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We study the critical behavior of a random field O�N� spin model with a second-rank random anisotropy
term in spatial dimensions 4�d�6, by means of the replica method and the 1/N expansion. We obtain a
replica-symmetric solution of the saddle-point equation, and we find the phase transition obeying dimensional
reduction. We study the stability of the replica-symmetric saddle point against the fluctuation induced by the
second-rank random anisotropy. We show that the eigenvalue of the Hessian at the replica-symmetric saddle
point is strictly positive. Therefore, this saddle point is stable and the dimensional reduction holds in the 1/N
expansion. To check the consistency with the functional renormalization group method, we obtain all fixed
points of the renormalization group in the large N limit and discuss their stability. We find that the analytic
fixed point yielding the dimensional reduction is practically singly unstable in a coupling constant space of the
given model with large N. Thus, we conclude that the dimensional reduction holds for sufficiently large N.
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I. INTRODUCTION

The random field O�N� spin model is one of the simplest
models with both a site randomness and a short range spin
correlation.1 Despite intensive research for about three de-
cades, our understanding of this model is not yet satisfactory
�for recent review, see Ref. 2�.

Dimensional reduction3 is one key to clarify the nature of
this model. Dimensional reduction claims that the critical
behavior of the d-dimensional random field O�N� spin model
is the same as of the �d−2�-dimensional pure O�N� spin
model, where d is the spatial dimension. It has been shown
by rigorous proofs4,5 and numerical calculations of critical
exponents6–9 that the prediction of dimensional reduction is
incorrect in the random field Ising model below four dimen-
sions. In dimensions more than 4, however, the critical phe-
nomena of the random field O�N� spin model should be fur-
ther studied. In particular, the breakdown of the dimensional
reduction and the possibility of an intermediate phase be-
tween the paramagnet and ferromagnet phasess are still un-
der controversy.

Mézard and Young considered the possibility of the glassy
phase by replica symmetry breaking.10 They dealt with the
random field O�N��4 model, and studied the critical behavior
by using the replica method and the self-consistent screening
approximation �SCSA�, which is a truncated Schwinger-
Dyson equation for a two-point correlation function. Under
the assumption of replica symmetry, the dimensional reduc-
tion appears and the critical exponents of the connected and
disconnected correlation functions � and �̄ satisfy �̄=�.

They showed that the replica-symmetric correlation function
was, however, unstable as a solution of the SCSA equation at
O�1/N�. They proposed a replica-symmetry-breaking corre-
lation function, where they found 2�� �̄. Following Mézard
and Young, the instability of the replica-symmetric solution
against replica symmetry breaking has been reported in sev-
eral papers.11,12 However, the physical meaning of the insta-
bility in the SCSA equation is still unclear.

Fisher and Feldman pointed out the breakdown of the
dimensional reduction due to the appearance of the infinite
number of relevant operators near four dimensions.13,14

Fisher showed that all possible higher-rank random anisotro-
pies are generated by the functional renormalization group
recursion relations for the O�N� nonlinear � model including
only the random field term. The random field and the random
anisotropies are marginal operators in d=4. Then he treated
the nonlinear � model with a random field and all the ran-
dom anisotropy terms, and calculated the one-loop beta func-
tion for a linear combination of them in d=4+� under the
assumption of replica symmetry. He showed that there is no
singly unstable fixed point of O��� which gives the results of
dimensional reduction, and that the flow goes into the regime
where nonperturbative effects are important. Therefore, he
concluded that the dimensional reduction breaks down at
least near four dimensions. Feldman carefully reexamined
the one-loop beta function obtained by Fisher. He treated a
differential equation as the fixed point condition and found
nonanalytic fixed points which control the critical phenom-
ena instead of the analytic fixed ones. He calculated the ex-
ponents � and �̄ for N=3, 4, 5 in 4+� dimensions numeri-
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cally; then he concluded that dimensional reduction breaks
down near four dimensions for several finite N.

These studies indicate the breakdown of dimensional re-
duction in the random field O�N� spin system. However, the
relation between the renormalization group and simple
1/N-expansion methods has never been discussed. Thus, it is
important to study the relation between the stability of the
replica-symmetric saddle point and the analytic fixed point in
the functional renormalization group for large N.

In this paper, we study the random field O�N� spin model
including random anisotropy by a simple 1/N expansion and
the functional renormalization group method. We study the
robustness or fragility of the system against the random
anisotropy perturbation. First, we study the stability of
the replica-symmetric saddle point in spatial dimensions
4�d�6 by the simple 1/N expansion. To investigate the
stability of the replica-symmetric saddle point against a
small perturbation of the second-rank random anisotropy, we
employ the criterion for stability used by de Almeida and
Thouless.15 We find that the eigenvalues of the Hessian are
strictly positive, and the replica-symmetric saddle point re-
mains stable against the second-rank random anisotropy.
Therefore, the dimensional reduction works well for large N.
Next, we check the consistency of this result with the func-
tional renormalization group analysis in 4+� dimensions. We
solve the fixed point condition of the renormalization group
in the large N limit, and study the stability of all fixed points.
We solve the eigenvalue equation for the infinitesimal devia-
tion from the fixed points. We find that the analytic fixed
point yielding dimensional reduction is singly unstable.
Careful analysis of the eigenvalue equation for the infinitesi-
mal deviation from this fixed point is done in terms of 1/N
expansion. We find infinitely many unphysical modes which
should be eliminated. In practice, the analytic fixed point
yielding the dimensional reduction is singly unstable for suf-
ficiently large N. Therefore, our simple 1/N expansion is
consistent with the functional renormalization group method
and we conclude the dimensional reduction

� = �̄ =
d − 4

N − 2

for sufficiently large N.
This paper is organized as follows. In Sec. II, we briefly

review the large N behavior of the random field O�N� spin
model in the absence of random anisotropy. In Sec. III, we
introduce the second-rank random anisotropy term, and per-
form the 1/N expansion for the random field O�N�� spin
model with the second-rank random anisotropy term. We
should integrate over the “off-diagonal” fluctuation intro-
duced through the Hubbard-Stratonovich transformation for
the second-rank random anisotropy. Solving the saddle-point
equations under the assumption of replica symmetry, we
have two solutions. Then we calculate the free energy densi-
ties at high temperatures in both solutions, and compare with
the result of the high temperature expansion without the rep-
lica method. As a result, the solution is uniquely determined.
Details of the calculations of the free energy at high tempera-
tures without the replica method are relegated to Appendix

A. We also calculate the critical line, and the eigenvalue of
the Hessian at high temperature and near the critical point.
The stability of the replica-symmetric saddle point is inves-
tigated. Details of the calculations of the eigenvalue of the
Hessian are relegated to Appendix B. In Sec. IV, we compare
our results with those of a renormalization group study.
Technical details of the renormalization group for large N are
presented in Appendix C. Finally in Sec. V we summarize
the results obtained in this paper, give some comments on the
critical phenomena of both the lower and the upper critical
dimensions on the basis of the results, and mention future
problems. Calculation of loop integrals is exhibited in Ap-
pendix D.

II. CRITICAL BEHAVIOR OF RANDOM FIELD O„N… SPIN
MODEL IN THE LARGE N LIMIT

In this section, we briefly review the 1/N expansion for
the O�N� spin model with only a random magnetic field un-
der the assumption of replica symmetry. The stability of the
replica symmetric saddle point is studied.

