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Following a brief discussion on electromagnetic multipole expansion, we provide a link between several
multipole moments and the measurable quantities of some x-ray spectroscopies, like resonant x-ray scattering
or dichroism in absorption. A general classification is given, accompanied by some specific examples and a
geometrical interpretation of the axial toroidal �nonmagnetic� quadrupole, related to the x-ray natural circular
dichroism. Finally, in order to provide a physical example for the detection of magnetic parity-odd multipoles,
like the toroidal moment, we perform a numerical simulation for x-ray nonreciprocal directional dichroism, at
the Fe K edge, in the polar ferrimagnet GaFeO3. Our calculations describe quite well the reported experimental
profile, with the correct order of magnitude for dichroism/absorption intensity ratio and a signal which is
limited to pre-edge.
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I. INTRODUCTION

Multipole expansion of electric and magnetic fields gen-
erated by fixed charges and permanent currents is a widely
used tool to characterize the electromagnetic state of a physi-
cal system.1 For example, for a charge distribution ��x�� in a
given external potential field ��x��, whose electrostatic en-
ergy is WE=�d3x��x����x��, one can exploit the well-known

expansion: WE=q��0�−d� ·E� − 1
6�ijQij��Ei /�xj��0�+…. Here

�0� is some properly chosen origin, and E� =−�� �. Such an
expansion shows how the external field couples with the
various multipoles of the charge distribution: the potential

with the charge q, the electric field with the dipole d� , the
gradient of the field with the quadrupole Qij �3xixj −r2�ij,
and so on. A similar expansion holds also for the vector
potential. In this case there is no monopole term, of course,

and the magnetic energy is: WM =�d3xJ��x�� ·A� �x��. However,

due to the vector character of the current density J� and the

potential A� , it is often useful to decompose them, before
exploiting the expansion, in a longitudinal �rotor-free� and a

transversal �divergenceless� part: J� =J��+J�. As �� ·J� =�� ·J��

�−�t�, then the longitudinal J�� is related to the time deriva-
tive of the charge multipoles. On the other side, the solenoi-

dal field J�� is characterized by two independent families of
moments, and can be written, in the Helmholtz-Debye rep-

resentation, as: J��= l���x��+�� � �l���x���, where l� is the orbital
angular momentum and ��x�� and ��x�� are a scalar and pseu-
doscalar function, respectively. The first vector describes the
toroidal currents �flowing along the parallels on a sphere�,
and the second the poloidal currents �flowing along the me-
ridians on a torus�. Toroidal currents are widely used, e.g., in
the physics of electron plasma. Following Ref. 2, we define
the magnetic multipoles of the two families in terms of the
orbital angular momentum; when also spin quantities play a

role, it is sufficient to consider the substitution l�→ l�+gss�,
where gs is the spin giromagnetic ratio. Then we have

�a� Magnetic moment: m� = �e /2m�l�=	Bl�;
�b� Magnetic quadrupole: mij =	B�xilj + lixj�;
�c� Magnetic �polar� toroidal moment: t�= ��x� �m� �d3x;
�d� Magnetic toroidal quadrupole: tij =xitj + tixj.

Notice that the magnetic toroidal moment is known in
high-energy physics as anapole.3 A simple geometrical image
of t� is a closed circle of elementary magnets m� joined to each
other. By analogy with this image, one can define a similar
quantity,4 by replacing m� with the electric dipole d� . Then we
get

�e� Axial toroidal moment: g� = ��x� �d��d3x;
�f� Axial toroidal quadrupole: gij =xigj +gixj.

These moments are scalarly coupled with the correspond-
ing fields in the following way: m� and mij couple, respec-
tively, with the magnetic field B� and its gradient �iBj; mag-
netic toroidal moment t� and quadrupole tij couple,
respectively, with the time-reversal �T̂� odd and inversion �P̂�
odd vector E� �B� and its P̂-even gradient �i�E� �B� � j; finally,
axial toroidal moment g� and quadrupole gij couple with the
T̂-even and P̂-even vector E� �B� �E� ·B� � and its P̂-odd gradient

