution function.
The spin-overlap distribution is defined originally in the
tensor space with 3 X 3=9 components. To make the quantity
more easily tractable, one may define the diagonal spin over-
lap, which is the trace of the original tensor overlap, and
introduce the associated diagonal-spin-overlap distribution

by
P(qdiag)=[< (qdmg (ﬂEqu)m (18)

This distribution function is symmetric with respect to ggi,g
=0 and is expected to be a Gaussian distribution around
Gdiag=0 1n the high-temperature disordered phase. Reflecting
the fact that the diagonal-spin overlap is not invariant under
the global O(3) spin rotation, P(gg;,) in the possible SG
ordered phase develops a nontrivial shape, not just consisting
of the &-function peaks related to g, even when the ordered
state is a trivial one simply described by a self-overlap gga.?
If the possible SG ordered state accompanies a replica-
symmetry breaking (RSB), further nontrivial structures
would be added to P(ggi,e). Meanwhile, it is recently shown
in Ref. 22 that, in the possible SG ordered state, diverging
peaks corresponding to the self-overlap necessarily appear in
P(Gdiag) At Ggiae= _%qEA in the thermodynamic limit. Hence,
the existence or nonexistence of these divergent peaks could
be used as an unambiguous measure of the possible SG long-
range order in the Heisenberg SG, irrespective the occur-
rence of RSB.

Another interesting feature of glassy systems might be the
nature of their sample-to-sample fluctuations, particularly
their possible non-self-averageness. As an indicator of the
lack of self-averageness, one may use the so-called A
parameter.”’ For the CG order, it is defined by

2 2
Kgyp~]-[ay] (19)

A =" e
X

while for the SG order,

[Ka**1- [T
[a*)P

The order parameter is non-self-averaging when the associ-

ated A parameter is nonzero and is self-averaging when A is

equal to zero.

One can also define the so-called Guerra parameter G.°
For the CG order, it is defined by

Asg(T) = (20)

(] - [T
= =2x - “VIX-
GealD) = T~ 20

while for the SG order,
("] - [{gH)T
KaH]-[aH

Unlike the A parameter, the G parameter can take a nonzero
value even when the ordered state is a trivial one without

Gsa(T) = (22)
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accompanying the RSB.?"32 The G parameters are related to

the A parameters and the Binder parameters g via the rela-
tions

Acg=2(1 - gc)Geos (23)

2
Asg= 5(1 - 8s6)Gsg- (24)

These relations indicate that, as long as the Binder parameter
g takes any value different from unity in the ordered phase, a
nonzero A necessarily means a nonzero G. By contrast, if the
Binder parameter g takes a value of unity in the ordered
phase, a nonzero A may or may not mean a nonzero G.

Information about the equilibrium dynamics can be ob-
tained from the spin and chiral two-time autocorrelation
functions defined by

€)=~ 505+ )] 5)
1
C ()= ;v% [ (t0) X2 + 1)1, (26)

where the time evolution in our MC simulation is made ac-
cording to the standard heat-bath updating not accompanying
the exchange process. Initial spin configurations at r=t, are
taken from equilibrium spin configurations generated in our
exchange MC runs. Below the transition temperature T, (if
any), these autocorrelation functions converge in the long-
time limit to the Edwards-Anderson SG and CG order pa-
rameters, whereas above T, these autocorrelation functions
decay exponentially toward zero with a characteristic corre-
lation time, which diverges as the temperature T approaches
T.. Just at T,, the autocorrelation functions exhibit a power-
law decay,

C(t) ~ P, (27)

where z is the dynamical critical exponent. These features
are described by the standard bulk dynamical scaling form

C(t) ~ |T-T|PFUT-TJ|™), (28)

where f(x) is a scaling function whose asymptotic forms for
x<1 and x>1 are x#?" and exp(-x), respectively.

V. NUMERICAL RESULTS

In the present section, we show our MC results of the
three-dimensional isotropic Heisenberg SG model.

A. Binder parameter

In Fig. 3, we show the temperature and size dependence
of the Binder parameters both for the chirality [upper figure
(a)] and for the spin [lower figure (b)]. As can be seen from
Fig. 3(a), a crossing of the CG Binder parameter gcg of
different L is observed on the negative side of gcg, not on the
positive side as in the standard cases. With increasing L, the
crossing temperature gradually shifts toward lower tempera-
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FIG. 3. The temperature and size dependence of the chiral-glass
Binder parameter [upper figure (a)] and of the spin-glass Binder
parameter [lower figure (b)] of the 3D +J Heisenberg SG.

tures. A behavior similar to this has also been observed in the
Binder parameter of other models, including the Heisenberg
SG'>?2 and the mean-field SG.3*3* In particular, in a class of
mean-field SG models exhibiting a one-step RSB, the Binder
parameter at the transition point 7, takes a negative value,
sometimes even negatively divergent.’>>* It implies that the
temperature at which the Binder parameter for finite L takes
a minimum, a dip temperature 7g;,(L), approaches the critical
temperature—i.e., Tqip(L)—T, as L—. Recently, this
method of estimating the bulk transition temperature was
successfully applied to the Heisenberg SG.'*?? In Fig. 4, we
plot T4i,(L) against 1/L. An extrapolation to the thermody-
namic limit 1/L—0 gives us an estimate of the bulk CG
transition temperature, Tog/J=0.194(5).

By contrast, as shown in Fig. 3(b), the SG Binder param-
eter ggg monotonically decreases toward zero with increas-
ing L at all temperatures studied. There is no signature of the
transition in the investigated temperature range, no negative
dip or the crossing, in contrast to the CG Binder parameter.
This suggests that the SG transition temperature, if any, is
located at a temperature lower than the temperature range
studied here. Figure 3(b) reveals, however, that an anoma-
lous bend appears in ggg for larger sizes L=16 at around
T/J=0.22, close to the CG transition temperature, although
gsg never becomes size invariant at any temperature, as it
should have been in a second-order transition. The reason
why ggg exhibits such an anomalous bend around 7 might
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FIG. 4. The dip temperature of the chiral-glass Binder parameter
gcg 1s plotted against 1/L. The solid line represents a linear fit of
the data. Its extrapolation to the L — o° limit gives an estimate of the
bulk chiral-glass transition temperature, Tcg/J=0.194(5).

be understood as follows: At the CG transition, a reflection
symmetry is spontaneously broken and the entire phase
space is divided into ergodic components, in each of which a
proper-rotational symmetry is still preserved. As a result, the
ordering behavior of the Heisenberg spin would change at
Tcg, though the spin itself does not order even below Tcg.
We note that a similar bend in ggg has also been observed in
the rwo-dimensional Heisenberg SG (Ref. 24) where the ab-
sence of a finite-temperature SG transition has been well
established.?

It is sometimes argued in the literature that the Binder-
parameter analysis might not work in the SG problem. Such
a suspicion might partly be based on the observation that
only weak merging behavior was observed at the SG transi-
tion temperature of the three-dimensional EA Ising model
which is believed to exhibit a finite-temperature SG
transition.”>3 As long as the SG long-range order really sets
in at finite temperatures, however, it is hardly conceivable
that the Binder parameter for asymptotically large lattices
exhibits a nonsingular behavior only. In particular, the
Binder parameter should become scale invariant at the SG
transition point, as long as the transition is continuous. In-
deed, in a recent MC simulation of the mean-field Heisen-
berg SG,?> which is known to exhibit a nonzero SG long-
range order below Tgg, a clear crossing of the SG Binder
parameter ggg has been observed at Tgg, in sharp contrast to
our present data of Fig. 3(b).