We consider the random field O�N� spin model on a
d-dimensional hypercubic lattice with the lattice spacing
unity. Let L be the linear length of the d-dimensional hyper-
cubic lattice, and V the number of lattice sites �V=Ld�. The
Hamiltonian is given by

H = − J �
�x,y�

Sx · Sy − �
x

hx · Sx. �1�

Here �x ,y� denotes the summation over the nearest neighbor
pairs of the lattice sites x and y. J is the exchange interaction,
and we take J�0. Sx denotes an N-component spin variable
on the site x with a fixed-length constraint Sx

2=1, and hx
denotes a Gaussian random field with zero average. Taking
the average over the random fields �hx� by using the replica
method, we have the following replica partition function:

Z = enV�Jd	 
�
x

�
	=1

n

�NdSx,	
�Sx,	
2 − 1�
e−�Hrep, �2�

�Hrep =
�

2 �
x

�
	,�

n

Sx,	�− J�̂x
	� − ���Sx,�. �3�

Here �̂x stands for the lattice Laplacian. In the momentum

representation, the lattice Laplacian is represented by �̂k
=2��=1

d �cos k�−1�. � is the inverse temperature, and T is the
temperature; �=1/kT. � denotes the strength of the Gauss-
ian random field. The replica index is denoted by 	
=1,… ,n. We rewrite 
�Sx,	

2 −1� in terms of the auxiliary
variable 
	x:


�Sx,	
2 − 1� = 	

−�

� � d
	x

4�
e−�i
	x�Sx,	

2 −1�/2. �4�

After integrating over the spin variables �Sx,	�, the replica
partition function becomes
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Z = enV�Jd
 �

4�

nV
2�N

�

NnV/2	 
�

x
�
	=1

n

d
	x
e−Seff,

�5�

Seff =
N

2 �
x

�x�Tr ln�− J�̂x1n + ���x� −
�

2 �
x

�
	=1

n

i
	x, �6�

where 1n is an n�n unit matrix, and � is an n�n symmetric
matrix with

�	�x = i
	x
	� − �� . �7�

We study the large N limit below. The large N limit is
taken with NT �or � /N� and N� finite. Then, we redefine the
parameters as follows:

NT → T 
�

N
→ �
 , �8�

N� → � .

Thus, the replica partition function is rewritten as follows:

Z = eNnV�Jd
N�

4�

nV
2�

�

NnV/2	 
�

x
�
	=1

n

d
	x
e−Seff,

�9�

Seff =
N

2 �
x

�x�Tr ln�− J�̂x1n + ���x� −
N�

2 �
x

�
	=1

n

i
	x.

�10�

A. Saddle-point equation and replica-symmetric
approximation

Differentiating Seff by i
	x, we get the saddle-point equa-
tion


Seff


i
	x
=

N

2�x�
 1

− J�̂x1n + �



		

�x� −
N�

2
= 0. �11�

Here we assume the replica symmetry

i
	x = m2. �12�

In this assumption,

�k�
 1

− J�̂k1n + �̄



	�

�k� =
1

− J�̂k + m2

	� +

��

�− J�̂k + m2�2

� G0k
c 
	� + ��G0k

d � G0k
	�. �13�

The saddle-point equation becomes

1 =
1

�
a�m2� + �b�m2� , �14�

where

a�m2� =
1

V
�

k

1

− J�̂k + m2
, �15�

b�m2� =
1

V
�

k

1

�− J�̂k + m2�2
. �16�

In the thermodynamic limit V→�, a�m2� and b�m2� change
over the integrals:

a�m2� =
V→�	

k��− �,��d

ddk

�2��d

1

− J�̂k + m2
, �17�

b�m2� =
V→�	

k��− �,��d

ddk

�2��d

1

�− J�̂k + m2�2
, �18�

	
k��− �,��d

ddk

�2��d � �
�=1

d 
	
−�

� dk�

2�

 . �19�

Near the critical point, m becomes small, and then the
integrals �17� and �18� can be expanded in terms of m for
4�d�6,

a�m2� � a0 − a1m2, �20�

b�m2� � b0 − b1md−4, �21�

where a0, a1, b0, and b1 are positive constants. The deriva-
tion of these is shown in Appendix D. Inserting the above
expansions into the right hand side of Eq. �14�, we get

1 = kT�a0 − a1m2� + ��b0 − b1md−4� . �22�

At first, we study two special cases: one is the �=0 case, and
the other is the T=0 case. Putting �=0, we have the follow-
ing expression for the saddle point m:

m2 =
a0

a1

T − Tc
�pure�

T
, �23�

kTc
�pure� =

1

a0
. �24�

This indicates

� � m−1 � �T − Tc
�pure��−�, �25�

� =
1

2
. �26�

This result is identical with that of the mean field theory of
the pure system as expected. In the case of T=0, m is ex-
pressed as follows:

md−4 =
b0

b1

� − �c
�T=0�

�
, �27�

�c
�T=0� =

1

b0
. �28�

This indicates

� � m−1 � �� − �c
�T=0��−�, �29�
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� =
1

d − 4
. �30�

In d=4+�, the above result agrees with that of pure systems
in d=2+� in the leading order. Next, we study the case of
T�0 and ��0. The saddle point m is expressed as follows:

m = 
 1

�b1
�kTa0 + �b0 − 1�
1/�d−4�

. �31�

Putting m=0, we can get the critical line between ferromag-
netic and paramagnetic phases:

kTca0 + �cb0 = 1, �32�

�c

�c
�T=0� +

Tc

Tc
�pure� = 1. �33�

The phase diagram is depicted in Fig. 1.
m is rewritten by using Tc and �c as follows:

m = � 1

�b1

T − Tc

Tc
�pure� +

� − �c

�c
�T=0� 
�1/�d−4�

� ��T − Tc�1/�d−4� �� = �c� ,

�� − �c�1/�d−4� �T = Tc� .
� �34�

This indicates

� � m−1 � �� − �c�−� � �T − Tc�−�, �35�

� =
1

d − 4
. �36�

In d=4+�, this result is identical with that of pure systems in
d=2+� in the leading order.

B. Stability of replica-symmetric saddle point

We put

�	�x = �m2
	� − ��� + i�	x
	� � �̄	� + 
�	�x, �37�

and expand the effective action Seff up to the second order of

�	�x. The second-order term of 
�	�x for the effective ac-
tion Seff becomes


2Seff = −
N

4
	 ddx�x�Tr

1

− J�̂x1n + �̄

�

1

− J�̂x1n + �̄

��x�

=
N

4
	

k��− �,��d

ddk

�2��d�
	,�

n

�	k��,−k�	�k

=
N

4
	

k��− �,��d

ddk

�2��d
t�k�̂k�−k �38�

in the thermodynamic limit. �	�k is

�	�k = 	
q��− �,��d

ddq

�2��dG0k−q
	� G0q

�	 = ��A � A�k + �A � B�k

+ �B � A�k�
	� + �B � B�k � �ck
	� + �dk, �39�

�A � A�k = 	
q��− �,��d

ddq

�2��dG0k−q
c G0q

c , �40�

�A � B�k = �B � A�k = ��	
q��− �,��d

ddq

�2��dG0k−q
c G0q

d ,

�41�

�B � B�k = ����2	
q��− �,��d

ddq

�2��dG0k−q
d G0q

d . �42�

The expression �k is an n-dimensional vector whose ele-
ments are �	k:

�k =�
�1k

�2k

]

�nk

� , �43�

and �̂k denotes an n�n matrix whose elements are �	�k:

�̂k =�
�ck + �dk �dk ¯ �dk

�dk �ck + �dk ¯ �dk

] ] � ]

�dk �dk ¯ �ck + �dk

� . �44�

Calculating the eigenvalues of the matrix �̂k, we have


k,n = ��ck + n�dk,

�ck.
� . �45�

Taking the n→0 limit, we can obtain the following expres-
sion for the eigenvalue:


k � lim
n→0


k,n = �ck

= 	
q��− �,��d

ddq

�2��d �G0k−q
c G0q

c + 2��G0k−q
c G0q

d � . �46�

Therefore the eigenvalue 
k is positive for T�0 and all k.
This result indicates that the replica-symmetric saddle point
is stable against “diagonal” fluctuations �	k, and therefore it
is possible to integrate out the fluctuations �	k.

FIG. 1. Phase diagram of the random field O�N� model
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As seen in Eq. �37�, the field includes no “off-diagonal”
terms. In the next section, we shall study the effects of a
second-rank random anisotropy on the critical phenomena of
the random field O�N� spin model. We will find that the
off-diagonal fluctuation is introduced through the Hubbard-
Stratonovich transformation for the second-rank random an-
isotropy term.