�i�E� �B� � j�E� ·B� �. In order to have nonzero toroidal moments
and quadrupoles, the symmetry of the crystal must be subject
to special conditions: in fact, �c� is T̂ and P̂-odd, �d� is T̂-odd
and P̂-even, �e� is T̂ and P̂-even, and �f� is T̂-even and P̂-odd.
Remarkably, in a polarized system, the interaction of the di-
pole g� with the fields E� ,B� is possible also at a lower order
and in the absence of a net magnetization: the corresponding
free-energy is F
g� · �D� �E� �, where D� is the �local or global�
polarization of the system.2 The knowledge of electric and
magnetic multipoles of both parities under space inversion
and time reversal can be of great importance in order to
understand the electromagnetic behavior of the material: the
possibility to use any of these multipoles as an order param-
eter in phase transitions has been analyzed, e.g., in Ref. 2.

The aim of this paper is to show how it is possible to
detect most of the previous multipoles by means of resonant
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x-ray spectroscopies. In Sec. II we shall explicitly write the
one-to-one correspondance of each multipole with the mea-
surable quantities in resonant x-ray scattering �RXS� and di-
chroism in absorption. In particular, the results of x-ray natu-
ral circular dichroism5 �XNCD� is interpreted as a measure
of the nonmagnetic toroidal quadrupole of the system, gij,
contrary to what is presently believed.6 Finally, in Sec. III we
perform a calculation to describe the results of a recent non-
reciprocal dichroism experiment, called x-ray directional di-
chroism, in the polar ferrimagnet GaFeO3.7 The physical
quantities involved in such a dichroism are shown to be a
mixture of magnetic quadrupole, toroidal magnetic moment
and octupole, i.e., quantities resulting from dipole-
quadrupole �E1–E2� interference which are parity and time-
reversal odd.

II. MULTIPOLAR TERMS IN RXS AND ABSORPTION

Core resonant spectroscopies are described by the virtual
processes that promote a core electron to some empty energy
levels. They all depend on the transition matrix elements of
matter-radiation interaction

Mng
i�o��j� = 	�n
Ôi�o�
�g�j�� , �1�

where, in the x-ray regime, the operator Ô is written through
the multipolar expansion of the photon field up to electric
dipole �E1� and quadrupole �E2� terms8

Ôi�o� = ��i�o� · r��1 − 1
2 ik�i�o� · r�� . �2�

In Eq. �1�, �g�j� is the core ground state centered around
the jth atom and �n the photoexcited state, whereas in Eq.
�2�, r� is the electron position measured from the absorbing
ion, ��i�o� is the polarization of the incoming �outgoing� pho-
ton and k�i�o� its corresponding wave vector. In RXS the glo-
bal process of photon absorption, virtual photoelectron exci-
tation and photon re-emission, is coherent throughout the
crystal, thus giving rise to the usual Bragg diffraction condi-
tion

F = �
j

eiQ� ·R� j�f0j + f j� + if j�� . �3�

Here R� j stands for the position of the scattering ion j ,Q� is
the diffraction vector and f0 is the usual Thomson factor. The
resonant part, f j�+ if j�� f j, is the anomalous atomic scattering
factor, given by the expression9

f j��� =
me

2

1

�
�

n

�En − Eg�3Mng
o*�j�Mng

i �j�

� − �En − Eg� − i
�n

2

, �4�

where � is the photon energy, me is the electron mass, Eg is
the ground state energy, and En and �n are the energy and
inverse lifetime of the excited states. The sum is extended
over all the excited states of the system.

The connection with x-ray near edge absorption
�XANES� is straightforward, as its cross-section � simply

corresponds to the imaginary part of f j��� when Ôo= Ôi �for-
ward scattering�

� = − 4� · 1022a0
2�3mec

2

�
f�. �5�

Here a0 is the Bohr radius, � is the fine structure constant,
c is the speed of light and the prefactors are such that � is in
Mbarn when f� is in units of the classical electron radius,
r02.82�10−15 m.