Then, one might argue that the finite-size effect would be
significant here in ggg and the large-L asymptote might still
be far away. One sees from Fig. 3(a), however, that the CG
Binder parameter g for our two largest sizes L=16 and 20
exhibits an almost size-invariant behavior at and below Tg.
If the Heisenberg spin orders simultaneously with the chiral-
ity and if the spin is the order parameter of the transition and
the chirality is only a composite (secondary), it seems a bit
hard to understand why the chirality exhibits an almost scale-
invariant near-critical behavior for L= 16, while the Heisen-
berg spin still exhibits an off-critical scale-dependent behav-
ior. Hence, the behavior of gy observed in Fig. 3(b) remains
to be resolved if the occurrence of a finite-temperature SG
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FIG. 5. Double-logarithmic plot of the squared chiral-glass or-
der parameter q(Czé [upper figure (a)] and of the squared spin-glass
order parameter qSZG [lower figure (b)] as a function of the system
size L for several temperatures around the expected chiral-glass
transition temperature. Straight lines are drawn by connecting the
two data points of L=8 and 12 at each temperature.

transition is to be accepted in the investigated temperature
range.

B. Order parameter

In Fig. 5, we show the size dependence of the squared CG
and SG order parameters q(z) and ‘ls) for various tempera-
tures. In the upper figure (a) a double-logarithmic plot of the
CG order parameter qCZG is shown against the system size L.
One generally expects that at 7. the data of qca should lie on
a straight line. In fact, the data of qCG show a clear straight-
line behavior around 7/J=0.19, which is close to the CG
transition temperature obtained by our analysis of gcg. The
critical-point decay exponent 7cg can be estimated from the
slope of this straight line, yielding 1+ g~ 1.8. At higher
temperatures, a deviation from the straight line, a downward
trend, is observed indicative of the disordered phase. At
lower temperatures, particularly at our lowest temperature
simulated 7/J=0.15, the data of qgé show a clear upward
trend. This suggests that this temperature is indeed below
Tcg and that the low-temperature phase is a rigid one char-
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glass order parameter q(sz) (open symbols) and of the squared chiral-
glass order parameter qCZG (solid symbols) are plotted versus the
temperature. The curvature is expected to be zero at the respective
transition temperature.

acterized by a nonzero q(cz()}, not likely to be a critical phase
like the Kosterlitz-Thouless (KT) phase.

In Fig. 5(b), a double-logarithmic plot of the correspond-
ing SG order parameter q(SZG) is shown against the system size
L. Again, the data are expected to lie on a straight line at the
critical SG transition temperature, if any. Such a straight-line
behavior, however, is found only at our lowest temperature
studied 7/J=0.15, whereas q(szg, never exhibits an upward
trend characteristic of the long-range ordered phase at any
temperature studied, in sharp contrast to the behavior of q(czc);
At temperatures higher than 7/J=0.15, including the one at
the CG transition temperature 7/J=0.19, the data of q(szc)}
show a linear behavior for smaller sizes, which gradually
changes into a downward trend for larger sizes. This can
simply be interpreted as a size crossover which occurs
around the length scale of the SG correlation length at each
temperature. We note that such a size crossover is clearly
discernible even at a temperature 7/J=0.17 which is below
Tcg- The length scale of the crossover, comparable to the
spin correlation length, grows as 7T decreases, and it is con-
sidered to exceed our largest size L=20 at around T/J
=0.15.

This observation strongly suggests that the standard SG
transition temperature of the model is lower than 7/J/=0.15
and that, at least within the temperature range 0.15<T
=0.19, solely the CG long-range order exists without the
standard SG long-range order; i.e., one has Tcg>Tsg.

To make the situation more pronounced, we estimate fol-
lowing Refs. 36 and 37 the curvatures of the L dependence
of the two order parameters qézG) and q(czé via second-order
polynomial fits to the data of Fig. 5. The curvature is ex-
pected to be zero at the respective transition temperature. As
shown in Fig. 6, the curvature for the CG crosses the zero
axis around 7/J=0.19, while that for the SG does not cross
the zero axis there, but marginally touches on it at a lower
temperature, 7/J==0.15. The result indicates that the two
transition temperatures Tsg and TG are well separated.
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FIG. 7. Finite-size-scaling plot of the squared chiral-glass order
parameter. The best scaling is obtained with Tcg/J/=0.19, v=1.2,
and 1+7=1.8.

C. Finite-size scaling of the order parameter

In order to estimate the correlation-length exponent v as-
sociated with the CG transition, we apply the standard finite-
size scaling analysis to the squared CG order parameter q(czé
based on Eq. (8). By taking |T—Tcg|/TcgL” as the scaling
variable, the best data collapse is obtained with Tcg/J
=0.19, vog=1.2, and 7c5=0.8. As shown in Fig. 7, the data
both below and above T¢g scale fairly well. If [1/T
—1/T¢g|TegL"” is taken as the scaling variable, on the other
hand, a slightly larger value of v—i.e., vcg=1.4 and 7cg
=0.7—is preferred. The observed difference in the best val-
ues of the exponents might be due to the correction to scal-
ing. Thus, we finally quote T¢g/J=0.19(1), veg=1.3(2), and
7c=0.8(2). The error bar is estimated by examining the
quality of the fits with varying the scaling parameters. The
estimated values of critical exponents are compatible with
the previous values obtained for the Heisenberg SG model,
but with the Gaussian bond distribution,!?> and also with
those for the +J Heisenberg SG under external fields.!>3

After establishing the occurrence of a finite-temperature
CG transition, we next wish to reexamine via the finite-size
scaling analysis the issue whether the standard SG order oc-
curs at the same temperature with the CG order or not. In
Fig. 8, we show a finite-size scaling plot of the SG order
parameter q(sz(;, assuming a simultaneous CG and SG transi-
tion with a common correlation length exponent; i.e., we set
Tsg/J=0.19 and vgg=1.2. Although the data turn out to scale
well for smaller sizes, a significant deviation from the scal-
ing is seen for larger sizes and at lower temperatures. The
quality of the scaling is not improved if one tries to adjust v
to somewhat larger values. A similar poor scaling behavior is
also observed even when one instead chooses |1/T
—1/T¢g|TegL!” as the scaling variable and tries to adjust the
scaling parameters around vgg=1.4. The data for smaller
sizes turn out to scale best with choosing 7gg=-0.1. These
parameter values vgg=1.2 and 7sg=-0.1 are close to the
values reported by Matsubara et al. in Ref. 39. Hence, for the
SG order parameter, we have observed a pseudocritical be-
havior for smaller sizes, as well as a systematic deviation
from the scaling for larger sizes. If the observed deviations
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transition with a common correlation length exponent—i.e., Tsg/J
=0.19 and vgg=1.2. The best scaling is obtained with 7gg=—0.1.

were due to the correction to scaling, the scaling should be
better for larger sizes, which is opposite to our present ob-
servation. Therefore, we do not consider the apparent scaling
obtained for smaller sizes with T55/J/=0.19 to be acceptable
as a true asymptotic scaling.