C. Calculation of � and �̄ in 4+� dimensions

Here, we calculate the critical exponents � and �̄. For
simplicity, we put J=1. At criticality, the lattice Laplacian

becomes �̂k=−k2. Equation �39� is

�	�k = �c0 + c1kd−4 + c2kd−6�
	� + c3kd−8, �47�

for m2=0, where

c0 =	 ddq

�2��d

1

q4 ,

c1 =
1

�4��d/2

�
6 − d

2

�2�
d − 2

2

2

−
1

2
�
d − 4

2

2�

��d − 4�
,

c2 =
2�

�4��d/2

�
6 − d

2



��d − 3�
�
d − 2

2

�
d − 4

2

 ,

c3 =
�2

�4��d/2

�
8 − d

2



��d − 4�
�
d − 4

2

2

. �48�

Let us compute the correlation function at the second or-
der of the perturbation. Up to the second order of �	k, we get
the following expression for the correlation function:

Gp
	� =

1

Z�

	 �

	=1

n

D�	
�p�
 1

− �21n + �



	�
�p�

�exp�− 
2Seff�

� G0p
	� − �

�,


n

G0p
	�	 ddq

�2��dG0p−q
�
 ���q�
,−q��G0p


�

= G0p
	� − �

�,


n

G0p
	��p

�
G0p

�

� G0p
	� − �

�,


n

G0p
	��p

�
Gp

�, �49�

where Z�, �p
�
, and ���q�
,−q�� are defined by

Z� = 
	 �
	=1

n

D�	
exp�− 
2Seff� ,

�p
�
 �	 ddq

�2��dG0p−q
�
 ���q�
,−q��, �50�

���q�
,−q�� �
1

Z�

	 �

	=1

n

D�	
��q�
,−qexp�− 
2Seff�

=
2

N

 
�


c0 + c1qd−4 + c2qd−6

−
c3qd−8

�c0 + c1qd−4 + c2qd−6�2
 . �51�

In 4�d�6 and in low momentum, ���q�
,−q�� becomes

���q�
,−q�� �
2

Nc2

 1

qd−6
�
 −
6 − d

2

�

qd−4
 . �52�

Thus, we get the following vertex function:

�Gp
−1�	� = �p2 + m2�
	� − � + �p

	�

= �p2 + mR
2 �
	� − �R + �p

	� − �0�
	�, �53�

where �0�
	�, mR, and �R are defined by

�
0

	�

� = �
0

	�

−	 ddq
�2�6 − d�

2�q2 + m2�2qd−4 , �54�

m2
	� − � � mR
2 
	� − �R − �

0

	�

�.

�0�
	� does not include an infrared divergence. At the critical-

ity mR
2 =0, we have

�Gp
−1�	� = p2
	� − �R + �

p

	�

− �
0

	�

�. �55�

�p
	�−��0

	� is calculated as follows:

�
p

	�

− �
0

	�

� =	 ddq

�2��d �G0p−q
	� − G0q

	����	q��,−q��

=
2

Nc2
�Dp
	� − Ep� , �56�

where Dp and Ep are

Dp =
�

2

1

�4��d/2

d − 6

��d/2�
p2 ln p2, �57�

Ep =
�2

2

1

�4��d/2

d − 6

��d/2�
ln p2.

Thus, we get the following expression for the vertex func-
tion:

�Gp
−1�	� = 
p2 +

2

Nc2
Dp

	� − 
�R +

2

Nc2
Ep
 . �58�

At criticality T=Tc, the correlation function behaves as

Gp
	� =

1

p2−�
	� +
�R

p4−�̄
, �59�

at low momentum; namely, the vertex function behaves as
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�Gp
−1�	� = p2−�
	� − �Rp�̄−2�

� p2�1 − � ln p�
	� − �R�1 + ��̄ − 2��ln p� .

�60�

From Eqs. �58� and �60�, we see that � and �̄ are of the order
of 1 /N in d=4+� as follows:

�̄ = � =
�

N
. �61�

This result of � is consistent with that of a pure system in
d=2+� up to order �. The result �̄=� confirms the dimen-
sional reduction.

III. CRITICAL BEHAVIOR OF RANDOM FIELD O„N…

SPIN MODEL WITH SECOND-RANK RANDOM
ANISOTROPY IN THE LARGE N LIMIT

In this section, we study the large N behavior of the fol-
lowing Hamiltonian including the second-rank random an-
isotropy:

�Hrep =
�

2 �
x

�
	,�

n

Sx,	�− J�̂x
	� − ���Sx,�

−
�2g

2 �
x

�
	,�

n

�Sx,	 · Sx,��2. �62�

The second term of the right hand side in the Hamiltonian is
the second-rank random anisotropy term, and g denotes the
strength of the random anisotropy. The second-rank random
anisotropy term is decomposed into diagonal and off-
diagonal parts:

−
�2g

2 �
	,�

n

�Sx,	 · Sx,��2 = −
�2g

2

�

	=1

n

1 + �
	��

n

�Sx,	 · Sx,��2
 .

�63�

We rewrite the g term in terms of the auxiliary variable Q	�x
as follows:

exp
�2g

2 �
	��

n

�Sx,	 · Sx,��2

=	 
 �

	��

n � 1

4�g
dQ	�x


� exp� �
	��

n 
−
1

8g
Q	�x

2 +
�

2
Q	�x�Sx,	 · Sx,��
� . �64�

We should note that the off-diagonal variable Q	�x is intro-
duced through the above transformation. Using the above
equation and Eq. �4�, the Hamiltonian becomes

�Hrep� =
�

2 �
x

�
	,�

n

S	x�− J�̂x
	� + �	�x�S�x −
�

2 �
x

�
	=1

n

i
	x

+
1

8g
�

x
�

	��

n

Q	�x
2 , �65�

where �	�x is

�	�x = �i
	x − �� �	 = �� ,

− �� − Q	�x �	 � �� .
� �66�

After integrating over the spin variables �S	x�, the replica
partition function becomes

Z = 
 �

4�

nV
2�N

�

NnV/2
 1

4�g

n�n−1�V/4

enV�2g/2enV�Jd

�	 ��
x

�

	=1

n

d
	x

 �
	��

n

dQ	�x
�e−Seff, �67�

Seff =
N

2 �
x

�x�Tr ln�− J�̂x1n + ���x� −
�

2 �
x

�
	=1

n

i
	x

+
1

8g
�

x
�

	��

n

Q	�x
2 . �68�

The expression 1n is the n�n unit matrix, and � is the
n�n symmetric matrix whose elements are �66�. As in the
previous section, we study the large N limit. The large N
limit is taken with NT �or � /N�, N� and Ng staying finite.
Then we redefine the parameters as follows:

NT → T 
�

N
→ �
 ,

N� → � ,

Ng → g . �69�

Thus, the replica partition function is rewritten as follows:

Z = 
N�

4�

nV
2�

�

NnV/2
 N

4�g

n�n−1�V/4

� eNnV�2g/2eNnV�Jd

�	 ��
x

�

	=1

n

d
	x

 �
	��

n

dQ	�x
�e−Seff, �70�

Seff =
N

2 �
x

�x�Tr ln�− J�̂x1n + ���x� −
N�

2 �
x

�
	=1

n

i
	x

+
N

8g
�

x
�

	��

n

Q	�x
2 . �71�

A. Saddle-point equations and replica-symmetric
approximation

Differentiating Seff by i
	x and Q	�x respectively, we have
the saddle-point equations
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Seff


i
	x
=

N

2�x�
 1

− J�̂x1n + �



		

�x� −
N�

2
= 0, �72�


Seff


Q	�x
= −

N

2�x�
 1

− J�̂x1n + �



	�

�x� +
N

4g
Q	�x = 0.

�73�

Here we assume the replica symmetry

i
	 = m2, �74�

Q	� = Q̄ , �75�

�	� = �m2 + Q̄�
	� − �� − Q̄ � M2
	� − ��� + Q̄� � �̄	�.

�76�

In this assumption,

�k�
 1

− J�̂k1n + �̄



	�

�k�
=

1

− J�̂k + M2

	� +

�� + Q̄

�− J�̂k + M2�2

� G0k
C 
	� + ��� + Q̄�G0k

D . �77�

The saddle-point equations become

1 =
1

�
a�M2� + 
� +

1

�
Q̄
b�M2� , �78�

Q̄ = 2g��� + Q̄�b�M2� , �79�

where

a�M2� =
1

V
�

k

1

− J�̂k + M2
=

V→�	
k��− �,��d

ddk

�2��d

1

− J�̂k + M2
,

�80�

b�M2� =
1

V
�

k

1

�− J�̂k + M2�2

=
V→�	

k��− �,��d

ddk

�2��d

1

�− J�̂k + M2�2
. �81�

Thus, the saddle-point equations are rewritten as follows:

Q̄ = 2�g
1 −
1

�
a�M2�
 , �82�

Q̄ = 2�g
�b�M2�

1 − 2gb�M2�
. �83�

We look for the intersections of these saddle-point equations.