The matrix element in Eq. �1� depends only on the elec-

tronic part of the operator Ô, so that the radiation parameters
�̂ and k� can be factorized out. It is then possible to
demonstrate10,11 that the RXS amplitude, Eq. �4�, as well
as XANES cross section, Eq. �5�, can be expressed as
scalar product of two irreducible tensors, f j���
=�p,q�−�qTq

�p�F−q
�p��j ;��, where Tq

�p� depends only on the inci-
dent and scattered polarization and wave vectors, while Fq

�p�

��j ;�� represents the properties of the system under study.
It is well known from the literature �see, e.g., Refs. 12–14, or
Ref. 15, for a treatment in cartesian basis� that the rank p of
these irreducible tensors depends on the order of the multi-
poles in the electromagnetic field expansion, Eq. �2�: for ex-
ample, in the E1–E1 channel p=0, 1, 2, in the E1–E2 chan-
nel p=1, 2, 3 and in the E2–E2 channel p=0, 1, 2, 3, 4.
Moreover, for each p , Fq

�p��j ;�� is related to a specific
term of the multipolar expansion of the system, according to
Table I.

For p=0,1 ,2 , E1–E1 and E2–E2 tensors represent the
same physical quantities, though referred to states with dif-
ferent angular momentum. The identification illustrated in
the table is dictated by the unique properties under time re-
versal and parity reflections of F�p� tensors on one side and
multipole terms on the other. In fact, for any given tensor
rank p=1, 2, 3, 4, there is just one electromagnetic
multipole of the same rank �1→dipole,2→quadrupole,

3→octupole,4→hexadecapole� with the same T̂ and P̂

properties. Notice that P̂-odd E1–E2 tensors have both

T̂-odd �−� and T̂-even �+� terms for any p,14 while P̂-even

tensors �both E1–E1 and E2–E2� are T̂-odd if of odd rank

and T̂-even if of even rank.

TABLE I. Parity and time-reversal symmetries of Fq
�p�

tensors.

Tensor T̂ P̂ Multipole

F�0��E1–E1� + + Electric charge

F�1��E1–E1� − + Magnetic dipole

F�2��E1–E1� + + Electric quadrupole

F�1+��E1–E2� + − Electric dipole

F�2+��E1–E2� + − g� quadrupole

F�3+��E1–E2� + − Electric octupole

F�1−��E1–E2� − − Polar toroidal dipole

F�2−��E1–E2� − − Magnetic quadrupole

F�3−��E1–E2� − − Polar toroidal octupole

F�3��E2–E2� − + Magnetic octupole

F�4��E2–E2� + + Electric hexadecapole
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As each F�p� is scalarly related to a corresponding T�p�,
they have the same T̂ and P̂ properties. For example, in the
E1–E1 or E1–E2 channels, T�0�� �̂o* · �̂i is a scalar and T�1�

� �̂o*��̂i is a T̂-odd and P̂-even vector. Analogously, in the
E1–E2 channel, the previous quantities combine with the
two P̂-odd vectors k�i+k�o, which is T̂-odd, and k�i−k�o, which
is T̂-even �see, e.g., Ref. 16 for a more complete analysis of
this case�.

Up to now, we have deliberately avoided the question of
whether the local density of the tensors probed by this spec-
troscopy has anything to do with the properties of the ground
state, which we are interested in. At first sight, the presence
of the core hole in the final state would be prone to give a
negative answer to this question, and yet, the wide success of
sum rules for magnetic circular dichroism17 seems to prove
the contrary. Moreover, in Ref. 14 in the framework of mul-
tiple scattering theory, it was demonstrated that these spec-
troscopies are sensitive to the expectation values of some
tensor operators in the scattering states at the energy of the
measurement, so that, by integrating over a specific edge,
sum rules can be recovered.18 Thus, in the following we
assume that we may refer to the values of the multipoles in
the ground state.

The sum rule related to K edge magnetic circular dichro-
ism is well known:17 in the E1–E1 channel, the dichroic

signal is proportional to the orbital magnetic moment l� pro-
jected along the photon wave vector. Similarly, in the E1–E2
channel, XNCD was found to be sensitive to the mean value
of the tensor F�2+��E1–E2�.5 It is interesting to note that this
latter has been interpreted in the past6,11,16 as the expectation
value of the physical quantity 	lztz�, while from the previous
table it comes out that this term measures the quadrupole of
g� , which is time reversal even and parity-odd. Quantitatively,
the former identification is not incorrect, as the expectation
values of the operators 	lztz� and 	rzgz� between states with
�l= ±1 are proportional to each other. However, from the
physical point of view it seems rather singular that a non-
magnetic quantity like XNCD be related to the expectation

value of two magnetic terms like t� and l�. It is now clear that
lztz is nothing but an effective operator representing the g�
quadrupole when averaged between states differing by one
unit of angular momentum. Therefore, it is the g� quadrupole
that measures the rotatory power in XNCD and RXS spec-
troscopies.