In Fig. 9, we show a finite-size-scaling plot of the SG
order parameter q(szc)} using the same data as in Fig. 8, but now
assuming a zero-temperature SG transition—i.e., Tsg=0 and
nsg=—1. The value p=—1 is generically expected for a zero-
temperature transition with the nondegenerate ground state.
As shown in Fig. 9, the best data collapse is obtained by
choosing vgg=2.2. If one uses in the scaling plot the data at
low temperatures, lower than the CG transition temperature
T/J=<0.19, and the data for larger sizes L= 12, the scaling
turns out to work well: See the main panel. By contrast, if
one includes in the scaling plot the data for the smallest size
L=8 and at high temperatures 7/J=0.19, a significant de-
viation from the scaling is observed for these data: See the
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FIG. 9. Finite-size-scaling plot of the squared spin-glass order
parameter with assuming a zero-temperature spin-glass transition
Tsg=0. In the main panel, only the data for larger sizes and at lower
temperatures—i.e., those at 7/J<0.19 and with L= 12—are plot-
ted. In the inset, the same scaling plot using all the data is shown.
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inset. In sharp contrast to the scaling plot of Fig. 8§ with
Tsg=Tcg, we have observed here a better scaling for larger
sizes and a systematic deviation from the scaling for smaller
lattices. In that sense, the present finite-size scaling analysis
is fully consistent with the occurrence of a 7=0 SG transi-
tion, as has long been believed in the community.*-%-1240
Furthermore, the exponent associated with the possible 7
=0 SG transition happens to be rather close to the previous
estimates based on the numerical domain-wall method.*>°

Of course, as discussed above, the CG transition occur-
ring at 7/J=0.19 would necessarily affect the nature of the
SG ordering, even if the Heisenberg spin itself does not order
at T=Tcg. Thus, even if the SG transition occurs only at 7'
=0, an intrinsic SG critical phenomenon associated with this
T=0 transition should set in at low temperatures below T,
whereas the data at and above T-g would be “contaminated”
by the CG transition which might well change the ordering
behavior of the Heisenberg spin via the associated phase-
space narrowing.

Hence, although our present data are fully consistent with
the occurrence of the 7=0 SG transition, in order to see such
a behavior clearly, one has to choose the scaling region care-
fully. Inclusion of the data of smaller sizes and at higher
temperatures in the analysis would easily deteriorate the
quality of the scaling plot, leading to the opposite conclu-
sion. We believe that this is indeed the situation of the recent
study of Ref. 39, in which a simultaneous spin and chiral
transition at a finite temperature Tgg=7cg Was concluded.

D. Correlation length

The temperature dependence of the normalized SG and
CG correlation lengths, &sg/L and &q-g/L, for various sizes
are shown in Fig. 10. In contrast to the Binder parameter
shown in Fig. 3, the normalized correlation lengths of L=8
and 12 shown in Fig. 10(a) exhibit a clear crossing at a
temperature around 7/J==0.2 for both cases of the SG and
CG. The observed behavior is consistent with the behavior
recently reported by Lee and Young?® for the 3D Heisenberg
SG model with the Gaussian coupling for the sizes up to L
=12.

We now extend the system size up to L=20, and the result
is presented in Fig. 10(b). While the crossing temperature for
larger sizes L=16 and 20 shifts toward lower temperature for
both cases of the SG and CG, the CG correlation length still
has a clear crossing around 7/J=0.19, very close to the
estimate of 7T in the previous subsections, with a finite
crossing angle. On the other hand, for the SG correlation
length, the crossing becomes weaker and almost fades away.
Namely, the curves of L=16 and 20 merge nearly tangen-
tially with a vanishing crossing angle. The L=16 and 20
curves of &gg/L stay on top of each other in the entire tem-
perature region studied below 7/J=0.19, as if they were in
the critical KT-like phase. Hence, for the SG, with increasing
L, not simply the crossing temperature shifts toward lower
temperature, but the crossing angle becomes smaller and al-
most vanishes. This is in contrast to the behavior of the CG
correlation length where the crossing angle remains finite
with increasing L. It thus seems possible that a further in-
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FIG. 10. The correlation length divided by the linear size L
plotted against the temperature for the chiral-glass &-g/L (solid
symbols) and for the spin-glass &sg/L (open symbols). The data for
smaller sizes (L=8 and 12) are shown in the upper figure, and those
for larger sizes (L=16 and 20) are shown in the lower figure.

crease of L eventually leads to the disappearance of the
crossing for &g/ L, at least in the temperature range studied
here. The same data are replotted in Fig. 11 in which the data
of all sizes are given on the same plot, each for the chirality
(a) and for the spin (b).

Our present observation would be consistent with the size
crossover expected from the spin-chirality coupling-
decoupling picture and with our observation in Sec. V B that
the decoupling length scale is about L=20. Unfortunately, at
present, we cannot go to lattices larger than L=20 due to the
limitation of our computation capability. We certainly expect,
however, that the crossing of &g/ L eventually disappears, or
at least shifts to a temperature considerably lower than the
CG transition temperature Tcg/J=0.19, if we could study
lattices considerably larger than L=20. For now, we only
mention that, although the recent data of the normalized cor-
relation length for smaller lattices of L=<12 might look
rather conclusive at first sight,?® in view of our present data
for larger sizes presented in Fig. 10(b), it is still difficult to
draw a definite conclusion about the ordering nature of the
model only through the correlation-length measurements.

E. Overlap distribution

In Fig. 12, we show the chiral-overlap distribution func-
tion [upper figure (a)] and the diagonal-spin-overlap distri-
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FIG. 11. The temperature and size dependence of the normal-
ized correlation length &/L. The data are the same as shown in Fig.
10. The CG data are presented in the upper panel (a) and the SG
data in the lower panel (b).

bution function [lower figure (b)] at a temperature T/J
=0.15 below the CG transition temperature. One sees from
Fig. 12(a) of the chiral-overlap distribution function P(g,)
that, with increasing L, the side peaks corresponding to the
CG EA order parameter ggg; grow and sharpen, which indi-
cates the occurrence of the CG long-range order. In addition,
a central peak at ¢,=0 shows up for L=12, which also
grows and sharpens with increasing L. The existence of this
central peak coexisting with the side peaks suggests the oc-
currence of a one-step-like RSB in the CG ordered state.
This feature is also consistent with the existence of a nega-
tive dip in the CG Binder parameter g and with the cross-
ing of gcg occurring on the negative side, as was discussed
in Sec. V A. The behavior of P(g,) observed here is similar
to the previous reports for the 3D Heisenberg SG with the
Gaussian coupling'> and the related Heisenberg SG
models.'3?23 By contrast, such a one-step-like feature of the
overlap distribution has never seen in Ising SG’s with both
short-range*! and infinite-range*’> interactions or in the
Heisenberg SG with the infinite-range interaction.??

Figure 12(b) represents the size dependence of the
diagonal-spin-overlap distribution function P(gq;,) defined
by Eq. (18). For larger L=16, the distribution function
P(qgiae) has only a single peak at g4;,,=0, which grows with
increasing L, without any other divergent peak. This is in
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FIG. 12. The size dependence of the chiral-overlap distribution
function [upper figure (a)] and of the diagonal-spin-overlap distri-
bution function [lower figure (b)] at the lowest temperature of the
present simulation, 7/J=0.15.

sharp contrast to the triple-peak structure observed in the
chiral-overlap distribution function P(g,) of Fig. 12(a),
peaked at ¢, =0 and +gE& Tt is also in contrast to the double-
peak structure observed in P(gg;,,) of the mean-field Heisen-
berg SK model, peaked at g=+5gga.22 As discussed in Sec.
IV, since diverging peaks at qdmg:_%qEA should arise in
P(qgiae) in the possible SG ordered state with a nonzero EA
SG order parameter,?” the absence of any divergent peak at
NONZEro qgi,, for larger L strongly suggests that the system is
in the SG disordered state even at this low temperature
T/J=0.15. Interestingly, a closer inspection of Fig. 12(b) re-
veals that a weak double-peak structure can be seen for
smaller sizes corresponding to the spin-chirality coupling re-
gime, L=8 and 12. However, such a double-peak structure in
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FIG. 13. The Monte Carlo time dependence of the chiral auto-
correlation function C,(7) [upper figure (a)] and of the spin auto-
correlation function Cy(z) [lower figure (b)] at various temperatures
both below and above Tcg/J=0.19. The system size is L=16
(given by symbols) and L=20 (given by thin lines). The inset is an
enlarged view of C(7) in the short-time region where the finite-size
effect is negligible.