For convenience, we define �� Q̄ / �2�g�. Then, the saddle-
point equations are rewritten as follows:

� = 1 −
1

�
a�M2� , �84�

� =
�b�M2�

1 − 2gb�M2�
. �85�

The graphs of Eqs. �84� and �85� are drawn in Fig. 2.
We find that there are two intersections at high tempera-

ture:

�* � � �b�M−
2*�

1 − 2gb�M−
2*�

� �−
* �M2 = M−

2*� ,

0 � �+
* �M2 = M+

2*� ,
� �86�

where M+
2*�M−

2*. Here, we compute the free energy densi-
ties at high temperature. Substituting the saddle point i
	x

=m2=M2− Q̄ and Q	�x= Q̄ into the replica partition function
�70� and the action �71�, we have the following expression
for the free energy density f��F /V� in the large N limit:

f �
1

2��ln
 �

2�

 +

1

V
�

k

ln�− J�̂k + M2�� − Jd −
1

2
M2

−
� + 2g

2
a�M2� +

g

2�
a�M2�2. �87�

As the temperature becomes higher, the intersections M−
2*

and M+
2* become as follows:

M−
2* = M0

2, �88�

M+
2* � T , �89�

where M0
2 is given by solving the equation 1=2gb�M0

2�.
Thus, the free energy densities at high temperatures in both
solutions are

f− � f�M−
2* = M0

2�

�
1

2��ln
 �

2�

 +

1

V
�

k

ln�− J�̂k + M0
2�� − Jd −

1

2
M0

2

−
� + 2g

2
a�M0

2� +
g

2�
a�M0

2�2, �90�

FIG. 2. The graphs of the saddle-point equations by MATH-

EMATICA. We set d=5, and take L=17, T=50, �=12�2, and g
=18�2. The ordinate is ���b�M2� / �1−2gb�M2��, and the abscissa
is M2.
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f+ � f�M+
2* � T� � −

kT

2
�1 + ln�2��� −

J2d

2kT
−

� + g

2kT
.

�91�

The free energy density f− is lower than f+. Performing the
high temperature expansion without the replica method,
however, we find that the result is consistent with f+ in the
leading order. Details of the calculation of the free energy
density at the high temperature without the replica method
are relegated to Appendix A. Thus, the solution �M−

2* ,�−
*�

should be excluded. This choice of the solution �M+
2* ,�+

*� is
consistent also with the result obtained by the functional
renormalization group analysis in the large N limit at zero
temperature, as discussed in the final section. We also should
note that the saddle point �M+

2* ,�+
*� exists in the region

1 − 2gb�M2� � 0. �92�

Near the critical point, M becomes small, and then the
field theoretical description is considered to be applicable.
The integrals �80� and �81� can be expanded in 4�d�6 as
follows:

a�M2� � a0 − a1M2, �93�

b�M2� � b0 − b1Md−4, �94�

where a0, a1, b0, and b1 are the same positive constants as
those of Eqs. �20� and �21�. Inserting the above expansions
into the saddle point equations �82� and �83�, we get

1 = kTa0 + �� + 2g�b0 − 2g�kT�a0�b0 − b1Md−4� . �95�

Putting M =0, we can get the critical line between ferromag-
netic and paramagnetic phases:

kTca0 + ��c + 2g�b0 − 2g�kTc�a0b0 = 1, �96�

�1 − 2gb0�
1 −
Tc

Tc
�pure�
 =

�c

�c
�T=0� . �97�

The phase diagram is depicted in Fig. 3.
We find that the ferromagnetic region is smaller than that

in the absence of the random anisotropy term. As the strength
of the random anisotropy increases, the ferromagnetic region

becomes small. M is rewritten by using Tc and �c as follows:

M = ��� + 2g
1 −
T

Tc
�pure�
�b1�−1/�d−4�

� 
�1 − 2gb0�
T − Tc

Tc
�pure� +

� − �c

�c
�T=0� 
1/�d−4�

. �98�

Putting �=�c, we have

M = 
 �1 − 2gb0��T − Tc�
��cTc

�pure� + 2g�Tc
�pure� − T��b1


1/�d−4�

. �99�

Putting T=Tc, we have

M = 
 �1 − 2gb0��� − �c�
��c + �1 − 2gb0��� − �c���c

�T=0�b1

1/�d−4�

.

�100�

Thus, the exponent � of the correlation length is �=1/2.

B. Stability of replica-symmetric saddle point

We put

i
	x = �M2 − Q̄� + i�	x, �101�

Q	�x = Q̄ + �	�x, �102�

�	�x = �̄	� + 
�	�x. �103�

In the same way as in the previous section, we expand the
effective action Seff up to the second order of 
�	�x. To study
the stability of the saddle point against the off-diagonal fluc-
tuations �	�k, we calculate the eigenvalue of the following
Hessian:

G�	����
� �

2Seff


�	�k
��
,−k
. �104�

Putting the following ansatz �replicon subspace�:

�	 = �
�=1

n

�	� = 0, �105�

we get the eigenvalue as


k =
1

g
1 − 2g	
q��− �,��d

ddq

�2��dG0k−q
C G0q

C 
 �106�

in the thermodynamic limit. Details of the calculation are
shown in Appendix B. If the eigenvalue 
k is positive for all
k, the saddle point is then stable against the off-diagonal
fluctuations �	�k. First of all, putting k=0, we can easily
investigate the eigenvalue


k=0 =
1

g
1 − 2g	
q��− �,��d

ddq

�2��d

1

�− J�̂q + M2�2

=

1

g
�1 − 2gb�M2�� . �107�

The condition that the eigenvalue is positive is given by

FIG. 3. The phase diagram. The equation for the boundary sur-
face is �1−Tc /Tc

�pure���1−2gb0�=�c /�c
�T=0�. The region containing

the origin is the ferromagnetic phase. The other is paramagnetic.
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1 − 2gb�M2� � 0. �108�

This is in agreement with the region �92� where the saddle
point exists. Thus, the eigenvalue is positive in the region of
the critical point and over. This result indicates that the
replica-symmetric saddle point is stable against the fluctua-
tion that is induced by introducing the second-rank random
anisotropy, and therefore it is possible to integrate out the
fluctuations �	�x. Even though we calculate the higher order
corrections in 1/N expansion, we cannot find the instability
of the replica-symmetric saddle point against the fluctuation.
Therefore, the dimensional reduction holds for sufficiently
large N.

IV. FUNCTIONAL RENORMALIZATION GROUP
FOR LARGE N MODELS

We compare our results with the functional renormaliza-
tion group �FRG� study at the zero temperature.13,14,16 We
search for a consistent FRG solution with the 1/N expansion.
Details of the analysis are given in Appendix C. In general, a
replicated Hamiltonian can be written as

�Hrep =
�

2 �
x

�
	

Sx,	�− J�̂x�Sx,	 −
�2

2 �
x

�
	,�

R�Sx,	 · Sx,�� ,

�109�

where the function R�z� represents general anisotropy. Our
Hamiltonian �62� corresponds to choosing

R�z� = �z + gz2. �110�

First, we discuss the solutions in the large N limit. If one
takes the large N limit, one finds exact solutions of all fixed
points. We can analyze their stability by solving the eigen-
value equation of the infinitesimal deviation from the fixed-
point solutions. This method is discussed by Balents and
Fisher17 for random media. The one-loop beta function for a
general R�z� has both analytic and nonanalytic fixed points.13

Following the method of Le Doussal and Wiese,18 we find
one-parameter family of nonanalytic fixed points with a
cusp. We obtain an asymptotic form of the solution near z
=1,

R��z� � R��1� + �2R��1���/A − R��1���1 − z� .

Our analysis shows that all physical nonanalytic fixed points
satisfying the Schwartz-Soffer inequality19 have many un-
stable modes.

