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Multipole ordering in f-electron systems on the basis of a j-j coupling scheme
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We investigate microscopic aspects of multipole ordering in f-electron systems with emphasis on the effect
of lattice structure. For this purpose, first we construct f-electron models on three kinds of lattices, simple cubic
(sc), bee, and fee, by including f-electron hopping through (ffo) bonding in a tight-binding approximation on
the basis of a j-j coupling scheme. Then, an effective model is derived in the strong-coupling limit for each
lattice structure with the use of second-order perturbation theory with respect to (ffo). By applying mean-field
theory to such effective models, we find different types of multipole ordered states, depending on the lattice
structure. For the sc lattice, a I';, antiferro-quadrupole transition occurs at a finite temperature and, as we
further lower the temperature, we find another transition to a ferromagnetic state. For the bec lattice, a 1’5,
antiferro-octupole ordering occurs first, and then a ferromagnetic phase transition follows it. Finally, for the fcc

lattice, we find a single phase transition to the longitudinal triple-q I's, octupole ordering.

DOLI: 10.1103/PhysRevB.72.144401

I. INTRODUCTION

It is one of the currently important issues in the research
field of condensed matter physics to unveil exotic magnetic
properties of strongly correlated electron materials with ac-
tive orbital degrees of freedom. Among those materials, in
d-electron systems such as transition metal oxides, the origin
of complex magnetic structures has been vigorously dis-
cussed based on the concept of orbital ordering.!™* Also in
f-electron materials, including rare-earth and actinide ele-
ments, various kinds of magnetic and orbital ordering have
been found.>® It is now widely recognized that the orbital
degree of freedom plays a crucial role for the emergence of
novel magnetism in d- and f-electron systems.

Here we should note that in f-electron systems, spin and
orbital are not independent degrees of freedom, since they
are tightly coupled with each other due to the strong spin-
orbit interaction. Then, in order to describe such a compli-
cated spin-orbital coupled system, we usually represent the
f-electron state in terms of a “multipole” degree of freedom,
rather than using spin and orbital degrees of freedom as in
d-electron systems. Among multipole moments, there have
been intensive and extensive studies on dipole and/or quad-
rupole ordering in f-electron systems. In usual cases, mag-
netic ordering indicates a dipole one, which can be detected
by neutron diffraction experiments. Ordinary orbital ordering
means a quadrupole one, which can also be detected experi-
mentally, since it induces lattice distortions due to the spatial
anisotropy in charge distribution.

In addition to dipole and quadrupole ordering, in recent
years the possibility of higher-order multipole ordering, i.e.,
magnetic octupole ordering, has been also discussed for
Ce,La;_ B¢ (Refs. 7-13) and NpO, (Refs. 14-20) to recon-
cile experimental observations that seem, at first glance, to
contradict one another. Very recently, the possibility of octu-
pole ordering has been proposed also for SmRu,P,,.21?2 It is
noted that in these materials, crystalline electric field (CEF)
ground states are I’y quartets with large degeneracy even
under a CEF potential.>>*> In the I'y ground-state multiplet,
octupoles exist as independent moments in addition to dipole
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and quadrupole moments.”® Then, phenomenological theo-
ries have been developed under the assumption that octupole
ordering occurs. Note that direct detection of octupole order-
ing is very difficult, since the octupole moment directly
couples to neither a magnetic field nor lattice distortions.
However, those phenomenological theories have been suc-
cessful in explaining several experimental facts consistently,
e.g., induced quadrupole moments in octupole ordered states
in Ce La,_ B¢ (Refs. 8 and 10) and NpO,.">!”

As mentioned above, thus far, the study on multipole or-
dering in f-electron systems has been almost limited to the
phenomenological level, mainly due to the complexity to the
treatment of multipole degrees of freedom. It might be pos-
sible to consider a Heisenberg-like model for multipole mo-
ments, but the interactions among multipole moments were
determined just phenomenologically. It will be required to
proceed to microscopic theory in order to understand the
origin of multipole ordering in f-electron systems. However,
it is very hard and practically impossible to study multipole
ordering in the model retaining all the f-electron states.
Then, it is necessary to consider a tractable model which
keeps correct f-electron symmetry.

One way for such model construction is to use an LS
coupling scheme. For instance, the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions were estimated in DyZn,?’ and
in CeBy and CeB,C, (Ref. 28) from microscopic models
using the LS coupling scheme. However, the method based
on the LS coupling scheme is complicated and seems still
hard to be extended. One reason for the difficulty is that we
cannot apply standard quantum-field theoretical techniques
in the LS coupling scheme, since Wick’s theorem does not
hold. From this viewpoint, it is recommended to use a j-j
coupling scheme.?® Since individual f-electron states are first
defined, we can include many-body effects in systematic
ways using theoretical techniques developed for the research
of d-electron systems.?%-29-32

In this paper, in order to investigate how multipole order-
ing appears in f-electron systems from a microscopic view-
point, we exploit the j-j coupling scheme. We construct
tight-binding models on three kinds of lattices, simple cubic
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(sc), bee, and fee, by including Coulomb interactions among
I'g states. In order to discuss multipole ordering in these
models, we derive an effective multipole interaction model
in the strong-coupling limit for each lattice structure by using
the second-order perturbation theory with respect to f-f hop-
ping integrals, as to estimate the superexchange interaction
in d-electron systems. Then, within a mean-field approxima-
tion, we clarify what kind of multipole ordering occurs in the
effective model: For the sc lattice, a I';, antiferro-quadrupole
transition occurs, while for the bcc lattice, I',, antiferro-
octupole ordering appears. For the fcc lattice with geometri-
cal frustration, we find longitudinal triple-q I's, octupole or-
dering.