P(qgiae) tends to disappear for larger sizes corresponding to
the spin-chirality decoupling regime, L=16. Again, this
could be interpreted as the size crossover from the small-size
SG pseudo-order to the large-size SG disorder, as is naturally
expected from the spin-chirality coupling-decoupling pic-
ture.

F. Equilibrium autocorrelation functions

Next, we discuss the ordering behavior of the model by
studying its equilibrium dynamics. In Fig. 13, we show the
MC time dependence of the chiral and spin autocorrelation
functions for our two largest sizes L=16 and 20. Here, the
time is measured in units of the standard heat-bath MC steps
without the temperature-exchange procedure.

In the chiral autocorrelation function C,(¢) shown in Fig.
13(a), no appreciable difference is observed between the data
of L=16 and 20 in the time window of r<10?, beyond which
a weak size effect is appreciable. The spin autocorrelation
function C,(), by contrast, is more susceptible to the finite-
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FIG. 14. Residuals per degrees of freedom associated with the
X fitting of the chiral autocorrelation function (marked by solid
circles) and an estimated effective exponent B/zv (marked by open
circles) plotted against the temperature.

size effect, as can be seen from Fig. 13(b). Even in this case,
however, the data in the time window =< 10> show a negli-
gible size effect as shown in the inset. The finite-size effect
in the autocorrelation functions is caused by critical fluctua-
tions near the transition temperature or by a diffusive relax-
ation associated with global spin motions at lower tempera-
tures. In analyzing the finite-size effect in equilibrium
dynamics, it might be useful to introduce a characteristic
time scale at which the autocorrelation functions of finite-
size systems decay toward zero. In the following subsection,
we shall calculate such a characteristic time scale of finite-
size systems and discuss its size dependence. Here, we con-
centrate our attention on the behavior of the autocorrelation
functions at relative short times where the size effect is neg-
ligible.

As can be seen from Fig. 13(a), C,(t) shows a downward
trend above T/J=0.19, an upward trend below 7/J=0.19,
and a near-linear behavior at 7/J=0.19. In order to quantify
this, we fit the data at each temperature to the form (27) and
plot the x? deviation of the fit in Fig. 14 as a function of the
temperature around the expected CG transition temperature.
The plot has a minimum around 7/J=0.19(1), at which the
data are optimally fitted to a power law. This estimate of T
based on the chiral autocorrelation function agrees well with
those obtained from the CG Binder parameter and the CG
order parameter.

We also test a dynamical scaling analysis of the chiral
autocorrelation function CX(t). As can be seen from Fig. 15,
the dynamical scaling works well both above and below Tg,
with the scaling parameters Tcg/J=0.19, Bcg=0.8, and
ZcgVeg=9.4. The estimate of Bcg obtained here via the best
scaling is slightly smaller than, but is not far from, the pre-
vious estimate of Ref. 40 for the 3D Heisenberg SG with the
Gaussian coupling Scg=1.1. In this connection, we note
that the uncertainty associated with the present estimate of
the scaling parameters including SBcq is actually rather large,
because a wide range of the parameter space turns out to give
an acceptable scaling plot not much different in quality from
the best one given in Fig. 15.

PHYSICAL REVIEW B 72, 144416 (2005)

10! ———————————
g 10° 5
T
8
T
~ 10 T=025 1
= 021 —e—
) 020 —e
w2t 0.18 —— |
0.15 —e—
1078 :

107 10®° 10 107 10 107° 107 107
t| T_T(_‘G| 2cGVes

FIG. 15. Dynamical scaling plot of the chiral autocorrelation
function. The best scaling is obtained with choosing Tcg=0.19,
Bcg=0.8, and zcgvcg=>5.4. The upper branch represents the scaling
of the data below TG, while the lower branch represents that above

TCG'

As can be seen from Fig. 13(b), by contrast, the spin
autocorrelation C,(f) shows a downward trend at longer
times at any temperature studied, suggesting an exponential-
like decay characteristic of the disordered phase. A closer
inspection of the data of C,(r) reveals that the data below T¢g
exhibit a weak humplike structure at short times t=102,
though this hump eventually gives way to the downbending
trend characteristic of the disordered phase at longer times
t=10°: See the inset of Fig. 13(b). This humplike structure
observed in C(r) at short times might be a manifestation of
the trivial spin-chirality coupling expected at short time
scales and is not likely to be an indication of the SG long-
range order, since the downward trend is recovered at longer
time scales: See Sec. VI for further details. Hence, from our
dynamical data, we conclude again that the CG transition
occurs at Teg/J=0.19(1), without accompanying the simul-
taneous SG order.

G. Equilibrium correlation time

Generally, the temporal decay of the autocorrelation is
characterized by the temperature-dependent characteristic
time scale, the correlation time 7(7), which represents a dy-
namical crossover from the short-time critical behavior to the
long-time relaxation. The correlation time generally depends
also on the system size L as 7(T;L), diverging in the ther-
modynamic limit as (7;L=%)=|T-T,* when the tem-
perature T approaches T, from above. One promising method
of estimating this size-dependent correlation time 7=7(T;L)
from the autocorrelation function has been proposed by
Bhatt and Young,** who employed a scaling analysis of the
dynamical ratio function. For the spin autocorrelation, this
reads as

C,(1)

VG{(Z 8050+ 0)))]

The corresponding chiral ratio function is defined by

(29)

R(t) =
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These functions are the ratios of odd moments of the auto-
correlation to even moments. Thus, they are sensitive to ro-
tations or reflections of the entire system which are the slow-
est relaxational modes of the system. It turns out that, from
the whole profile of the autocorrelation function, the ratio
functions R(¢) pick up only the slowest part.**

In extracting the finite-size correlation time 7=7(T;L)
from the ratio function R(¢), we assume a dynamical scaling
ansatz. Because the ratio function is dimensionless, the pref-
actor r#” in Eq. (28) is canceled out. The dynamical scaling
form of R(z) is then given as a single-variable function of
tlT,

(30)

R(H) =R(1/7), (31)

where R is a scaling function. If one appropriately chooses
the scaling parameter 7 which depends on the temperature
and system size, the ratio functions should be scaled onto a
single curve. Using this method, Bhatt and Young*® success-
fully estimated the correlation time of the short-range Ising
EA model and the mean-field Ising SK model. Subsequently,
this method has been extended to nonequilibrium relaxation,
where the ratio function depends not only on the measure-
ment time ¢ but also on the waiting time f,. The off-
equilibrium method was applied recently by Matsumoto,
Hukushima, and Takayama to the 3D+J Heisenberg SG.**

Here we use this method to estimate the correlation times
both for the spin and for the chirality as a function of 7 and
L. In comparison with the previous off-equilibrium study,**
the present equilibrium study has an advantage that one need
not extrapolate to an equilibrium limit—i.e., need not take
the #,,— o0 limit. In Fig. 16, we show the scaling plot of the
chiral and spin ratio functions. We note that both the spin and
chiral scaling functions are described roughly by an expo-
nential form.

In order to compare the spin and chiral correlation times,
denoted by 7 and 7, respectively, we plot them in Fig. 17
as a function of the temperature. In the figure, we combine
the data with those obtained in a wider temperature range by
the off-equilibrium simulation of Ref. 44. As can be seen
from Fig. 17, the chiral correlation time is shorter than the
spin correlation time at higher temperatures, similarly to the
behavior of the correlation length discussed in Sec. V D. As
the temperature is decreased, the chiral correlation time 7
grows faster than the spin correlation time 74 and eventually
exceeds 7g; at a certain characteristic temperature T
=Ty« (L). The size dependence of this crossover temperature
T=Ty«(L) is apparently weak: We get T=T, =0.24 both for
L=16 and 20. It strongly suggests that, even in the thermo-
dynamic limit, the chiral correlation time exceeds the spin
correlation time at a crossover temperature T (%), which is
located somewhat above the CG transition temperature
Tcg/J=0.19. It means that, with decreasing the temperature,
the relevant degree of freedom dominating the long-time or-
dering behavior changes from the spin to the chirality at 7’
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FIG. 16. Scaling plot of the chiral ratio function [upper figure
(a)] and of the spin ratio function [lower figure (b)] at various
temperatures for the sizes L=16 and 20.