In addition to the nonanalytic fixed points, we find four
analytic fixed points given in Eq. �110� with �� ,g�= �0,0�,
�� /A, 0�, �0, � / �2A��, and (−� /A ,� / �2A�), where �=d−4.
The last one is unphysical since ��0. The triangle defined
by the other three fixed points corresponds to ferromagnetic
region on the T=0 plane in Fig. 3. In fact, the vertex
�� ,g�= ��c

�T=0� ,0�= �1/b0 ,0� corresponds to �97� with Tc=0.
It is easily seen that

1

b0
=

�

A
�−�, �111�

where � is a momentum cutoff. Thus the dimensionless
quantity �� ,g��� is equal to the analytic fixed point �� /A ,0�.
Similarly, the vertex (0, 1 / �2b0�) corresponds to the fixed
point (0, � / �2A�). Therefore, we find that the phase diagram
at T=0 obtained by the large N limit is understood by the
functional renormalization group method. Furthermore, the
stability analysis in Appendix C shows that �� /A, 0� is singly
unstable, where the unstable mode corresponds to deforma-
tion along � axis. The origin �0, 0� is fully stable while (0,
� / �2A�) is fully unstable. Therefore, in the large N limit, a
phase transition at T=0 is governed by the singly unstable
fixed point �� /A, 0� yielding dimensional reduction. The cor-
responding flow in the two dimensional coupling constant
space is depicted in Fig. 4.

Next, we discuss the model with a finite N. We conclude
that the dimensional reduction holds for sufficiently large N.
We study the singly unstable analytic fixed point found in the
large N limit. By the discussion in Appendix C, the fixed
point to control the phase transition has

R��1� =
d − 4

A�N − 2�
or 0.

At this stage, we find only two possibilities. The exponents
of the correlation function becomes those given by the di-
mensional reduction

� = �̄ =
d − 4

N − 2
. �112�

or the trivial ones

� = �̄ = 0. �113�

We obtain the subleading correction to this fixed point solu-
tion

R�z� =
�

A
�z −

1

2
+

1

2N
�z2 + 2z� + O
 1

N2
� . �114�

We analyze the stability of this analytic fixed point yielding
the dimensional reduction by solving the eigenvalue equation
of the linearized beta function in Appendix C. There are
many unphysical modes which diverge in the interval −1
�z�1. These are not generated in the flow, thus we elimi-
nate these unphysical modes by choosing the integral con-

FIG. 4. The renormalization group flow for the couplings � and
g in the large N limit.
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stants. These unphysical modes correspond to the infinitely
many relevant modes pointed out by Fisher.13 In our solution
of the eigenvalue equation, we find the same eigenvalues
calculated by Fisher up to the order 1 /N, if we correct an
expression given there by adding an overlooked term. We
discuss this problem in Appendix C. The analytic fixed point
�� /A, 0� has slightly relevant operators with dimension less
than 2/N, which give deformation of the coupling 
R��z�
��1−z�−	 with 0�−	�2/N. Here, we discuss this subtle
problem of the slightly relevant operators. First, we assume
that the initial coupling constant R��1� in the renormalization
group equation is finite. In this case, this fixed point behaves
as a singly unstable fixed point in the following reason. By
Fisher’s representation of the renormalization group equa-
tion, R��1� and R��1� satisfy

�tR��1� = �4 − d�R��1� + A�N − 2�R��1�2,

�tR��1� = �4 − d�R��1� + A�6R��1�R��1� + �N + 7�R��1�2

+ R��1�2� . �115�

For a small initial value of R��1� the flow of R��1� stays in a
compact area. The flow in the two-dimensional coupling
constant space is qualitatively the same as in Fig. 4.

In this case, if R��1� takes a critical value by tuning the
coupling constant � or g, the coupling R�z� flows toward
the analytic fixed point with a finite R��1�. Then, the flow
does not generate the relevant mode with an exponent
0�−	�2/N from an initial function with a finite R��1�.
This analytic fixed point controls the phase transition, and
therefore the critical behavior obeys the dimensional reduc-
tion. Since this analytic fixed point exists for N�18 as
pointed out by Fisher,13 the dimensional reduction occurs for
N�18. In this case, the critical exponents of correlation
function are given by �112�. This result agrees with our
simple 1/N expansion. Next, we consider that the initial cou-
pling constant R��1� is not finite. We assume

R��z� = C�1 − z�−	,

with 0�−	�1. Since R��1� diverges, already at the initial
stage the coupling constants are infinitely far from the ana-
lytic fixed points for any small C. We cannot justify whether
or not the continuum field theory approximation induces
such a mode in the initial function. Theoretically, however,
we can consider such a model. The renormalization
group transformation can generate a term proportional to
�1−z�−2	−1. Since −2	−1�−	, the successive transforma-
tion may produce less power. Eventually, the flow generates
a relevant mode with −	�2/N and the flow cannot reach the
analytic fixed point by tuning the parameter � and g. Since
all fixed points are unstable except the trivial one, the flow
reaches the trivial fixed point directly in the massless phase.
In this case, we obtain only trivial critical exponents �113�.
This second possibility does not agree with our
1/N-expansion method. Therefore, only consistent result
with the 1/N expansion is the dimensional reduction.

V. DISCUSSION AND SUMMARY

In this paper, we have studied the random field O�N� spin
model including the second-rank random anisotropy term.
We have studied the effect of the second-rank random aniso-
tropy on the critical phenomena of the random field O�N�
spin model in 4�d�6, by use of the replica method and the
1/N-expansion method. The off-diagonal fluctuations are in-
duced through the Hubbard-Stratonovich transformation for
the second-rank random anisotropy. We have computed the
saddle point under the assumption of the replica symmetry,
and have studied the stability of the replica symmetric saddle
point against the off-diagonal fluctuations which are induced
by the second-rank random anisotropy. Our criterion to judge
the stability of the system is identical to the standard one
used by de Almeida and Thouless.15 It is based on the stabil-
ity of the saddle point of the auxiliary field introduced to
calculate the partition function explicitly. We find that the
eigenvalues of the Hessian around the replica symmetric
saddle point are positive definite, and thus the Gaussian in-
tegration over auxiliary field can be performed. The instabil-
ity is not observed in higher order correction in the 1/N
expansion. Consequently, we conclude that the replica-
symmetric saddle point is stable for a second-rank random
anisotropy with the order 1 /N and the dimensional reduction
holds for sufficiently large N.

This result is inconsistent with that obtained by Mézard
and Young.10 Since the SCSA equation gives the precise two-
point correlation function up to order 1 /N, their replica-
symmetric two-point correlation function agrees with ours.
Nonetheless, they conclude that the replica-symmetric corre-
lation function is unstable against a deviation of the correla-
tion function by treating the free energy as a functional of
two point correlation function. Their criterion for stability
differs from the de Almeida–Thouless one, although it looks
the same. They optimize the free energy by choosing the
two-point correlation function freely. On the other hand, in
our analysis, a two-point correlation function can be de-
formed only through changing a saddle point of the auxiliary
field, and then it cannot be deformed freely. This is the es-
sential difference between two theories. We consider either
that the instability shown by Mézard and Young10 is just
apparent, or that their method includes some nonperturbative
effects other than the 1/N expansion. For the latter possibil-
ity, we should justify that the free energy can be optimized
by a correlation function with no constraint.

We have checked the consistency between the large N
analysis and the renormalization group flow by showing that
the phase boundaries obtained in those methods are consis-
tent in 4+� dimensions. As pointed by Feldman,14 the critical
phenomena near the lower critical dimension is governed by
the nonanalytic fixed point by the appearance of the cusp,
and then the dimensional reduction breaks down for some
small N. For large N, however, we show that the functional
renormalization group method studied by Feldman allows us
to perform the 1/N expansion. We find all fixed points which
consist of analytic and nonanalytic ones in the large N limit.
On the other hand for N�18, it is known that there are no
nontrivial analytic fixed points.13 By solving the eigenvalue
problem for the infinitesimal deviation from the fixed point,
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we find that the nonanalytic fixed points are fully unstable.
We search for consistent solutions of the renormalization
group with the 1/N expansion. If the initial R��1� is finite,
the nonanalytic relevant modes cannot be generated. In this
case, the unique analytic fixed point practically behaves as a
singly unstable fixed point, which gives the dimensional re-
duction. This result agrees with the stability of the replica-
symmetric saddle-point solution in the 1/N expansion. Thus,
we conclude dimensional reduction occurs.

Our result also agrees with a recent study of the random
field O�N� model by Tarjus and Tissier. They study the
model by a nonperturbative functional renormalization
group.20 Although their work to obtain a full solution is in
progress, they give a global picture in a d-N phase diagram
and discuss the consistency of their results with those by
some perturbative results. They propose a scheme to fix a
phase boundary of the phase where the dimensional reduc-
tion breaks down. Using an approximation method, they
show that the phase is in a compact area on the d-N plane.