The organization of this paper is as follows. In Sec. II, we
introduce a tight-binding model based on the j-j coupling
scheme including only the I'g states. In Sec. III, we describe
the general prescription to derive an effective Hamiltonian
from the I'y model. In Sec. IV, we show the mean-field re-
sults of the effective models on sc, bce, and fec lattices.
Finally, in Sec. V, the paper is summarized.

II. HAMILTONIAN

When we study theoretically the f-electron properties, the
LS coupling scheme has been frequently used to include the
effect of Coulomb interactions, spin-orbit coupling, and CEF
potential. However, as mentioned above, it is not possible to
apply standard quantum-field theoretical technique in the LS
coupling scheme, since Wick’s theorem does not hold. In
order to overcome such a difficulty, it has been proposed to
construct a microscopic model for f-electron systems by ex-
ploiting the j-j coupling scheme,?® where we include first the
spin-orbit coupling so as to define the state labeled by the
total angular momentum j. For f orbitals with angular
momentum €=3, we immediately obtain an octet with
j=T7/2(=3+1/2) and a sextet with j=5/2(=3-1/2), which
are well separated by the spin-orbit interaction. Since the
spin-orbital coupling is, at least, in the order of 0.1 eV for f
electrons, it is enough to take into account the j=5/2 sextet,
when we investigate low-temperature properties of f-electron
compounds in the j-j coupling scheme.

In order to construct the many-body state, we accommo-
date f electrons in the j=5/2 sextet by following the Hund’s
rule interactions and CEF potential, as we have done for
d-electron systems. It has been found that the many-electron
state obtained in the j-j coupling scheme is continuously
changed to the corresponding state in the LS coupling
scheme, as long as those states in both schemes belong to the
same symmetry group.>’ Namely, if based on the spirit of
adiabatic continuation, there is no serious difference between
the states of the LS and j-j coupling schemes. Depending on
the problem, we can use one of the schemes for f-electron
systems. For instance, if we attempt to explain phenomeno-
logically the experimental results of f-electron insulators, it
is highly recommended to use the LS coupling scheme. On
the other hand, the j-j coupling scheme is rather appropriate
to develop a microscopic theory for novel magnetism and
unconventional superconductivity of f-electron systems. In
the present paper, our purpose is to construct a microscopic
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theory for multipole ordering from the viewpoint of spin-
orbital complex. Thus, we exploit the j-j coupling scheme
throughout this paper.

As described above, we consider only the states with
Jj=5/2. The j=5/2 states are further split into I'; doublet and
I'g quartet due to a cubic CEF. In order to consider multipole
phenomena such as octupole ordering in f-electron systems
from a microscopic viewpoint, in this paper we consider only
I'g states by assuming large CEF splitting energy between I';
and I'g levels. This simplification is motivated by the fact
that the possibility of exotic octupole ordering has been ac-
tively discussed in Ce,La;_Bs and NpO, with I'g ground
state.

Here readers may be doubtful of the reality of our as-
sumption, since the Coulomb interaction among f electrons
is naively thought to be larger than the CEF level splitting in
any case. However, it should be noted that we are now con-
sidering the f-electron state in the j-j coupling scheme, not
in the original f-electron state with angular momentum
£=3. As pointed out in Ref. 29, the Hund’s rule interaction in
the j-j coupling scheme is effectively reduced to be % of the
original Hund’s rule coupling. Namely, even if the original
Hund’s rule coupling among f electrons is 1 eV, it is reduced
to 200 K in the j-j coupling scheme. We note that the CEF
level splitting in actinide dioxides is considered to be larger
than 1000 K.2%3 We also recall that the CEF level splitting
in CeBy is as large as 500 K.} Thus, we safely conclude that
our present assumption is correctly related to the realistic
situation. Of course, in order to achieve quantitative agree-
ment with experimental results, it is necessary to include also
I'; level, since the magnitude of the CEF splitting is always
finite, even if it is large compared with the effective Hund’s
rule interaction. However, we strongly believe that it is pos-
sible to grasp microscopic origin of multipole ordering in
f-electron systems on the basis of the I'y model, since this
model is considered to be connected adiabatically from the
realistic situation. We postpone further effort to develop
more general theory to include all the j=5/2 sextet in future.

Concerning the f-electron number, in this paper we treat
only the case with one f electron in the I'g multiplet per site.
However, this restriction does not simply indicate that we
consider only the Ce-based compound. In the j-j coupling
scheme, in order to consider f"-electron systems, where n
indicates local f-electron number per site, we accommodate f
electrons in the one-electron CEF levels due to the balance
between Coulomb interactions and CEF level splitting en-
ergy, just as in the case of d-electron systems. Thus, the
situation with one f electron in the I'g multiplet per site ex-
presses both cases with n=1 in the I's-I'; [Fig. 1(a)] and
n=3 in the I';-I'g [Fig. 1(b)] systems, where I',-I', symboli-
cally denotes the situation with I'y ground and I'y excited
states. Furthermore, we should note that due to the electron-
hole symmetry in the I'g subspace, the effective model with
one f electron in the I'g state is the same for that in the case
with three electrons in the I'g multiplet. Namely, the present
model also indicates both cases with n=3 in the I's-I';
[Fig. 1(c)] and n=5 in the I';-I'g [Fig. 1(d)] systems.