=T. In order to further illustrate this changeover, we show
in Fig. 18 the time dependence of the spin and chiral ratio
functions at two representative temperatures 7/J=0.25 and
0.20, each above and below 7. As can be clearly seen from
the figure, with decreasing the temperature across Ty, the

10’ : ‘ ; ; ; .
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FIG. 17. The temperature dependence of the the chiral and spin
correlation times for the sizes L=16 and 20. The corresponding data
obtained from the off-equilibrium simulation of Ref. 44 are also
included.
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FIG. 18. (Color online) Temporal decay of the chiral and spin
ratio functions at temperatures 7/J=0.25 and 0.20. The system size
is L=16. With decreasing the temperature from 7/J=0.25 to 0.20,
the chiral relaxation slows down much more slowly than the spin
relaxation, as illustrated by the arrows.

temporal decay of the chiral ratio function becomes much
slower than that of the spin ratio function: Compare the two
arrows in the figure.

The time scale associated with such a crossover, f, is
roughly estimated to be 10°—10% MC steps (MCS). For more
precise estimate of 7., more quantitative analysis of the size
dependence of the crossover time scale would be necessary.
Naturally, this crossover time 7 gives a measure of the time
scale above which the spin-chirality decoupling can be ob-
served in dynamics. Thus, the spin-chirality decoupling in
the dynamics would be eminent only at temperatures lower
than 7 /J=0.24 and at times longer than 7, =10°-10°
MCS. This crossover time scale is rather long, yet is finite. It
is important to realize that, in order to resolve the contro-
versy concerning the presence or the absence of the spin-
chirality decoupling in the Heisenberg SG, one has to probe
the equilibrium dynamics beyond this crossover time scale
10°—10° MCS at temperatures lower than T\ /J=0.24, about
some 20%-30% above T¢g.

As argued in Sec. II from the spin-chirality coupling-
decoupling picture, a similar phenomenon is expected also in
the spatial correlation of the model in terms of the length
scale. Namely, one expects that at a certain crossover tem-
perature 7, which is probably close to the dynamical cross-
over temperature Ty discussed above, the CG correlation
length &-g exceeds the SG correlation length &gg. This
changeover of the dominant length scale gives a crossover
length scale L, above which the spin-chirality decoupling is
eminent in spatial correlations. Unfortunately, unlike the case
of the correlation time, the limitation of the available system
size prevents us from directly estimating L. In Fig. 19, we
plot the temperature dependence of the CG and SG correla-
tion lengths for the sizes L=16 and 20. For these sizes, the
crossing of &g and é-g occurs at a temperature lower than
the CG transition temperature, in contrast to the case of the
correlation time. Nevertheless, the crossover temperature at
which &g and &g of finite L cross, tends to increase with
increasing L. If we roughly estimate the crossover length
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FIG. 19. The temperature dependence of the chiral and spin
correlation lengths for finite systems. The system size is L=16 and
20. The data are the same as those shown in Fig. 10, but not divided
by L here. The curves are polynomial fits of the data which are
extrapolated to lower temperatures to deduce the crossing tempera-
ture given in the text.

scale of finite systems by extrapolating the data of Fig. 19,
we tentatively get Ly=11 (L=16) and L, =14 (L=20).
These results are certainly not inconsistent with our estimate
of Ly =20 based on the behaviors of the SG order parameter,
the dimensionless correlation length &/L, and other quanti-
ties.

H. A and G parameters

We have also calculated the A and G parameters defined
in Sec. IV both for the CG and SG orders. In Fig. 20, the
temperature and size dependence of the A and G parameters
for the CG order, Acg and Gcg, is shown. Although the data
are rather noisy due to the large sample-to-sample fluctua-
tions, the A parameters of different L show a crossing and a
peak around the expected CG transition point 7/J=0.19, as
can be seen from Fig. 20(a). We note that the peak of the A
parameter near the transition temperature is also observed in
the short-range Ising SG’s (Ref. 46) and in the mean-field SG
models,*33* while, as shown in Fig. 21 below, no such a peak
appears in the A parameter for the SG order. With increasing
L, Acg stays nonzero below T, indicating that the CG or-
dered state is non-self-averaging. These findings combined
with the peculiar shape of P(g,) shown in Sec. V E suggest
that the CG ordered phase accompanies an RSB with a non-
self-averageness. For the corresponding G parameter, the
crossing is not so clear, as is shown in Fig. 20(b).

The temperature and size dependence of the A and G
parameters for the SG order, Agg and Ggg, is shown in Fig.
21. As shown in Fig. 21(a), the A parameter exhibits a cross-
ing, although the crossing temperature is located consider-
ably above T, for this range of L. One might be tempted to
interpret such a crossing of Agg as unambiguous evidence of
the occurrence of the standard SG transition. However, one
has to be careful here: Although the crossing of Agg is cer-
tainly a signature of some sort of phase transition occurring
there, it does not necessarily mean the occurrence of the
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FIG. 20. The temperature and size dependence of the A param-
eter of the chirality [upper figure (a)] and of the G parameter of the
chirality [lower figure (b)].

standard SG transition characterized by a nonzero SG order
parameter. A nonzero Agg persisting in the L—oc limit sim-
ply means that the SG order parameter q(SG, or the SG sus-
ceptibility )(SG—NqSG, is non-self-averaging. Below the CG
transition temperature, one expects that the SG order param-
eter is still Gaussian distributed around zero with a width
corresponding to the finite SG susceptibility ysg, while the
width exhibits sample-to-sample fluctuations leading to the
non-self-averaging ysg. The latter is a natural consequence
of the phase-space narrowing which should inevitably ac-
company the CG transition with one-step-like RSB. Hence,
the crossing of Agg and a finite Agg remaining in the L— o0
limit below T are compatible with the absence of the stan-
dard SG long-range order, which is entirely consistent with
the CG transition not accompanying the standard SG long-
range order.

As shown in Fig. 21(b), the G parameter of the spin ex-
hibits a crossing around T¢g. The relation, Eq. (24), com-
bined with our observation in Fig. 3(b), indicates that Ggg
also takes a nonzero value below Tcg. Thus, the observed
crossing of Ggg is just as one expects for the CG transition.
In other words, one cannot interpret the crossing of Ggg as
an indicator of the onset of the standard SG long-range order.
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FIG. 21. The temperature and size dependence of the A param-
eter of the spin [upper figure (a)] and of the G parameter of the spin
[lower figure (b)].

VI. DISCUSSION

In this section, in view of our MC results presented in the
previous section, we wish to examine and discuss the recent
numerical studies of the 3D Heisenberg SG. Many of these
studies suggested, contrary to our present study, that the spin
and chirality ordered simultaneously at a finite temperature
with a common correlation length exponent vgg=vcg—i.c.,
no spin-chirality decoupling in the 3D Heisenberg
SG.16:18-20.39.47 Below, we wish to make some comments on
these numerical works from the standpoint of the spin-
chirality coupling-decoupling picture.