A simple geometrical model that may help in the visual-
ization of such a term can be constructed as follows. Con-

sider any local structure with Ĉ3 symmetry, like V3+ ions in
corundum V2O3 or I5+ ions in �-LiIO3. Such structures can
be seen from the threefold axis as superpositions of a trigo-
nal distortion �D3d local symmetry� and a relative threefold
twisting of the oxygens “above” and “below” the cation, as
shown in Fig. 1. In particular, Fig. 1�a� represents the un-
twisted situation, where the local symmetry is not lower than
C3v and no local F�2+��E1–E2� term is allowed, as forbidden
by the vertical mirror plane �see, e.g., Ref. 11�. In Fig. 1�b�,
the arrows show the local displacement of the oxygens fol-
lowing a rotation about the �111� axis, which reduces the
symmetry to C3: if, in first approximation, we consider the d

orbitals as frozen, this induces a local polarization around the
oxygens as shown by the charge positions in Fig. 1�c�. This
orbital polarization is in turn equivalent to the electric dipole
configuration, drawn in Figs. 1�c� and 1�d�, with a net rota-
tion, oppositely oriented above and below the cation ion. As
depicted in Fig. 1�d� such a configuration is equivalent to a
couple of g� dipoles with opposite direction, in this way cre-
ating a quadrupole gij. Notice that when we relax the ap-
proximation of frozen orbitals, only an actual calculation can
tell us whether the polarization still persists or not: a poste-
riori this is confirmed by the signals obtained through nu-
merical ab initio simulations in Refs. 5 and 11.

These same quantities are detectable also by means of
RXS, where the local transition amplitudes are added with a
phase factor that can compensate the possible vanishing ef-
fect due to the global symmetry, as shown in Ref. 11 for the
quadrupole of g� in the corundum phase of V2O3 and, e.g., in
Ref. 19 for the magnetic moment in the antiferromagnetic
insulating phase of V2O3.

Thus, simply on the basis of their P̂ and T̂ properties
shown in Table I, it follows that three of the four basic vec-

tors �d� , m� , and t�� are detectable, while g� is not, as there is no

rank-one tensor which is P̂ and T̂-even. Similarly, it is not
possible to detect with these techniques the magnetic toroidal

quadrupole tij, as there is no rank-two tensor which is P̂-even

and T̂-odd.
In conclusion, x-ray spectroscopies allow us to gain infor-

mation about the following set of electromagnetic multipoles
�the first five are parity-even, E1–E1 or E2–E2, the latters
parity-odd, E1–E2�:

�1� Charge, expressed by F�0�. This is usually the stron-

FIG. 1. �Color online� Schematic description of the formation of
the g quadrupole. The local structure of corundum V2O3 is consid-
ered. The mechanism is explained in the text. The full circle indi-
cates the V ion and the empty ones represent the oxygens. The �111�
direction is perpendicular to the plane of the figure in �a�, �b�, and
�c� and p-like orbitals are depicted in �a� and �b�. Black arrows in
�c� and �d� represent electric dipoles. Dashed objects lie below the
V-ion plane.

DETECTION OF ELECTROMAGNETIC MULTIPOLES BY … PHYSICAL REVIEW B 72, 144406 �2005�

144406-3



gest contribution in both XANES and RXS. This term allows
us to prove �or disprove� the so-called charge ordering
through forbidden diffraction-peaks analysis �see, e.g., Ref.
20�. In fact, any modification of the atomic charge implies a
core level shift, and the measure of the energy shift of the
threshold allows us to obtain the total valence charge with a
good resolution.