Before proceeding to the exhibition of the Hamiltonian, it
is necessary to define f-electron operators in I'g states. Since
the I'y quartet consists of two Kramers doublets, we intro-
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FIG. 1. Electron configurations in the j-j coupling scheme for
I’y CEF ground states. (a) One electron in the I'g for n=1. (b) One
electron in the I'g for n=3. (¢) One hole in the I'g for n=3. (d) One
hole in the I'g for n=5.

duce orbital index 7 (=« and B) to distinguish the two Kram-
ers doublets, while spin index o (=1 and |) is defined to
distinguish the two states in each Kramers doublet. In the
second-quantized form, annihilation operators for I'g elec-
trons are defined as

fraT = V”%arS/Z + \"%Clr_yz, (la)
fral = \"%ar—S/Z + \/’%aﬂ/b (lb)

for a-orbital electrons, and

S = ari (2a)

SrpL = Aro1p25 (2b)

for B-orbital electrons, where a,; is the annihilation operator
for an electron with the z component j, of the total angular
momentum at site r.

Now we show the Hamiltonian of I'g electrons. For the
purpose to consider the effective model later, it is convenient
to express the Hamiltonian in the form of

H= Hkin + 7_(100’ (3)

where Hy;, denotes the kinetic term of f electrons and H,,,
indicates the local interaction part for I'g electrons. In this
paper, the kinetic term of I'g electrons is given by exploiting
the tight-binding approximation. Then, Hy;, is expressed as

Hin= 2 1 oS i eenron (4)

! ’
r,u,7,0,7 ,0

where p is a vector connecting nearest-neighbor sites and
1t is the hopping integral of an electron with (7', 0") at
site r+p to the (7,0) state at r. We note that the hopping
integral tf: o depends on orbital, spin, and direction u, due
to f-electron symmetry. Then, the form of the hopping inte-
gral is characteristic of lattice structure. The explicit form of
the hopping matrix will be shown later for each lattice struc-
ture. Note also the relation 7.°, ,=tf .

As for the local f-electron term H,, since we assume the
large CEF splitting energy between I'; and I'g levels, it is
enough to consider the Coulomb interaction terms among I'g
electrons. As easily understood from the introduction of
“spin” and “orbital” in the j-j coupling scheme, the local
[f-electron term in the I'g quartet becomes the same as that of
the two-orbital systems for d electrons. In fact, after lengthy
algebraic calculations for Racah parameters in the j-j cou-
pling scheme,” H,,. is given as
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Hloc = Uz Npplyq) + U,E Nyallep
rr r

+J 2 fIaa-f;ﬁg’fraa"frﬁa +J' E f:ﬂf:ﬂfrf’ Lfrf’T’

r,o,0’ r, 77

(5)

where n,.,= fimfm, and n,,=2 1., The coupling constants
U, U’,J,and J' denote the intraorbital Coulomb, interorbital
Coulomb, exchange, and pair-hopping interactions, respec-
tively. These are expressed in terms of Racah parameters,
and we obtain the relation U=U'+J+J’, which can be un-
derstood from the rotational invariance in orbital space.?”
Note that for d-electron systems, one also has the relation
J=J'. When the electronic wave function is real, this relation
is easily demonstrated from the definition of the Coulomb
integral. However, in the j-j coupling scheme the wave func-
tion is complex, and J is not equal to J' in general.

III. EFFECTIVE MODEL

In this section, we describe a method to derive an effec-
tive Hamiltonian by using the second-order perturbation
theory with respect to hopping integrals. Here we emphasize
that the procedure is essentially the same as to estimate su-
perexchange interactions for d-electron systems, although the
calculations are tedious due to the existence of the orbital
degree of freedom. After that, we will apply the standard
mean-field theory to the effective model to depict the phase
diagram, including multipole ordered states. We believe that
it is meaningful to understand the complicated f-electron
multipole problem by using a simple d-electronlike proce-
dure and approximations, both from conceptual and practical
viewpoints.

When the Hamiltonian is written in the form of Eq. (3),
first we solve the local problem

H10c|(bz> = En|q)2>’ (6)

where E, denotes the nth eigenenergy and |®?) is the corre-
sponding eigenstate with a label a to distinguish the degen-
erate states. Since we accommodate one electron per site, the
ground state |P§) is expressed as

@) = [ fifar=2)oy, (7)

r,7,0

where |0) is the vacuum state of f electrons, a denotes the
electron configuration in the ground state with one electron
per site, and P,(r,7,0) takes 0 or 1 depending on the con-
figuration a.

Here we consider the formal perturbation expansion in
terms of H,;, in order to construct the effective model.
Within the second order, H,.g is generally written as

|55

Heff= 2 E |¢8><¢8|Hkm—mHkm|(Dg><q)(b)
a,b,u m#0 EO - Em

. (8)

where a and b are labels to distinguish the ground states,
while u is the label for the degenerate excited states.

Since we consider the situation with one electron per site,
the intermediate state due to one-electron hopping has a va-
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TABLE I. Multipole operators in the I's subspace (Ref. 26). The site label r is suppressed in this table for simplicity.

r, 2u  3gu 3gv  4dulx 4duly 4dulz 4u2x 4u2y 4u2z Sux  Suy Suz Sgx 5gy  Sgz
Multipole operator XFY Txyz Og 0% J;tul Jiul Jézlul 1;42142 J§u2 z142 Tiu 7—§u 7—?u Oyz Ozx Oxy
Pseudospin representation ~ # & & g & & e FE F6E 6T [ FEE P P PE
cant and a double occupied site. The double occupied site e _ E [ —r) P fler
has six possible states, composed of a I's triplet with energy Lsysyisy = s’ srisy) Puisys Pissi sl
U'-J, a I'y doublet with energy U’'+J(=U-J’), and a I',
. . . . '\ % —
singlet with energy U+J'. For the mathematical completion, + (t:,;}) Pw4 s+ Puss s ;srl u' -7, (13)

it is necessary to include all possible excited states in the
intermediate process, but the calculation becomes compli-
cated. Therefore, in this paper, in order to grasp the essential
point of the I'y model by avoiding tedious calculations, we
include only the lowest-energy I's triplet among the interme-
diate f2 states. This restriction to the intermediate states is
validated when J is much larger than the hopping energy of f
electron. Since the f-electron hopping amplitude is consid-
ered to be small compared with J, even if we also include the
hybridization with conduction electrons, this approximation
is acceptable in f-electron systems.