Here, we comment on the model in dimension less than 4.
The 1/N-expansion method shows that the model has a mas-
sive paramagnetic phase only. Also, the functional renormal-
ization group method for negative �=d−4 shows that there
are no nontrivial analytic fixed points. The trivial fixed point
and nonanalytic fixed points are unstable for d�4. Our large
N analysis indicates that the nonanalytic fixed points are un-
stable, and therefore only a massive phase exists. This result
agrees with Feldman’s result16 that the correlation length is
finite always for N�10.

Finally, we comment on the critical behavior near the up-
per critical dimensions. In a recent work,21 the dimensional
reduction has been shown by a perturbative renormalization
group in a coupling constant space near the upper critical
dimension in the random field Ising model at one-loop order.
This result is also consistent with that obtained by Tarjus and
Tissier.20 This study can be extended to the O�N� model and
the result agrees with the 1/N expansion. These studies sug-
gest that the large N limit may be applicable to the model
with a small N near the upper critical dimensions. However,
it is a nontrivial problem whether or not the dimensional
reduction holds near the upper critical dimension for a small
N. Further studies are needed.
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APPENDIX A: FREE ENERGY AT HIGH TEMPERATURE
WITHOUT REPLICA METHOD

The Hamiltonian is given by

H = − J �
�x,y�

Sx · Sy − �
x

hx · Sx − �
x

�hx · Sx�2

= − J �
�x,y�

�
i=1

N

Sx
�i�Sy

�i� − �
x

�
i=1

N

hx
�i�Sx

�i� − �
x

�
i,j

N

hx
�i�hx

�j�Sx
�i�Sx

�j�

= − J �
�x,y�

�
i=1

N

Sx
�i�Sy

�i� − �
x

�
i=1

N

hx
�i�Sx

�i� − �
x

�
i,j

N

h2,x
�ij�Sx

�i�Sx
�j�.

�A1�

Here, hx
�i� and h2,x

�ij� are the random field and the second-rank
random anisotropy, respectively:

�hx
�i�� = 0, �hx

�i�hy
�j�� = �
ij
xy , �A2�

�h2,x
�ij�� = 0, �h2,x

�ij�h2,y
�kl�� =

g

2
�
ik
 jl + 
il
 jk�
xy . �A3�

The partition function is

Z = 
�
x
	

−�

�

dSx
�Sx
2 − 1�
e−�H. �A4�

Here we put

�
x
	

−�

�

dSx
�Sx
2 − 1� =	 DS . �A5�

Performing the calculation of the measure �DS, we have

	 DS 1 = �
x

N�N/2

2��N/2 + 1�
� exp�Vs�N�� , �A6�

s�N� �
N

2
�1 + ln�2��� , �A7�

for N�1.
We study the behavior of the free energy at high tempera-

tures. We expand the partition function in �H up to the sec-
ond order:

Z =	 DS e−�H � eVs�N�
1 − ��H� +
1

2!
���H�2�
 ,

�A8�

where the angular brackets �¯� stand for

�f�S�� �
	 DS f�S�

	 DS 1

= e−Vs�N� 	 DS f�S� . �A9�

Then, ln Z is

ln Z � Vs�N� − ��H� +
1

2
��H;�H� , �A10�

where
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��H;�H� � ���H�2� − ��H�2. �A11�

Using the identity �Sx
�i�Sy

�j��=
xy
ij, and Eqs. �A2� and �A3�,
we have

f = −
1

�
�ln Z� � −

NkT

2
�1 + ln�2��� −

J2d

2NkT
−

N� + Ng

2NkT
.

�A12�

According to the redefinition of the parameters �69�, the free
energy density is rewritten as

f = −
1

�
�ln Z� � −

kT

2
�1 + ln�2��� −

J2d

2kT
−

� + g

2kT
.

�A13�

This is in agreement with Eq. �91�.

APPENDIX B: DERIVATION OF EIGENVALUE (106)

In this appendix, we give the details of the calculation of
the eigenvalue �106�.

The second-order term of 
�	�x and �	�x for the effective
action Seff becomes


2Seff = −
N

4
	 ddx

��x�Tr
1

− J�̂x1n + �̄

�

1

− J�̂x1n + �̄

��x�

+
N

8g
	 ddx �

	��

n

�	�x
2 . �B1�

In the momentum representation, the second-order correction
of the action Seff is rewritten as


2Seff =
N

4
	

k��− �,��d

ddk

�2��d
�
	,�

n

�	k��,−kG	�

+ 2�
	=1

n

�
��


�	k��
,−kG	��
�

+ �
	��

�
��


�	�k��
,−kG�	����
�
 . �B2�

Here

G		 = G0
		 � G0

		 � A , �B3�

G	� = G0
	� � G0

�	 � B �	 � �� , �B4�

G	�	
� =
i

2
�G0

		 � G0

	 + G0


	 � G0
		 + G0

	
 � G0
		 + G0

		 � G0
	
�

� C �	 � 
� , �B5�

G	��
� =
i

2
�G0

	� � G0

	 + G0


	 � G0
	� + G0

	
 � G0
�	 + G0

�	 � G0
	
�

� D �	 � �,
, � � 
� , �B6�

G�	���	�� =
1

Ng
− �G0

�	 � G0
�	 + G0

		 � G0
�� + G0

�� � G0
		

+ G0
	� � G0

	�� � P �	 � �� , �B7�

G�	���	
� = − �G0
�	 � G0


	 + G0
		 � G0


� + G0
�
 � G0

		

+ G0
	
 � G0

	�� � Q �	 � �,
, � � 
� ,

�B8�

G�	����
� = − �G0
�� � G0


	 + G0
	� � G0


� + G0
�
 � G0

�	

+ G0
	
 � G0

��� � R

�	 � �,�,
, � � �,
 � � 
� . �B9�

G0
	� � G0

�
 = 	
q��− �,��d

ddq

�2��dG0k−q
	� G0q

�
. �B10�

We shall find the eigenvalues of the matrix G �Hessian�

G = 
 �G	�� �G	��
��

�G�	���� �G�	����
��

 . �B11�

Let �� be the eigenvector associated with the eigenvalue 
;

�� = 
 ����
���
�


 , �B12�

where ��
=�
�. Applying G to �� , we obtain

�G�� �	 = A�	 + B �
��	

n

�� + C �
��	

n

�	� +
D
2 �

��	

n

�

��,	

n

��
,

�B13�

�G�� �	� = C��	 + ��� + D �
��	,�

n

�� + P�	� + 2Q �
��	,�

n

�	�

+
R
2 �

��	,�

n

�

��,	,�

n

��
. �B14�

To find the solution of Eqs. �B13� and �B14�, we use the
following ansatz according to Ref. 10:

�	 = �
�=1

n

�	� = 0 �B15�

for all 	. Under this ansatz, Eq. �B14� gives a nontrivial
solution

�G�� �	� = �P − 2Q + R��	� = 
�	�. �B16�

Therefore, we get the eigenvalue �106�.
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APPENDIX C: FUNCTIONAL RENORMALIZATION
GROUP STUDY FOR CRITICAL PHENOMENA

OF RANDOM FIELD O„N… SPIN MODEL IN 4+�
DIMENSIONS

In this appendix we study the one-loop beta function de-
rived by Fisher13 for a general random disorder R�z� at zero
temperature:

�tR�z� = �4 − d�R�z� + A
2�N − 2�R��1�R�z� − �N − 1�

�zR��1�R��z� + �1 − z2�R��1�R��z� +
1

2
�R��z��2

��N − 2 + z2� − R��z�R��z�z � �1 − z2�

+
1

2
�R��z��2�1 − z2�2
 . �C1�

Here, t=ln l with l being the length scale specifying the FRG
and A=Sd / �2��dJ2.