�2� Magnetic moments �i.e., F�1��E1–E1�� have been
treated in a widespread context, due to the big success of the
“Carra-Thole-van der Laan” sum-rules.17

�3� Electric quadrupole �F�2��E1–E1�� is the biggest non-
magnetic anisotropic term, responsible, e.g., for structural
linear dichroism, as well as, in RXS signals, for the anoma-
lous Jahn-Teller and “orbital ordering” peaks in systems like
manganites.21

�4� Magnetic octupole �F�3��E2–E2�� was invoked in Ref.
22 to explain the anomalous RXS signal in NpO2 and was
proved to give a contribution in the anomalous magnetic
signal in V2O3.19,23

�5� Electric hexadecapole �F�4��E2–E2�� was detected in
�-haematite by Finkelstein and collaborators, as explained in
Ref. 10.

�6� Electric dipole �F�1+��E1–E2�� is observable by RXS
in antiferroelectric materials, like ErGe3 or VOMoO4.24

�7� Nonmagnetic �axial� toroidal quadrupole, as dis-
cussed above, was found with XNCD in �-LiIO3,5 and in
V2O3 by means of RXS.11

�8� Electric octupole �F�3+��E1–E2�� has been predicted
in Ref. 16 for K2CrO4 on the basis of symmetry arguments.

�9�–�10�–�11� Finally, magnetic toroidal moment
�F�1−��E1–E2�� and octupole �F�3−��E1–E2��, together with
magnetic quadrupole �F�2−��E1–E2�� have been found in the
anomalous magnetic signal of V2O3.19 Unfortunately, in this
latter case all three terms were entangled with the magnetic
octupole of E2–E2 origin, and it was not clear how to sepa-
rate one from the other. The possibility of disentangling the
three E1–E2 contribution has been demonstrated in Ref. 25
for Li2VOSiO4, where it was even shown how to extract
each single term separately, by means of a series of azi-
muthal scans. However, this was just a theoretical prediction,
not yet confirmed by an experiment. Of course, a much more
cogent test to demonstrate the detectability of such quantities
is represented by a convergent description of theory and ex-
periment. Such an experiment has already been performed
with a dichroic technique in absorption,7,27 and in the next
section we shall provide its quantitative interpretation in
terms of the three time-reversal and parity-odd quantities
F�1−��E1–E2�, F�2−��E1–E2�, and F�3−��E1–E2�.

III. X-RAY NONRECIPROCAL DIRECTIONAL
DICHROISM IN GaFeO3: ANALYTICAL

AND NUMERICAL CALCULATIONS

GaFeO3 is a piezoelectric crystal which was synthetized
by Remeika more than 40 years ago.27 Below about Tc
200 K,28 it also shows a spontaneous magnetization, with
magnetic Shubnikov group m‘2’m which is characterized by
an off-diagonal magnetoelectric susceptibility. A very large
linear magnetoelectric effect was reported by Rado.29 The

presence of both symmetric and antisymmetric parts in the
magnetoelectric susceptibility tensor makes possible the de-
tection of both nonreciprocal gyrotropy and magnetochiral
effects through x-ray dichroism in absorption �see, e.g., Refs.
14 and 30�. This possibility was realized in Ref. 7, in which
a beautiful experiment was performed under the name of
x-ray nonreciprocal directional dichroism �XNDD� whereby
a time-reversal and parity-odd signal was detected. Even
though we basically agree with the general interpretation
given by the authors of Ref. 7 itself, their analysis is just
semiquantitative and here we are able to provide a more
comprehensive description of the experiment, which can
frame the measured signal within the global picture de-
scribed above. The aim of this subsection is to relate the
XNDD signal to the dipole-quadrupole magnetic tensors
F�i−��E1–E2� �i=1,2,3� introduced above, discuss the physi-
cal meaning of each term, and substantiate the description by
calculating the XNDD through an ab initio numerical code.26

If we consider the crystal and magnetic structure given in
Ref. 31, the total absorption signal at iron K edge is obtained
as the average over the four Fe absorption sites in the unit
cell, ��� j=1,4��j�, where ��j� �Eq. �5��, can be expressed as

��j� = 4�2���
n


	�n
�j�
Ô
�g

�j��
2��� − �En − Eg�� �6�

According to Refs. 7 and 31, the unit cell is orthorhombic,
with an electric polarization along the screw b axis, and a net
magnetization, below Tc, along the c axis. In the experiment
performed in Ref. 7 four absorption spectra were measured,
all with the x-ray wave vector directed along the a axis: in
two cases the electric polarization was directed along the c
axis, and in two cases along the b axis. For each of these two
subcases, the magnetic moment was selected to be either
parallel or antiparallel to the easy c axis, by means of an
applied external magnetic field. We label them as
�c�H+� ,�c�H−� ,�b�H+� ,�b�H−�. The two measured dichroic
spectra are then defined as: �c��c�H+�−�c�H−�, and �b