Let us explain the prescription to derive the effective
model in the present case. It is convenient to consider ex-
change processes of electrons between two sites, r and r’.
Since we consider the situation with one f electron per site,
the initial state |rs;,r’s,) is written as

|r51’1‘,52>=f>r‘-51f:/xz|0>, 9)

where s; and s, symbolically denote spin and orbital states
for both electrons. Then, we move one electron from the site
r’ to r. As mentioned above, the intermediate f2 states at the
site r is restricted only as the lowest-energy I's triplet states.
Namely, the intermediated states should be expressed as
|u,r) with the label u to distinguish the triplet states, given

by
|+ 1,0) = ffig0), (10a)
0.0) = (fharfip, + Fhasf i) IOMN2, (10b)
= 10y = flo fip)|0)- (10c)

In order to obtain the effective model Eq. (8), it is enough to
evaluate the inner product

Pys = (e ulrsrs’). (11)
This quantity is explicitly given by P,i..15=1, Po.arp
=1/y2, and the other nonzero elements are given by P,
=_Pu;ss’ and P—u;T—o’T’—o”zpu;m"r’a'"

Then, by including the processes in which an electron at r
moves first, we obtain the effective Hamiltonian as

eft— 2 E ;34 5128 me;fnlfr V4fr’32

(r,r') $1754

(12)

where (r,r') denotes the pair of nearest-neighbor sites and
the generalized exchange interaction I is given by

In order to investigate the multipole ordering, it is more
convenient to express the effective Hamiltonian Eq. (12) in
terms of multipole operators. For this purpose, we introduce
some notations to describe multipole operators as

Lrgirror = S Ot (14a)
T ol = O Oggr s (14b)
Tt = By T (14c)
7= (£\37 - P)2, (14d)
E=—(F£\37)2, (14e)

where o are the Pauli matrices. By using these notations, we
define one-particle operators at site r as

Ar = E fITUATU'QT’O"fl‘T,O" ’

TT’O’OJ

(15)

where A is a 4 X 4 matrix. The multipole operators in the I'g
subspace are listed in Table 1.

With the use of above multipole operators, the effective
Hamiltonian is finally arranged in the form of

Her= 2 (Hyq + Hoq + Haurg + Hauzg) s (16)
q

where q is the wave vector and H,;, denotes quadrupole
interactions. Hy,,q (n=1 or 2) denotes interactions between
I'y,, moments and ones between 'y, and other octupole
moments with symmetry different from I'y,. H,q denotes
other dipole and octupole interactions. In general, H,, in-
cludes interactions between I'y,; and I'y,, moments, but we
find that such interactions are not included in the models
with hopping integrals only through (ffo) bonding on sc,
bee, and fec lattices. The explicit form of each multipole
interaction sensitively depends on the lattice structure, as
shown in the next section.

IV. RESULTS

Now we can calculate the effective interaction between
two electrons located along any direction r’ —r by using Eq.
(13), if the hopping integral along this direction is deter-
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TABLE II. Coupling constants in the effective model for the sc
lattice. The energy unit is (é)t?/(U’—J).

I (RS R ) @
T S b

12 3 -4 -4 0 4 1 -3

mined. The hopping integrals of f electrons are evaluated by
using the Slater-Koster table.?* In this section, we consider
the nearest-neighbor hopping integrals through (ffo) bond-
ing for three lattice structures, sc, bcc, and fcc. Then, we
present the effective Hamiltonian and its ordered states for
each lattice. The structure of our effective model is consis-
tent with the general form of nearest-neighbor multipole in-
teractions on each lattice derived by Sakai et al.®> We follow
the notation in Ref. 35 for convenience.

A. sc lattice

The nearest-neighbor hopping integrals through (ffo)
bonding for the sc lattice are given by

1400 — [T = 5*s,, (17a)
1000 _ [T~ 7 s,, (17b)
000 Z [T = #]p,, (17¢)

where a is the lattice constant and 7, =3(ffo)/14.
For the sc lattice, the quadrupole interaction term in Eq.
(16) is given by

Hig=a,(05_05 ,C.+c.p.), (18)

where c.p. denotes cyclic permutations and C,=cos(q,a)
(v=x, y, or z). The value of the coupling constant a; is given
in Table II.

Note that 09, transforms to (\5§0§q—0gq)/ 2 and
(—\60%(1—0(2’(1)/2 under c.p. (x,y,z)—(y,z,x) and (x,y,z)
—(z,x,y), respectively. The dipole and octupole interactions
are given by

Haq=be[ T2 (T24(C+ C,) +c.p.], (19)

and
Haung = BV [T 5" Co 4 c.p ]+ DY LTI (Co+ Cy) +e.p ]
+ [T T (C — C)) +ep))], (20)

where values of the coupling constants b; and bf") are shown
in Table II.