1. General properties of fixed points

The fixed point condition of the renormalization group
determines properties of the function R�z�. Here we discuss
possible asymptotic behaviors of R�z� near z=1. The first
derivative of the fixed point equation with respect to z is

��4 − d�/A + �N − 1��R��1�R��z� + zR��z�2 − �N + 1�zR��1�

�R��z� + �N − 2 + 3z2�R��z�R��z� + �1 − z2�

�R��1�R��z� − z�1 − z2�R��z�R��z� − 3z�1 − z2�R��z�2

+ �1 − z2�2R��z�R��z� − �1 − z2�R��z�R��z� = 0. �C2�

If we assume asymptotic behavior of R��z� near z=1,

R��z� = R��1� + C�1 − z�� + ¯ , �C3�

with 0��. To discuss a cuspy behavior of R�z� at z=1, we
consider only ��1. The condition �C2� gives the following
constraint:

��4 − d�/A + �N − 2�R��1��R��1� − C2��4�2 + 4� + N − 1�

��1 − z�2�−1 = 0. �C4�

For ��1/2, this constraint gives

� =
1

2
�− 1 + �2 − N� or C = 0,

and also

R��1� =
d − 4

A�N − 2�
or R��1� = 0.

Here, the former case shows the dimensional reduction. The
formulas for the critical exponents obtained by Feldman,14

� = AR��1�, �̄ = A�N − 1�R��1� − � , �C5�

enable us to obtain

� =
d − 4

N − 2
= �̄ . �C6�

In this case, no � is allowed for any N. For �=1/2, the
parameter R��1� can change continuously depending on the
constant C. Therefore, only �=1/2 allows divergent R��1�.
Only this case does the nontrivial critical behavior differ
from the dimensional reduction. Since the initial value R�z�
of the renormalization group equation �C1� is an analytic
function, the flow of R��1� should diverge for the breakdown
of the dimensional reduction.

The same discussion for z=−1 can be done. The only
possible singularity is

R��z� = R��− 1� + C�1 + z�1/2
¯ .

If C=0, then we have

R��− 1� = �N − 3�R��1� −
d − 4

A
or R��− 1� = 0.

2. Large-N limit

In order to take the large N limit, we multiply both sides
by N and rescale NR→R. The beta function becomes

�tR�z� = �4 − d�R�z� + A
2R��1�R�z� − zR��1�R��z�

+
1

2
�R��z��2
 + O�1/N� . �C7�

3. Fixed points

Following the method given by Balents and Fisher,17 we
consider the flow equation for R��z� instead of that for R�z�.
Taking the derivative with respect to z and introducing u�z�
defined by

R��z� �
�

A
u�z� , �C8�

the fixed point equation for �C7� becomes

�a − 1�u�z� − zau��z� + u�z�u��z� = 0 �C9�

in the large N limit. Here we define a=u�1�. First we solve it
when a=1. In this case, u�z� satisfies u��z��0 or u�z�=z. If
u��z�=0 then u�z�=1 since a=u�1�=1. Thus

R�z� =
�

A

z −

1

2

 , �C10�

where the constant term −� / �2A� is determined by �C7�. On
the other hand, in the case of u�z�=z,

R�z� =
�

2A
z2. �C11�

Next, we turn to the case of a=0, where u�z� satisfies
u�z��0 or u��z�=1. The former case is R�z�=0, which cor-
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responds to the pure theory. The latter becomes

u�z� = �z − 1�; �C12�

namely,

R�z� =
�

2A
�z − 1�2. �C13�

Those analytic fixed points were first obtained by Feldman.16

Next we consider a general case. If a�0, 1,

du

dz
=

�a − 1�u
za − u

. �C14�

Taking the inversion we regard z as a function of u.18

One gets

dz

du
=

a

a − 1

z

u
−

1

a − 1
, �C15�

which is easily integrated The result is

z�u� = C�u�a/�a−1� + u , �C16�

where C is a constant. Since z�u� satisfies z�a�=1, C is de-
termined uniquely as

z�u� = �1 − a�
u

a

a/�a−1�

+ u . �C17�

Now we revert �C17� to the solution u�z� for �C14�. Because
z�u� takes the maximum value 1 at u=a, u�z� is double val-
ued as we show in Fig. 5. It is seen from �C14� that du /dz is
ill defined on u=az. Therefore the lower branch terminates at
the origin, so that it should be continued to the region −1
�z�0. This is possible only if a / �a−1� is a positive integer.

Nonanalytic behavior near z=1 is clarified as follows. Set

u = a + 
u �C18�

and assume that �
u�� �a�. From �C17�,

u�z� = a ± �2a�a − 1��1 − z� + ¯ . �C19�

Note that the plus �minus� sign in front of the square root
means to take the upper �lower� branch. Nonanalytic behav-
ior is seen at z=1. Since the function u�z� should be real in
�z��1, a satisfies a�a−1��0. Furthermore, �=�a /N should
be nonnegative due to physical requirements �see �C5��;
hence

a � 1. �C20�

4. Stability of the fixed points

Next we investigate the stability of the solutions. Let u*

be a fixed point solution:

�a − 1�u* − zau*� + u*u*� = 0. �C21�

To study the stability of u*, let u=u*+v. Inserting this into
�C9� and keeping up to the linear terms of v, we consider the
following eigenvalue problem:

��a − 1� + u��v + �u − za�v� + �u − zu��v�1� = 
v .

�C22�

Here we omit the asterisk from u* for brevity. Normalizing v
appropriately, we can take v�1�=0 or v�1�=1. We begin with
the analytic cases.

a. R„z…=�„z−1/2… /A

In this case, a=1 and u�z��1. Then �C22� becomes

�1 − z�v� + b = 
v , �C23�

where b represents v�1� taking 0 or 1. When b=0 the solu-
tion is

v�z� = C�1 − z�−
, �C24�

where 
�0 because of the initial condition b=v�1�=0. On
the other hand, when b=1, a general solution is

v�z� = �
−1 + c�1 − z�−
 �
 � 0� ,

ln�1 − z� �
 = 0� .
� �C25�

Here the condition b=1 requires that 
=1 and c=0. In con-
clusion, the allowed value of 
 is 
�0 or 
=1. This shows
that the fixed point solution is singly unstable.

b. R„z…=�z2 / „2A…

In this case, a=1 and u=z; hence �C22� is simplified to
v=
v for b=0, 1. It means that 
=1 for every deformation,
so that this fixed point is fully unstable. This is also true for
any finite N.

c. R=0

Since a=0 and u=0 in this case, �C22� is −v=
v, which
means 
=−1 for any v; thus the trivial fixed point is fully
stable.

d. R„z…=�„z−1…2 / „2A…

Here, a=0 and u=z−1. The eigenvalue equation is

− �1 − z�v� − b = 
v , �C26�

which can be solved in a similar way as for �C23�. The result
is

FIG. 5. A schematic graph of u�z�. Since the derivative of u is ill
defined on u=az, the solution terminates on this line. The above
graph represents two solutions meeting at �1, a�.
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v�z� = C�1 − z�
 �C27�

for b=0 and

v�z� = �− 
−1 + c�1 − z�
 �
 � 0� ,

ln�1 − z� �
 = 0� � �C28�

for b=1. Therefore the allowed values of 
 are


 � 0 and 
 � 1. �C29�

Therefore it is unstable.

e. Nonanalytic case

Next we proceed to the nonanalytic case. Using �C14�, we
regard v as function of u. Then �C22� is written as

dv
du

+ f�u�v + g�u�b = 0, �C30�

where

f�u� = 
 


a − 1
− 1
1

u
−

1

az − u
, �C31�

g�u� =
z − u

�1 − a��za − u�
.

A general solution of �C30� is

v = �Ce−F�u� �b = 0� ,

− e−F�u� 	 eF�u�g�u�du �b = 1� , � �C32�

where

F�u� � 	 f�u�du . �C33�

Let us compute F�u�. Since z is given as a function of u by
�C17�, we can write

	 du

az − u
=	 dû

1 − a

 û1/�a−1�−1

û1/�a−1� − 1
−

1

û

 , �C34�

where

û �
u

a
. �C35�

Thus, using the ambiguity of the constant term of F�u�, we
get

F�u� =

 − a

a − 1
ln û + ln�1 − û1/�a−1�� . �C36�

Therefore,

e−F�u� = û�a−
�/�a−1��1 − û1/�a−1��−1. �C37�

When b=0, v is proportional to �C37�, which becomes sin-
gular at u=a, i.e., z=1. Hence, there are no nontrivial solu-
tions satisfying b=0.