��b�H+�−�b�H−�.
Before discussing the calculated numerical spectra, shown

in Fig. 2, we just push our analytical derivation as far as
possible, in order to demonstrate that the only quantities in-
volved in this kind of dichroism are the tensors
F�i−��E1–E2� �i=1,2,3�. First of all, from the definition of �c

and �b, it is clear that only magnetic terms can contribute to
the dichroism, as the structural absorption is the same for

both H± configurations. This selects just T̂-odd contributions.
It is convenient to choose the reference frame xyz in such a
way that the quantization axis z coincides with the direction
of the x-ray beam �the a crystallographic direction, in the
configuration of Ref. 7�, while x is directed along the electric
polarization �b axis� and y along the magnetic moment �c
axis�. Even though the usually chosen reference frame is the
one with the z axis along the magnetization,7 the frame con-
sidered here has the advantage that tensor properties acquire
their simplest form. In this frame the polarizations have com-
ponents �̂= �̂*= �1,0 ,0� for �b dichroism and �̂= �̂*

= �0,1 ,0� for �c dichroism. In both cases, parity-even mag-
netic terms of E1–E1 and E2–E2 origin do not contribute,
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because no one of the three Tq
�1−��E1–E1� and Tq

�1−��E2–E2�
or of the seven Tq

�3−��E2–E2� has a polarization dependence
of the kind ��

*k���k�.
Therefore the only allowed terms are time-reversal and

parity-odd E1–E2 terms. As all four Fe ions belong to
equivalent crystallographic positions, it is possible to relate
them to one another by means of symmetry operations, in
such a way that Eq. �6� can be rewritten as

� = �1 + T̂m̂z��1 + T̂Ĉ2x���1�, �7�

where T̂, m̂z, and Ĉ2x are, respectively, the operations of time
reversal, mirror orthogonal to z, and twofold axis along x.
These symmetry operations are intended to act on the Fq

�p�

tensors. As only time-reversal odd and inversion-odd quanti-

ties contribute and as m̂zFq
�p�= ÎĈ2zFq

�p�=−�−�qFq
�p� and

Ĉ2xFq
�p�= �−�pF−q

�p�,32 we finally get that the only allowed terms
are those of the kind: �1+ �−�q��Fq

�p�− �−�pF−q
�p��. Thus, XNDD

is sensitive to F0
�1�, F0

�3�, F2
�2�−F−2

�2�, and F2
�3�+F−2

�3�. It is inter-
esting to note that, separately, the first two terms �F0

�1� and
F0

�3�� were already identified as responsible for the magne-
tochiral dichroism �M�D� in Ref. 30, and the second two
�F2

�2�−F−2
�2� and F2

�3�+F−2
�3�� for the nonreciprocal gyrotropy

�NRG� in Ref. 14. Their contribution to XNDD can be writ-
ten as follows: �b=�M�D+�NRG and �c=�M�D−�NRG, where
�M�D
−��3/2�5�F0

�1�− �1/�10�F0
�3��	tz− 1

6 lz
2tz

� �Ref. 33�
and �NRG
1/�6�F2

�2�−F−2
�2��+ �1/�3��F2

�3�+F−2
�3���	�lx

2− ly
2�tz�

−c .c. This allows us to disentangle the two contributions as:
�M�D= ��b+�c� /2 and �NRG= ��b−�c� /2. A simple look at
the experimental results of Ref. 7 shows that the main con-

tribution comes from �NRG, as �b and �c are almost opposite;
however �M�D is not zero. Notice that the irreducible tensors
forming the M�D signal both belong to the �4 �T1, in Bethe’s
notation� representation of the cubic group, while those of
NRG belong to �5�T2�: the former is invariant under Ĉ4 ro-
tation, while the latter changes sign, since lx

2↔ ly
2. This is the

reason why they behave differently for b and c dichroism.
Finally, in order to provide a link with the kind of density

of states probed by the two dichroisms, we can evaluate the
expectation values of tz− 1