Note that the form of the hopping integrals Eqgs.
(17a)—~(17c) are exactly the same as those for the e, orbitals
of d electrons via (ddo) bonding.?>3® Thus, the effective
Hamiltonian has the same form as in the e, model consider-
ing only the lowest-energy intermediate states,” when we
interpret that 7 and o denote e, orbital and real spin, respec-
tively. However, the physical meaning of the present model
is different from that of the e, model. In particular, the effect
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FIG. 2. Phase diagram and magnetization for the sc lattice. The
Landé g-factor is g ng. (a) H-T phase diagram for three magnetic
field directions. Solid symbols denote the I';, quadrupole transition.
The diamond represents the ferromagnetic transition point. The
dashed curve represents the crossover to the ferromagnetic state.
The definition of the crossover is given in the main text. (b) Mag-
netization as a function of magnetic field.

of a magnetic field is essentially different. The dipole mo-
ment which couples to a magnetic field H is given by
J=(7/6)[J* +(4/7)J*2] for the I'y model, while for the e,
model, real spin o of d electrons is simply coupled to a
magnetic field. In contrast to the e, model, a magnetic field
resolves the degeneracy in the 7 space even within a mean-
field theory for the present model, as we will see later.

By applying mean-field theory to the effective model, we
find a T's, antiferro-quadrupole transition at a temperature
T=Ts,=3a,/kg. As we lower the temperature further, we
find a I',; ferromagnetic transition. This ferromagnetic tran-
sition can be regarded as a I's, antiferro-octupole transition,
since the I'y,; ferromagnetic state with the I';, antiferro-
quadrupole moment is equivalent to the I's, antiferro-
octupole ordered state with the I';, antiferro-quadrupole mo-
ment. The ground-state energy is (—3/ 2)a1—2b6+b(11)+2b(21)
per site.

In Fig. 2(a), we depict an H-T phase diagram. We note
that the ferromagnetic transition at zero magnetic field turns
to be a crossover under the finite magnetic field. The cross-
over is drawn by dashed curve, determined by the peak po-
sition in the magnetic susceptibility. Since it is found that the
crossover curve is almost isotropic in the region shown here,
we depict only the curve for HII[001]. Note also that under a
magnetic field, I'y,;, moments become finite, and then, the
I's, antiferro-octupole interaction (bg>0) effectively be-
comes a I';, antiferro-quadrupole interaction. Thus, the I's,
antiferro-quadrupole transition temperature increases as H is
increased at a low magnetic field region. This behavior re-
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FIG. 3. Temperature dependence of physical quantities in the
absence of magnetic field for the sc lattice. (a) Specific heat. (b)
Magnetization. (c) Magnetic susceptibility.

minds us of the experimental results for CeBg, although the
order parameter in the quadrupole ordered phase of CeBy is
the I's, quadrupole moment. Magnetization as a function of
H is shown in Fig. 2(b). The magnetization is isotropic as
H—0 since the I'y,; moment is isotropic, while anisotropy
develops under a high magnetic field.

In Figs. 3(a)-3(c), we show specific heat, magnetization,
and magnetic susceptibility, respectively, as functions of
temperature. We observe a two-step jump of specific heat at
the quadrupole and ferromagnetic transition temperatures,
since we have applied the mean-field theory to these second-
order transitions. Note that the magnetization starts to de-
velop below the ferromagnetic transition temperature. The
magnetic susceptibility exhibits a bend at T, while it di-
verges at the ferromagnetic transition temperature. Under the
magnetic field, this divergence turns to be a peak, which
defines the crossover to the ferromagnetic state in the H-T
phase diagram.

Without a magnetic field, the orbital (7) state is continu-
ously degenerate in the mean-field theory, although such
continuous symmetry is absent in this model. As has been
discussed for an e, electron model such as perovskite
manganites,* quantum fluctuations can resolve this continu-
ous degeneracy, but in the present model with the strong
spin-orbit interaction, magnetic field can resolve this degen-
eracy. The ground states are ferromagnetic with (J*!')|H,
where (- --) denotes the expectation value. Accompanied 0%

TABLE III.
(2) 2/ (v -),
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ordering is G-type [q=(1/2,1/2,1/2) in units of 27/a] or
C-type [q=(1/2,1/2,0)] for HI[001], while for HII[110], it
is C-type. For HII[111], there appear C-type 0% ordering or
equivalent ones in the cubic symmetry.

B. bcc lattice

The hopping integrals for the bec lattice are given by

fal2al2ad) S 114 P(+ 5 + & + )/ \E]tz, (21a)
(202 [T 4 (4 7 - & - 7)\3],  (21b)
(@202 S [T (- 5+ & - 7)\3]h,  (210)
fa2al=ad) [T L P(- 3 - & + )3, (21d)

where a is the lattice constant and #,=2(ffo)/21.
After some algebraic calculations, we obtain the quadru-
pole interaction term for the bcc lattice as

Hiq= a3(0xv -
+ a4[0

qOixy.q t CP)CicyC,

$,8yC, +c.p.]. (22)

v2-qOzeq
The dipole and octupole interactions are given by
H - bS Xyz, qT

+b7[T5 qT}sqs syc,+c.p.],

qC1CyC +b6(75”q7‘2q+cp)c cye.

(23)
and

Houng = DI T2 + e.p)ese,c.+ b ”)[J‘”‘"J“””S 5,¢.+C.p.]

=q'2q
+b ")Txyz_q(J‘Z‘fl”’sxsycZ +c.p.) + b [Tffq( Jig"szsxcy
24)

J;‘f;"s}s c,) +c.p.l,

where ¢,=cos(q,a/2) and s,=sin(g,a/2). The values of the
coupling constants a;, b;, and bl(.") are shown in Table III.

In the mean-field approximation, we find a I',, antiferro-
octupole transition at T,,=2bs/kg with q=(1,0,0), and a
Iy, ferromagnetic transition at a lower temperature. The
ground state has the I's, antiferro-quadrupole moment with
the same ordering wave-vector as the I',, moment. The
ground state energy is —a3—b5+b(ll) per site.