Next we consider the case b=1. From �C31� and �C36�,
we get

eF�u�g�u� = ±
û
/�a−1�−1

�1 − a�a
. �C38�

Note that the plus sign is taken for the upper branch and the
minus for the lower branch. Inserting this into �C32�, we get

Here the constant terms are chosen to satisfy v(u�z�)→1 as
z→1. Thus, the deviation v�u� from the upper branch is
finite for any 
, because û�1. On the contrary, v�u� from
the lower branch may diverge at u=0 and −1. We need a
constraint on 
 for v�u� to be finite. We find that the lower
branch with a=3/2 can be extended to −1�z�0, and that
v�u� remains finite for 
=1 or negative half-odd integers;
namely, the lower branch with a=3/2 is singly unstable.
However, this fixed point solution is unphysical because it
does not satisfy the Schwartz-Soffer inequality.19 Other
physical lower-branch fixed points satisfying the Schwartz-
Soffer inequality have many relevant modes more than
N /6−1.

5. Subleading corrections

a. The stable fixed point and critical exponents

Here, we calculate the subleading correction to the ana-
lytic fixed point R�z�= �� /A��z−1/2� and the eigenfunctions.
We expand the fixed point solution

R�z� =
1

N
R0�z� +

1

N2R1�z� + O
 1

N3
 , �C39�

and calculate the subleading correction R1�z�. Substituting
this expansion into �C1�, we obtain

�tR1�z� = �4 − d�R1�z� + A
2R1��1�R0�z� + 2R0��1�R1�z�

− zR1��1�R0��z� − zR0��1�R1��z� + R1��z�R0��z�

− 4R0��1�R0�z� + zR0��1�R0��z� + �1 − z2�R0��1�R0��z�

+
1

2
�z2 − 2�R0��z�2 − R0��z�R0��z�z�1 − z2�

+
1

2
R0��z�2�1 − z2�2
 . �C40�

We substitute the unique singly unstable fixed point solution

R0�z� =
�

A

z −

1

2

 .

into the above equation; then we obtain a fixed point equa-
tion for the corresponding correction R1�z�,
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�1 − z�R1��z� + R1�z� + �1 − z�R1��1� +
�

A

1

2
z2 − 3z + 1
 = 0.

�C41�

We obtain the following unique solution of this equation:

R1�z� =
�

2A
�z2 + 2z� . �C42�

Fisher indicated that this fixed point exists for N�18.

b. Stability of the analytic fixed point

We substitute the analytic fixed point expanded in 1/N
into the eigenvalue equation for an infinitesimal deformation
of the coupling function

�1 − z�2�1 + z�v��z� + �1 − z��N − 4z − 2�v��z�

+ �2z − N
�v�z� + �N − 2�v�1� = 0. �C43�

First, we study the equation for v�1�=0. Solutions of this
equation have regular singular points z=1 and −1 for the
interval −1�z�1. Therefore, we can obtain the solutions in
the following expansion forms around z=1:

v�z� = �1 − z�−	�
n=0

�

an�1 − z�n, �C44�

and around z=−1

v�z� = �1 + z���
n=0

�

bn�1 + z�n. �C45�

Substituting these forms into the eigenvalue equation, we
require that the coefficient of the lowest order vanishes.This
requirement gives the indicial equations for the exponents 	
and �

2	2 + �N − 4�	 + 2 − N
 = 0, ��2� + N� = 0, �C46�

which have solutions

	± =
4 − N ± �N2 − 8N + 8N


4
, � = −

N

2
,0. �C47�

The coefficient of an arbitrary order satisfies the following
recursion relation:

2k�k − 	± + 	��ak
± − �	± − k��	± − k − 1�ak−1

± = 0,

for k=1, 2, 3,…. By solving this recursion relation, the ex-
panded solution can be written in the Gaussian hypergeomet-
ric function as follows:

�
n=0

�

an
±�1 − z�n = F
1 − 	±,2 − 	±,3 − 2	± −

N

2
;
1 − z

2

 .

�C48�

Solutions with 	�0 or ��0 diverge at z=1 or −1, and they
are unphysical. To obtain a finite solution for the interval
−1�z�1, we construct a general solution as a linear com-
bination of two solutions,

v�z� = C+�1 − z�−	+�
n=0

�

an
+�1 − z�n + C−�1 − z�−	−�

n=0

�

an
−�1 − z�n.

�C49�

We can eliminate the divergent solution with �=−N /2 at z
=−1 by choosing C± for a requirement �v�−1����. Also the
finiteness of v�1� requires 	±�0, then we obtain a condition
on the eigenvalue


 �
2

N
. �C50�

This condition on 
 implies the existence of slightly relevant
modes at this analytic fixed point. In addition to these modes,
we find one relevant mode for v�1��0 with 
=1 by solving
the eigenvalue equation, as well as in the large N limit. This
fixed point yielding dimensional reduction seems to be un-
stable except in the large N limit. There is no singly unstable
fixed point generally. The only stable fixed point is the trivial
fixed point. In a limited coupling constant space where R��1�
is finite, however, the analytic fixed point is singly unstable.
Then, dimensional reduction occurs in such models with a
finite R��1� as initial coupling constant, as discussed in Sec.
IV.

Here we comment on the infinitely many relevant modes
pointed out by Fisher.13 They are included in the following
series in our solution �C49�:

	− = 1 − k,�k = 3,4,5,…� and C+ = 0.

These belong to the eigenvalues


k = 1 − k +
2k2

N
+ O
 1

N2
 ,

which are positive for sufficiently large k. These agree with
the eigenvalues obtained by Fisher, although we should add a
term 2nkP2Pk missed in Eq. �C6� of his paper. Since these
relevant modes diverge at z=−1, we have eliminated them as
unphysical modes, as discussed above.

APPENDIX D: INTEGRALS

We restrict ourselves to 4�d�6.

a�m2� = 	
k��− �,��d

ddk

�2��d

1

− J�̂k + m2

= 	
k��− �,��d

ddk

�2��d

1

− J�̂k

− m2	
k��− �,��d

ddk

�2��d

1

�− J�̂k��− J�̂k + m2�
.

�D1�

We put
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k��− �,��d

ddk

�2��d

1

− J�̂k

� a0 � 0. �D2�

We calculate the second term. Putting k→mk /�J, and using

the approximation −�̂mk/�J�m2k2 /J for m2�1, we have

m2	
k��− �,��d

ddk

�2��d

1

�− J�̂k��− J�̂k + m2�

�
Sd

�2��dJd/2md−2	
0

��J/m

dk
kd−3

k2 + 1

=
Sd

�2��dJ2

�d−4

d − 4
m2 + O�md−2� � a1m2 + O�md−2� ,

�D3�

where Sd=2�d/2 /��d /2�. Thus, we have the following ex-
pression for a�m2�:

a�m2� � a0 − a1m2. �D4�

b�m2� = 	
k��− �,��d

ddk

�2��d

1

�− J�̂k + m2�2

= 	
k��− �,��d

ddk

�2��d

1

�− J�̂k�2

− 2m2	
k��− �,��d

ddk

�2��d

1

�− J�̂k��− J�̂k + m2�2

− m4	
k��− �,��d

ddk

�2��d

1

�− J�̂k�2�− J�̂k + m2�2
.

�D5�

We put

	
k��− �,��d

ddk

�2��d

1

�− J�̂k�2
� b0 � 0. �D6�

We calculate the second and the third terms. Putting k
→mk /�J, and using the approximation −�̂mk/�J�m2k2 /J for
m2�1, we have

2m2	
k��− �,��d

ddk

�2��d

1

�− J�̂k��− J�̂k + m2�2

�
2Sd

�2��dJd/2md−4	
0

��J/m

dk
kd−3

�k2 + 1�2

=
Sd

�2��dJd/2

�d − 4�� cosec��d/2�
2

md−4 + O�m2� ,

and

m4	
k��− �,��d

ddk

�2��d

1

�− J�̂k�2�− J�̂k + m2�2

�
Sd

�2��dJd/2md−4	
0

��J/m

dk
kd−5

�k2 + 1�2

=
Sd

�2��dJd/2

�6 − d�� cosec��d/2�
4

md−4 + O�m4� .

�D7�

Then,

2m2	
k��− �,��d

ddk

�2��d

1

�− J�̂k��− J�̂k + m2�2

+ m4	
k��− �,��d

ddk

�2��d

1

�− J�̂k�2�− J�̂k + m2�2

�
Sd

�2��dJd/2

�d − 2�� cosec��d/2�
4

md−4 + O�m2�

� b1md−4 + O�m2� . �D8�

Thus, we have the following expression for b�m2�:

b�m2� � b0 − b1md−4. �D9�
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