A. Stiffness method

First, we wish to discuss the analyses based on the stiff-
ness method.!®!748 In this method, one computes by some
numerical means the change of the ground-state energy of
finite systems of size L under the appropriate change of
boundary conditions imposed on the system. This energy is
called a stiffness energy (or a domain-wall energy) AE;,
which gives a measure of an energy scale of low-energy
excitations of size L. For large L, AE; is expected to behave
as a power law, AE, =L’ @ being a stiffness exponent. If
<0, the system remains in the disordered state at any non-
zero temperature, whereas if 6>0, the system possesses a
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finite long-range order at low enough temperatures with 7.
>0. Here, we discuss this method first in conjunction with
the detection of the standard SG order, leaving the detection
of the CG order later.

The nontrivial part of this stiffness method concerns with
the choice of the boundary conditions employed in comput-
ing the stiffness energy. There could be various choices, and
the behavior of AE; might in principle depend on these
choices particularly for small sizes accessible in numerical
simulations. The most standard choice is the combination of
the periodic and the antiperiodic boundary conditions (P-
AP). In the case of the Heisenberg SG, the P-AP combina-
tion necessarily accompanies a flipping of the chirality (re-
member that the chirality of the Heisenberg spin is odd under

the spin inversion S——S), so that the P-AP combination
should detect the chiral order for large enough L.° In order to
detect the standard SG order independently of the CG order
by this stiffness method, Ref. 9 introduced the “rotation”
boundary conditions (ROT), which imposed a r rotation on
the boundary spins without flipping the chirality, which was
combined with the standard P boundary conditions in calcu-
lating the stiffness energy.” Such a P-ROT combination ap-
plied to the 3D Heisenberg SG yielded a negative 6—i.e.,
6~ —0.51 for the Gaussian coupling and 8~ —0.49 for the +/
coupling—which implied the absence of the standard SG
order at nonzero temperature.’

By contrast, Matsubara, Endoh, and Shirakura proposed a
different choice of boundary conditions in computing
AE;—i.e., to use the free (open) boundary conditions as a
reference and impose the rotational twist to such “optimized”
spin configurations obtained under the free boundary condi-
tions in which the stress at the boundary is released.'®!’
These authors observed that the stiffness exponent evaluated
in this way was largely positive, close to the spin-wave ex-
ponent =1, and argued that the 3D Heisenberg SG exhib-
ited a finite-temperature SG transition. The method, similar
in spirit to the one used in Refs. 16 and 17, was also applied
to the XY SG by Kosterlitz and Akino,*® leading to a similar
conclusion. Thus, the result obtained by applying the free—
twisted-free (F-TF) boundary conditions >0, implying
Tsg>0, is in sharp contrast to the result obtained by apply-
ing the P-ROT boundary conditions <0, implying T55=0.
A discrepancy between the stiffness exponents evaluated by
the different choices of boundary conditions was also ob-
served in other SG models—e.g., in the 2D Ising SG.*

Although the authors of Refs. 16 and 17 argued that their
“optimized” boundary conditions were superior to the other
choices, a theoretical basis of such a claim seems not so
obvious. For example, one might make the following coun-
terargument that one should not optimize the boundary con-
ditions in calculating AE;: In the spirit of the domain-wall
renormalization-group (RG) idea by Bray and Moore,
AE(L) represents an energy scale associated with the inter-
action between the coarse-grained blocks of size L in an
infinite SG sample. Since these blocks are necessarily subject
to the strong frustration effect caused by the interaction with
the neighboring blocks surrounding them, an optimization of
their energy, independently at each block ignoring the inevi-
table frustration effect due to the interaction with the neigh-
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boring blocks, is hardly compatible with the original RG
idea. One may thus argue that, in calculating AE; in SG’s,
one should not make the optimization of boundary condi-
tions referring to the particular bond realization of each
sample.

Concerning the apparent difference of the stiffness expo-
nents arising from the different choices of boundary condi-
tions, there generally exist two possibilities: Either (i) the
observed difference is a finite-size effect where there is a
single stiffness exponent for large enough lattices indepen-
dent of applied boundary conditions or (ii) the observed dif-
ference is a bulk effect which persists even in large enough
lattices. In the case of the 2D Ising SG, Carter, Bray, and
Moore numerically observed that, although both the P-AP
and F-TF boundary conditions yielded the same stiffness ex-
ponent asymptotically for large L—i.e., possibility (i)
above—the finite-size effect was much reduced in the P-AP
than in the F-TE*® For vector SG’s, there so far exists no
convincing evidence which of the above (i) and (ii) is really
the case. In any case, a practical question we are faced with
is which set of boundary conditions gives a true asymptotic
answer from smaller sizes accessible in simulations.

One plausible criterion might be that, among all possible
excitations in the system, the one giving the lowest excita-
tion energy AE; or, equivalently, the one giving the smallest
stiffness exponent # should be chosen. The reason is simply
because among all possible excitations the one with the low-
est excitation energy should be the most efficient in destroy-
ing the order as long as it has non-negligible weight in the
thermodynamics and would dominate the low-energy dy-
namics of the model. Under this criterion, when the different
choices of boundary conditions yield different 6 values, the
one giving the smallest 6, or the most negative 6, should be
chosen. In particular, when one set of boundary conditions
yields a positive § while the other yields a negative 6, the
one giving a negative 6 should be chosen. If so, in the case of
the 3D Heisenberg SG of our interest, the P-ROT combina-
tion without any optimization procedure should be chosen
since it gives the lowest # (negative 6) reported so far.’ This
suggests that the standard SG order in the 3D Heisenberg SG
occurs only at 7=0. Of course, it is still possible that some
other type of boundary conditions might yield a still smaller
6, but it does not change the conclusion that the SG order
occurs only at 7=0.

It should also be remembered that the types of low-energy
excitations generated via a particular choice of boundary
conditions are only elements of a subset of all possible exci-
tations in the system: They are basically wall-like excita-
tions, not including more complex excitations like, say, a
“vortex” excitation which is possible in the Heisenberg SG
reflecting the SO(3) nature of its order parameter space’! or a
“sponge” excitation which is closely related to the RSB
structure of the ordered state.”>>? Unfortunately, we have
little knowledge concerning what is the most relevant low-
energy excitation governing the ordering of the system and,
hence, have no well-based criterion to choose one set of
boundary conditions from the others as superior. Although
we feel that our argument above speaks for a zero-
temperature SG transition in the 3D Heisenberg SG, it would
be fair to say at present that no definitive conclusion can be
drawn solely based on this stiffness method.
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We finally wish to refer to the stiffness method in detect-
ing the chiral order. As mentioned, since the sign of the
chirality is flipped by changing the boundary conditions from
P to AP, the most standard P-AP combination could be used
in detecting the chiral order, at least for large enough L. In
practice, however, the application of the reflecting (R)
boundary is more efficient in detecting the chiral order, as
shown in Ref. 9. The chiral stiffness exponent of the 3D
Heisenberg SG determined in this way turned out to be posi-
tive, implying a CG transition occurring at a nonzero
temperature.’ Other authors also reported a positive value for
the chiral stiffness exponent both for the 3D XY SG (Ref. 48)
and the 3D Heisenberg SG (Ref. 17).

B. Equilibrium dynamics

Matsubara, Shirakura, and Endoh reported further evi-
dence of the simultaneous spin and chiral transition in the 3D
Heisenberg SG by investigating the equilibrium spin
dynamics.'® In order to eliminate the effect of global spin
rotations inherent to finite systems, Matsubara et al. intro-
duced an artificial global-rotation correction in the spin dy-
namics of the model. They observed that the modified spin
autocorrelations adjusted by the global-rotation correction
exhibited at lower temperatures a tendency to approach a
nonzero value at longer times, which was interpreted as an
evidence of a finite SG long-range order.