In Fig. 4(a), we show an H-T phase diagram. Again the
ferromagnetic transition becomes a crossover under the finite
magnetic field. The crossover curve determined by the peak
in the magnetic susceptibility is found to be almost isotropic
in the region shown here. Then, we show only the curve for
HII[001]. In the region for high H and low T, we find two
uniform phases. One is a phase with uniform (7,,) depend-

Coupling constants in the effective model for the bcc lattice. The energy unit is

as ay bs b6 b7 b(ll) b(zl)

(1) 0 0 0 0 @)
b R I S b,

1 -2 9 2 2 -1 2

-2\3 0 2 2 0 -2\3
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FIG. 4. (a) H-T phase diagram for the bcc lattice for three mag-
netic field directions. Solid symbols denote the I',, octupole transi-
tion. The diamond represents the ferromagnetic transition point.
The dashed curve represents the crossover to the ferromagnetic
state. As for the definition of the crossover, see the main text. Open
rectangles for HII[111] denote transitions to uniform phases, as
shown in (c). (b) Magnetization as a function of magnetic field for
the bee lattice. (c) Expectation value of I';, octupole moment
(T, at each of sublattice sites r=(0,0,0) and (a/2,a/2,al2)
under high magnetic fields along [111] for the bee lattice.

ing on temperature and another is a phase with uniform
(T\y.) which does not depend on temperature, as shown in
Figs. 4(a) and 4(c).

In Fig. 4(b), we show magnetization as a function of H.
We note that the magnetization is isotropic as H— 0 as in the
sc lattice, since the order parameter of the ferromagnetic
transition is the I'y,; moment. Note also that the jump in the
magnetization at (g ugH)/(kgT,,)=5.4 for HI[111] indi-
cates the transition to the uniform state.

Figures 5(a)-5(c) show specific heat, magnetization, and
magnetic susceptibility as functions of temperature, respec-
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Clhg

1 1 1

0 02 04 06 08 1 1.2
T/TZM

kBBuX / (gj HB)2 M/ (g]uB)
o]
h

FIG. 5. Temperature dependence of physical quantities in the
absence of magnetic field for the bee lattice. (a) Specific heat. (b)
Magnetization. (c) Magnetic susceptibility.

tively. We observe two jumps in the specific heat at the oc-
tupole and ferromagnetic transition temperatures. The mag-
netization begins to develop below the ferromagnetic
transition temperature. The magnetic susceptibility has a
bend at 7,, and diverges at the ferromagnetic transition tem-
perature. Note that the anomaly in the magnetic susceptibil-
ity at T,, is very weak. In the pure magnetic I',, octupole
ordered state, there remains degeneracy, while in ordinary
magnetic states, degeneracy is fully resolved. Thus, the na-
ture of the I',, octupole phase is similar to that of the quad-
rupole ordered phases. For instance, the anomaly in the mag-
netic susceptibility is weak at the transition temperature,
there is no ordered magnetic dipole moment, and another
phase transition occurs at a lower temperature.

The ground state is continuously degenerate, since the
I'y,; and I's, moments are isotropic in this model within the
q=(1,0,0) structure. We note that this degeneracy is due to
the symmetry of the model in contrast to the sc lattice. By
applying a magnetic field, the ground states are uniquely
determined. The ground states are ferromagnetic phases
(J*YIH with antiferro O,, ordering for HII[001], with an-
tiferro O,,+0,, ordering for HII[110], and with antiferro
0,.+0_,+0,, ordering for HII[111].

As mentioned in Sec. I, quite recently, a possibility of
octupole ordering in filled skutterudite compound SmRu,P;,
has been suggested experimentally.?!?? In the filled skutteru-
dite structure, rare-earth ion surrounded by pnictogens form
the bece lattice. Moreover, the I'g CEF ground state has been
reported in the Sm-based filled skutterudite.”> Thus, we ex-
pect to apply the present model to Sm-based filled skutteru-
dites. When we compare our result on the bec lattice with the
experimental suggestion, octupole ordering actually occurs
in our model for the bcc lattice, but I'5, octupole ordered
state does not seem to explain the experimental results. This
discrepancy is due to the suppression of the I'; orbital, since
in the filled skutterudites, the conduction electron has a,
symmetry, which hybridizes with the I'; electron. In addi-
tion, the level splitting between I'; and I is considered to be

144401-7
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TABLE IV. Coupling constants in the effective model for the fcc lattice. The energy unit is

()3 (U =).

a as day bg b]o b(ll) b(zl) bgl)
12 6443 192 195 -336 576 —-196 —4 0
bil) b(sl) b(61> b(lz) b<22) bf) bf) b(52) bf)
2243 0 0 4 193 -336 64\3 243 11243
rather small in filled skutterudites. Thus, for filled- model includes geometrical frustration. It is risky to apply

skutterudite materials, we should consider the j=5/2 sextet
model in the bec lattice with itinerant I'; and localized T'g
orbitals. We postpone the analysis of such a model in future.

C. fcc lattice
The hopping integrals for the fcc lattice are given by

(0.al2.al2) _ [f +(7" -4 \s’g?ya")/7]t3, (25a)
@202 [T 4 (7 - 4\s’§?’&y ) 7]t5, (25b)
fa2.a2.0) Z [T 4 (7 = 4Vr§5.y51)/7]t3, (25¢)
A0ar=a2) [T 4 (5 4 4\;'5951) /71t5, (25d)
A=a20.02) [T 4 (7 + 4\373)/Tts, (25e)
fal2=al20) _ [T 4 (7 4 4\5'57-9‘51)/7]@, (25f1)

where a is the lattice constant and ;=(ffc)/8.
Each multipole interaction term in the effective Hamil-
tonian for the fcc lattice is given by

0 A0 0
Hyq=a1(05_40; (cxcy +¢.p.) +a3(05 O,y 45,5y +C.p.)

+a4(0,y _qOyy oCxCy +C.D.), (26)

Hoq= bS[YffiqTf"fl(cycz +c.c,) +e.p.]