6 lz
2tz and �lx

2− ly
2�tz−c .c. and find:

�M�D
dxz
* px+dyz

* py −c .c. and �NRG
dxz
* px−dyz

* py −c .c.,
where d���p�� are the �complex� coefficients of orbitals of
d���p�� type in the wave function. This picture is in com-
plete agreement with the simpler analysis presented in Ref.
7: in fact, from the previous expressions for �NRG and �M�D,
we get, for b and c-dichroisms, �b
dxz

* px−c .c. and �c

dyz

* py −c .c., which correspond to the transitions shown in
their Fig. 4, mediated by the local polarization and spin orbit,
once the change in the axes labels is properly taken into
account. Notice, however, that the orbital occupancy ampli-
tude of empty states at pre-edge must be complex, in order to
have a magnetic effect �the expectation value of magnetic
operators on real orbitals is zero�. Remarkably, the tempera-
ture dependence reported in Ref. 7, while showing that the
XNDD signal follows the temperature profile of the magne-
tization, provides an indirect proof that polarization does not
depend on temperature, as the XNDD signal is linear in the
product of polarization and magnetization.

In order to substantiate these considerations, we have per-
formed a numerical simulation with the ab initio magnetic
code implemented in the fdmnes package.19,26 Our results
basically confirm the previous picture, as shown in Fig. 2:
the order of magnitude of the dichroism, slightly less than
10−2 of the absorption, correctly reproduces the experimental
data. Moreover, the signal is entirely limited to the pre-edge,
at the energy corresponding to the 3d density of states, where
hybridization of p and d orbitals is stronger: this latter seems
to be a general feature of transition metal oxides, as inferred
by other similar results.11,19,25

The agreement of our numerical simulation with experi-
mental data, though quite good concerning the above fea-
tures, is not completely satisfactory regarding the shape of
the signal, especially for �c dichroism. The reason is prob-
ably an overestimation of the M�D signal, and is due to the
fact that our numerical code is based on a single particle
approach and cannot take correctly into account correlation
effects, that are undoubtely strong in such a compound.
Similar features were present already in the interpretation of
RXS spectra in V2O3.19 In spite of this, the fact that we are
able to determine at least two of the main features of the
XNDD signal, like its energy range and the relative magni-
tude dichroism/absorption, reveal that the main component
of such a dichroism, i.e., the NRG part, is determined by the
crystal structure, which is correctly taken into account by our
independent particle approach.

IV. CONCLUSIONS

In the first part of the paper we give a general classifica-
tion, based on symmetry arguments, for various kinds of

FIG. 2. �Color online� Theoretical simulation of absorption
spectrum and XNDD. The inset shows the contribution of �NRG

alone �see Sec. IV�.
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spectroscopies, in order to relate the corresponding observ-
able quantities with each term of the electromagnetic multi-
pole expansion in the material under study. In particular, we
are able to interpret in this way x-ray natural circular dichro-
ism as a measure of the nonmagnetic g�-toroidal quadrupole,
whereas, in the previous literature,6 it was ascribed to the
operator lztz.

Moreover, we have performed a numerical simulation of
the absorption spectra of GaFeO3 to demonstrate the physical
mechanism behind the XNDD. In this respect, a comment is
required about the capability of our ab initio magnetic code
to deal with such tiny effects as the ones determined by
parity and time-reversal odd multipoles, even though it is
based on a single particle approach. As already stated above,
we are able to determine quite well two main features of the
XNDD signal, like its energy range and the relative magni-

tude dichroism/absorption. Moreover, as shown in the inset
of Fig. 2, the NRG component of the dichroism alone repro-
duces quite well the experimental signal, which is mainly
antisymmetric in the exchange �b↔�c, with a slight positive
offset. Such a positive offset, determined by the M�D part of
the signal is not well reproduced by our numerical simula-
tion. This seems to imply that the NRG term, roughly deter-
mined by the magnetic quadrupole of the system, is well
reproduced by our independent particle approach, and, there-
fore, can be mainly ascribed to an effect of the crystal struc-
ture, whereas the M�D component of the signal, which de-
pends on the magnetic toroidal moment and octupole, is
strongly affected by the electronic correlations and for
this reason is badly reproduced by our single particle
calculations.
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