It should be noticed here that, when one looks at a quan-
tity which is even under the symmetry transformation of the
Hamiltonian like the modified spin autocorrelation function
of Ref. 18, one needs to examine its size dependence care-
fully. As is well known, an even quantity in finite systems
always takes a nonzero value even above T. due to the finite-
size effect, where this nonzero value decreases with the size
L, eventually vanishing as L—o0 above T.. (Indeed, in an
extreme occasion of a single spin, the modified spin autocor-
relation function as computed by Matsubara et al. does not
decay at all even at an infinite temperature.) The ordering
behavior of the modified spin autocorrelation as observed by
Matsubara et al. might possibly be caused by the finite-size
effect. In order to refute such suspicion, one needs to study
its size dependence carefully, whereas the analysis of Ref. 18
was limited to a fixed size L=16.

It should be stressed that, even within the spin-chirality
coupling-decoupling scheme, it is still possible that the spin
autocorrelation function C,(7) of an infinite system exhibits
below T a humplike weak structure at short times as illus-
trated in Fig. 2, which is an echo of the plateaulike structure
of the chiral autocorrelation function. In the temperature
range Ty <T<Tcg, such a hump of C,(z) appears only at
times shorter than the crossover time scale 1y (¢, was esti-
mated to be 7, =~ 10°—~10° above T¢), while C,(¢) eventually
decays at long enough times > ¢, Indeed, as was shown in
the inset of Fig. 13, such a humplike weak structure of the
spin autocorrelation was discernible in our present data of
C,(1) at short times =102, which, however, eventually de-
cayed toward zero at longer times.

Berthier and Young also observed in their recent off-
equilibrium simulation of the 3D Heisenberg SG a weak
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humplike structure in the spin autocorrelation in the time
range ¢= 10*, which corresponded to the quasiequilibrium
regime.*’ These authors interpreted the observed hump as
evidence of a nonzero SG long-range order at that tempera-
ture. As noted above, however, such a hump is also consis-
tent with the the spin-chirality coupling-decoupling picture
as long as the hump is observed only at shorter times <<t.

C. Nonequilibrium dynamics

Nakamura and Endoh applied a nonequilibrium method to
study the SG and CG orderings of the 3D +J Heisenberg
SG.'? Analyzing the time dependence of the initial growth of
the SG and CG susceptibilities with use of a dynamical scal-
ing, these authors concluded that the spin and chirality or-
dered simultaneously at a finite temperature 7/J
=0.21-0.22. While the lattice size studied L <59 was rather
large, the crucial question to be addressed is whether the
long-time limit r— o was safely taken, justifying the use of
the dynamical scaling. In other words, although the nominal
lattice size studied was large, the equilibrated length scale
actually probed in these off-equilibrium simulations might be
rather short. In fact, their nonequilibrium method is uncon-
trolled time scale toward equilibrium. Since the equilibration
time could easily become a huge number in SG’s, care has to
be taken as regards the equilibrated length scale actually
probed by this type of nonequilibrium simulation. As one
judges from the maximum values of the SG and CG suscep-
tibilities reached by the off-equilibrium simulation of Ref.
19, the “dynamical correlation length” still remained rather
short: Namely, even around the transition temperature
Tcg/J=0.2, it reached around ten lattice spacings for the
spin and only one or two lattice spacings for the chirality.
The dynamical chiral correlation length stayed particularly
short. This is consistent with a recent off-equilibrium simu-
lation by Berthier and Young in which the dynamical chiral
correlation length stayed much shorter than the dynamical
spin correlation length in the investigated time range.*’ Here
note that, irrespective of the question of whether the CG
transition accompanies the simultaneous SG transition or
not, the chiral correlation length in equilibrium should di-
verge at and below the CG transition temperature Tcg/J
=().2. Hence, the observation above simply tell us that, even
at the maximum simulation time of Refs. 19 and 47 the sys-
tem still stayed in an extreme initial time regime. In order to
deduce the equilibrium ordering properties from these off-
equilibrium data, one is forced to extrapolate the behavior
around écg~1 to §-g=2, which could be dangerous in the
present model since the model might possess the character-
istic crossover length scale at around 20.

One may feel that the dynamical spin correlation length
reached in the off-equilibrium simulation of Ref. 19, £é= 10,
might be reasonably large for deducing the ordering proper-
ties of the spin. However, we feel it is not enough. This
length scale of 10 is still not large enough compared with the
crossover length scale estimated in the present work, Ly
~20. Remember that the spin-chirality decoupling, if any, is
a long-scale phenomena observable at length scales longer
than L. Second, in the off-equilibrium simulations of Refs.
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19 and 47, even when the dynamical SG correlation length
grows around ten lattice spacings, the Z, chiral degree of
freedom was not equilibrated at all at this length scale, in
sharp contrast to the fully equilibrated simulation as was
done in the present paper. In other words, at the length scale
of ten lattice spacings, the chiralities are little thermalized
and are virtually frozen in a nonequilibrium pattern, while
only the SG correlation grows modestly in such a nonequi-
librium chiral environment. After all, however, we have to
understand the spin dynamics at long enough length scales at
which the Z, chiral degree of freedom is also fully thermal-
ized. Thus, the spin dynamics as observed in the off-
equilibrium situations of Refs. 19 and 47 may not faithfully
represent the close-to-equilibrium critical dynamics of the
original model.

A similar dynamical simulation on the 3D +J Heisenberg
SG was performed by Matsumoto, Hukushima, and
Takayama.** They also made a dynamical scaling analysis,
taking the effect of global spin rotations into account. In this
study, the time scale toward equilibrium was controlled via
the analysis of the waiting-time dependence of the results. In
contrast to Refs. 19 and 47, Matsumoto et al. suggested that
their data were consistent with a separate spin and chiral
transition—i.e., Tsg<Tcg.

Berthier and Young also argued that their observation that
the dynamical CG correlation length stayed shorter than the
dynamical SG correlation length presented evidence that the
spin, rather than the chirality, was the order parameter of the
transition.*” Some caution is required in drawing a final con-
clusion from this observation, though. Both the spin and
chirality length scales probed by the off-equilibrium simula-
tions of Refs. 19 and 47 are still shorter than the crossover
length estimated in the present paper, L, =20. Hence, within
the spin-chirality coupling-decoupling scenario, there still
exists a good possibility that the dynamical CG correlation
length eventually outgrows the dynamical SG correlation
length at longer times.

In Ref. 47, the aging phenomena were persistently ob-
served at lower temperatures, not only for the chirality, but
also for the spin, which was interpreted as evidence of the
occurrence of simultaneous spin and chiral transitions.*’
Again, this cannot be taken as an unambiguous indicator of a
finite-temperature SG transition, since the aging phenomena
could arise simply when the time scale of measurements be-
comes comparable to the longest relaxation time in the sys-
tem, which could be extremely long in SG even in the para-
magnetic phase. For example, in the 2D Ising SG, which is
known to exhibit no finite-temperature SG transition, clear
aging phenomena have been observed both in numerical
simulations®*> and in experiments.3®>’

D. Correlation length

In Ref. 20, Lee and Young calculated by means of equi-
librium simulations both SG and CG correlation lengths of
the 3D Heisenberg SG with the Gaussian coupling in the
range of sizes 4 <L =<12. Lee and Young observed a crossing
of the dimensionless correlation lengths &/L for different L
for both cases of the spin and chirality, and concluded that
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the spin and chirality ordered simultaneously at a finite tem-
perature 7/J=0.15. The behavior of £/L observed in Ref. 20
turned out to be quite different from that of some other di-
mensionless quantities—e.g., the Binder ratio—whereas Lee
and Young argued that the correlation length might be the
most trustable quantity to look at. Generally speaking, how-
ever, £/L is also subject to significant finite-size effects,
sometimes no better than other quantities.?’