+ bg[Tff‘_qT%sxsy +C.p]+ b1 Ty, —qTiyzqlCicy + P,
(27)

and

Haung = b(]")[ijZJjg”cxcy +c.p.]

+ bYLTER T e e, + ) + cp.]

+b[TE TS 5, + c.p.]

+ bf{l)[Txyz_q(J?g”sxsy +c.p.)]

+ [T Jhre, (e~ c,) +c.p.)]

+ bg")[Tffq(— Jif;"szsx + J;‘,Z"sysz) +cp.]. (28)

The values of the coupling constants a;, b; and bl(,”) are shown
in Table IV.

As already mentioned in Ref. 20, it is necessary to ana-
lyze the effective model carefully for the fcc lattice, since the

directly the mean-field approximation to the effective model.
First we evaluate the correlation function in the ground state
using an unbiased method such as exact diagonalization on
the N-site lattice. Here we set N=8, as shown in Fig. 6(a).
The correlation function of the multipole operators is given
by

Xo7=(1N) 2 XLy, (29)

rr’

where (- --) denotes the expectation value using the ground-
state wave function.

In Fig. 6(b), we show results for the correlation functions.
The interaction between I',, moments (b,,) is large, but the
correlation function of the I',, moment is not enhanced, in-
dicating that the frustration effect is significant for an Ising-
like moment such as I',,. We find large values of correlation
functions for Jj”z, Ti”, and O,, moments at q=(0,0,1).
However, there is no term in the effective model which sta-
bilizes O,, quadrupole order at q=(0,0,1). We note that
either of I'y,, and I's, ordered states can accompany I's,
quadrupole moments. Thus, the enhancement of O, correla-

(a)

X
2,5 T T T T T T T T t) l
2 L q=(0’070) 4 u | ( ) |
g=(0,01) .
g=(1/2,1/2,172) *
1.5 ¢ .
oy
3 1¢ $ 8 " ¢ 4 4 4 : 1
L . 4 oL [
05 B A
A A A A
O 1 1 1 1 1 1 1 ! !
2u  3gu 3gv  4dulx 4ulz 4u2x 4u2z Sux  Suz  Sgx Sgz
4uly 4u2y Suy Sgy
Iy

FIG. 6. (a) Eight-site cluster (solid spheres) on the fcc lattice
taken in the calculation. (b) Correlation functions for the eight-site
cluster. The unit of the wave vectors is 27/ a.
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FIG. 7. The triple-q I's, octupole state. The surface is defined by
r=[Z,|¥(6, ¢,0)|*]"* in the polar coordinates, when the 5f wave
function is represented by W (r, 8, ¢, 0)=R(r)y{0, $,0), where o
denotes real spin. White shift of the surface indicates the increase of
the weight of up-spin state |6, ¢, )|/ 2.

tion function indicates an induced quadrupole moment in
Iy, or I's,, moment ordered states. Namely, the relevant in-
teractions are b(zz) and bg, which stabilize the J?”z and T:”
order, respectively, at q=(0,0,1).

Next we study the ordered state by applying mean-field
theory to the simplified model including only b; @ and byg.
Since the coupling constant by is slightly larger than b s,
ordered state should has lower energy than I'y,, ordered
state. The interaction bg stabilizes longitudinal ordering of
the T's, moments, i.e., (T>“)llq.

However, we cannot conclude that the ground state is the
single-q state ((Tff) (Té”> <T5”>) «(0,0,exp[i2m7z/a]l), since
there is a possibility of multi-q structures. For isotropic mo-
ments, single-q and multi-q structures have the same energy,
and thus, anisotropy in the moment is important to determine
the stable structure. Indeed, the I'5, moment has an easy axis
along [111] in the I'y subspace.!®!7 In this case, we find that
a triple-q state is most stable among the single-q and multi-
q states, since it gains interaction energy in all the directions.

In fact, the mean-field ground state of the simplified
model is the longitudinal triple-q I's, octupole state with four
sublattices, i.e.,

(TS”> o expli2mx/al, (30a)
(T30 o expli2arylal, (30b)
(T34 o expli2mz/al. (30c)
This state accompanies the triple-q quadrupole moment'>
(Oyo0) (T3, (31a)
(O) (T8, (31b)
(O = (TY). (31c)

In Fig. 7, we show symmetry of the charge distribution with
spin density in the triple-q I's, octupole state. Note that this
triple-q structure does not have frustration even in the fcc
lattice. The ground state energy is —4bg per site, and the
transition temperature is given by kgTs,=4bg. We also note

PHYSICAL REVIEW B 72, 144401 (2005)
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FIG. 8. Phase diagram and magnetization for the simplified
model on the fcc lattice. (a) H-T phase diagram. Solid symbols
denote the I's, octupole transition, while open symbols denote tran-
sitions between I'5, octupole ordered states with different sublattice
structures (see Fig. 9). (b) Magnetic field dependence of the
magnetization.

that this triple-q I's, octupole state has been proposed for
NpO, phenomenologically.'3

Let us now evaluate physical quantities in the mean-field
theory. Figures 8(a) and 8(b) show an H-T phase diagram
and the magnetic field dependence of the magnetization at
T=0, respectively. Note that the magnetization is isotropic as
H— 0 due to the cubic symmetry. The bend for H|[[001] and
the dip for HII[110] in magnetization indicate transitions to
the two-sublattice structures. There is anomaly in magnetiza-
tion also for HII[111] at the transition to the different sublat-
tice structure, but it is very weak.