We note that the numerical data of Ref. 20 are basically
consistent with our present data for smaller sizes L=< 12: See
Fig. 10(a). As emphasized in Sec. V D of our present paper,
however, the crossing behavior of the dimensionless SG cor-
relation length &g/L tends to change for larger lattices L
>12: The crossing becomes weaker and weaker, and &gg/L
of L=16 and that of L=20 do not quite cross with a finite
crossing angle as occurs for smaller lattices L=< 12, but in-
stead, merge almost tangentially and stay on top of each
other at lower temperatures: See Fig. 10(b). In contrast, the
dimensionless CG correlation length {-g/L of L=16 and that
of L=20 persistently exhibit a clear crossing. If such a ten-
dency continues for larger lattices, the crossing of &gg/L
might no longer occur for large enough lattices, at least at the
crossing temperature of &-g/L. We thus suspect that the
crossing behavior of &g/ L as reported in Ref. 20 might be a
transient “coupling” behavior expected at L<<L, =20.
Namely, within the spin-chirality coupling-decoupling
scheme, the SG correlation exhibits ordering behavior simi-
lar to the CG correlation at shorter length scales at which the
spin is coupled to the chirality, while at longer length scales
at which the spin is decoupled from the chirality, the SG
correlation eventually exhibits nonordering behavior differ-
ent from the CG correlation. Unfortunately, the largest lattice
size accessible by the present computational capability, L
=20, being only comparable to the crossover length for the
spin-chirality coupling-decoupling to occur, is still not large
enough to clear see this behavior. We do expect, however,
that the correlation lengths for larger lattices L>20 would
eventually exhibit a clear spin-chirality decoupling behavior.

We note that such a coupling-decoupling behavior of the
SG correlation length in smaller and larger lattices was in-
deed observed recently in the 2D Heisenberg SG.?* For the
2D Heisenberg SG with Gaussian coupling, Kawamura and
Yonehara calculated the dimensionless SG correlation length
&sg/L up to the size L=40 and found that &g/L for the
smaller sizes L=10,16,20 crossed almost at a common tem-
perature 7/J=0.022, disguising the occurrence of a finite-
temperature SG transition [see the inset of Fig. 6(a) of Ref.
24], while the data for the larger sizes L=30 and 40 data
eventually came down, no longer making a crossing at 7/J
=().022. The asymptotic nonordering behavior observed for
L>20 is consistent with a zero-temperature SG transition,
which has been well established in 2D.%2* Meanwhile, the
CG correlation length exceeds the SG correlation length at
around 7/J==0.022, which might naturally explain the rea-
son why &gg/L for smaller sizes L =20 exhibited a crossing
behavior. Anyway, this observation in 2D gives us a warning
that one should be careful in interpreting the crossinglike
behavior of &/L observed for smaller sizes as unambiguous
evidence of a true SG phase transition.
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E. Finite-size scaling of the order parameter

Matsubara et al. made a finite-size scaling analysis of the
SG order parameter q(szé for the 3D +J Heisenberg SG and
claimed that the quality of the scaling was much better when
ones assumed a nonzero SG transition temperature Tgg/J
=0.18 than a zero SG transition temperature Tgq/J=0.%
Their conclusion is in apparent contrast to that of our present
work based on a similar scaling analysis in Sec. V C. We
note that the quality of the finite-size scaling is sometimes
sensitive to the range of lattice sizes and the range of tem-
peratures used in the fit.

As already noticed in Sec. V C, this point could be par-
ticularly serious in the present model. In the spin-chirality
coupling-decoupling scheme, the SG and CG correlations are
trivially coupled at shorter length scale L=< L =20, so that
even the SG order parameter q(szc); would be scaled for smaller
sizes, assuming a simultaneous SG and CG transition, with
apparent (not true) SG pseudoexponents vig=7vcg and 1
+75e=(1+17cg)/3. Indeed, as was shown in Fig. 8, our
present data, particularly those of L=16, turned out to be
scaled reasonably well by assuming a simultaneous SG and
CG transition at 7/J=0.19, which we interpreted as a preas-
ymptotic pseudocritical behavior realized in the short-scale
coupling regime. Furthermore, the relation between 7¢g and
ngré mentioned above roughly holds at short length scales:
(14 7c6)/3~0.60 versus 1+75c~0.88 at T/J=0.19. At
longer length scales, however, the spin is eventually decou-
pled from the chirality. Then, if ones continues to put Tgg
=Tcg in the fit of q(szé, the good data collapse obtained for
smaller sizes would eventually deteriorate for larger sizes.
Indeed, as shown in Fig. 8, our L=20 data of q(SZG) showed
such a deviation expected for larger sizes.

Within the spin-chirality coupling-decoupling scheme, in
order to see the true asymptotic critical behavior of the SG
transition occurring at Tgg(<Tg), one has to enter into the
long-scale decoupling regime and well below the CG transi-
tion temperature—i.e., L=Ly~20 and T<T-5=0.2J. It
should be noticed that, in their scaling fit of q(szé, Matsubara
et al. included the data points for smaller sizes L=5,7,9,
etc., which are expected to lie in the short-scale coupling
regime, as well as the data points at temperatures above Tcg
which might lie outside the asymptotic critical regime of the
SG transition. Hence, the poor scaling reported by Matsubara
et al. with assuming T55=0 might simply be due to the fact
that the data points used in the fit are not in the correct
asymptotic regime.

By contrast, we have observed that, if we use the data
points only of larger lattices L= 16 and only at temperatures
below Tg, the data were scaled reasonably well even with
assuming Tsg=0: See Fig. 9. Therefore, we believe that there
still exists a good possibility that the SG order occurs only at
T=0 as has widely been believed in the community, although
it is also quite possible that it occurs at a low but nonzero
temperature, 0 <Tgg<Tcg.

As discussed in some detail above, any of the recent
works claiming the simultaneous spin and chiral transitions
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in the 3D Heisenberg SG appear not conclusive. As far as the
authors are aware, all of these observations are consistent
with the spin-chirality coupling-decoupling scheme with a
crossover length scale of 20 lattice spacings and a crossover
time scale of 10°—10° MCS. Rather, we believe that some of
the observations reported in the present paper give strong
numerical support that the SG transition indeed occurs at a
temperature below the CG transition temperature—i.e., Tgg
< TCG.

VII. SUMMARY

In summary, we studied the equilibrium properties of the
three-dimensional isotropic Heisenberg spin glass by means
of extensive MC simulations. We presented evidence of a
finite-temperature CG transition without accompanying the
conventional SG order through the observation of various
physical quantities including the order parameters: equilib-
rium static and dynamic correlation functions, Binder param-
eters and overlap-distribution functions, etc. Our conclusion
is in contrast to some of the recent numerical studies on the
same model, which claimed simultaneous SG and CG tran-
sitions. We have pointed out that the crossover length scale
and the crossover time scale associated with the spin-
chirality coupling and decoupling are crucially important in
properly interpreting the numerical data. Around the CG
transition temperature, these length and time scales are
roughly estimated to be 20 lattice spacings and 10°—10°
MCS, respectively. Below these length and time scales, the
spin is trivially coupled to the chirality so that the spin-
chirality decoupling—i.e., the SG disorder—is difficult to
observe. This might give a natural interpretation of the dis-
crepancy between our present result and the observation of
simultaneous SG and CG transitions by some other authors.

Rather, it appears to the authors that our present data for
larger L are hard to understand based on the standpoint of the
simultaneous spin and chiral transitions. Hence, while simu-
lations on still larger lattices with L>20 are required to
settle the issue, our present data give some support to the
spin-chirality decoupling scenario for the 3D isotropic
Heisenberg spin glass.
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