Under a high magnetic field, sublattice structures change,
as shown in Fig. 9: For HII[001], we obtain a two-sublattice
structure with

(T3 =0, (32a)
<7§g> =0, (32b)
(Tff) o expli2mz/al. (32¢)
For HII[110], there appears a two-sublattice structure with
(T3 #0, (33a)
(T3 #0, (33b)
<T§u> =0. (33(:)

Finally, for HII[111], we observe
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FIG. 9. Magnetic field dependence of I's, octupole moments at
T=0 at each of four sublattice sites: r=(0,0,0) (open rectangles),
r=(0,a/2,al2) (open circles), r=(a/2,0,a/2) (open triangles),
and r=(a/2,a/2,0) (open diamonds) for the fcc lattice.

(Tfﬁ) o sin[27(y — z)/a], (34a)
<T§i‘> o« sin[27(z — x)/a], (34b)
(T3 o« sin[27r(x — y)/a]. (34c)

Note also that the triple-q state is fragile under HII[110]:
(Tff):O with a four-sublattice structure for g ugH/(kgTs,)
=0.11 at T=0 [this phase boundary is not shown in Fig.
8(a)].

Figures 10(a) and 10(b) show the temperature dependence
of the specific heat and magnetic susceptibility, respectively.
At T=Ts,, there appear the specific heat jump and a cusp in
the magnetic susceptibility. In contrast to the sc and bcc lat-
tices, there occurs single phase transition at zero magnetic
field in the case of the fcc lattice. Note also that the cusp

3.(3) ]
£ 2} -
Q

1- -4

O 1 1 L
1.5 --fEz__—___-——————"——_,,—————\\\\\:
@
=
ERN .
=
=
= 05| 1
o
2

O 1 1 1 L 1
0 02 04 06 08 1 1.2

T/ TSu

FIG. 10. Temperature dependence of physical quantities in the
absence of a magnetic field for the fcc lattice. (a) Specific heat. (b)
Magnetic susceptibility.
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structure in the magnetic susceptibility is rather strong com-
pared with experimental results.’>* Such a quantitative dis-
agreement with experiments is considered to originate from
the suppression of the I'; orbital in our model. The analysis
of the j=5/2 sextet model on the fcc lattice is one of future
problems.

V. DISCUSSION AND SUMMARY

We have constructed I's models with hopping integrals
through (ffo) bonding based on the j-j coupling scheme. In
order to study multipole ordering, we have derived an effec-
tive model by using the second-order perturbation theory
with respect to f-f hopping. By applying mean-field theory,
we find different multipole ordered states depending on the
lattice structure. For the sc lattice, a I';, antiferro-quadrupole
transition occurs at a finite temperature. As we lower the
temperature further, we find a ferromagnetic transition. For
the bec lattice, a I',, antiferro-octupole ordering occurs first,
and a ferromagnetic transition follows it. Finally, for the fcc
lattice, with careful analysis, we conclude the appearance of
the single phase transition to the triple-q I's, octupole order-
ing.

In this paper, we have not taken into account the effect of
conduction electron. One may complain about this point,
since it is believed that the hybridization of f electrons with
the conduction electron band is important to understand the
magnetism of f-electron systems. In fact, in the traditional
prescription, first we derive the Cogblin-Schrieffer model
from the periodic Anderson model by evaluating the c-f ex-
change interaction J; within the second-order perturbation in
terms of the hybridization between f and conduction
electrons.*® Then, we derive the RKKY interactions again
using the second-order perturbation theory with respect to
ch.

In general, the RKKY interactions are orbital dependent
and interpreted as multipole interactions. Such orbital depen-
dence originates from that of the hybridization. Note that the
hybridization should occur only between f and conduction
bands with the same symmetry. Here we emphasize that the
symmetry of the f-electron state is correctly included in our
calculations. Thus, the structure in the multipole interactions
will not be changed so much, even if we consider the effect
of hybridization with conduction band, as long as we con-
sider correctly the symmetry of f-electron states.

Let us show an example to support our belief. Concerning
the octupole ordering in NpO,, we have extended the present
theory further by including the effect of p electrons of oxy-
gen anions.’ Namely, we have constructed the so-called f
-p model, given in the form of

H=Hf+Hp+thb, (35)

where H; and H,, denote the local f- and p-electron terms,
respectively, and Hyy, is the hybridization between p- and
f-electrons through (pfo) and (pf). Then, it has been found
that the structure in the multipole interactions of the effective
model derived from the f-p model is qualitatively the same
as those obtained in the I'g model on the fcc lattice. In fact,
we have found a finite parameter region of I's, antiferro-
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octupole phase. Namely, the f-p model on the fcc lattice has
a tendency toward I's, antiferro-octupole ordering, which has
been already captured in the simple (ffo) model. This result
suggests that the structure in multipole interactions is deter-
mined mainly by the symmetry of f-electron state. Most of
the effect of hybridization can be included by changing ef-
fectively (ffo) in the multipole interactions shown in the
present paper.

However, if the itinerant nature of f electrons is increased
due to the large hybridization and metallicity of the ground
state becomes significant, the present approximation inevita-
bly loses the validity and the effect of the conduction band
should be important. In such a case, it is necessary to de-
velop a theory on the basis of the orbital-degenerate periodic
Anderson model in order to include the multipole fluctua-
tions. It is one of future tasks.

PHYSICAL REVIEW B 72, 144401 (2005)
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