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We discuss the solution to classical vibrations on several nonlinear lattices in one dimension. One lattice has
nearest-neighbor potential energy with both quadratic and quartic terms in the relative displacements q. An-
other lattice has the potential energy terms going as cosh�q�. Exact analytical solutions are derived for periodic
waves that have a period of two, three, and four lattice constants. Several of these cases employ Jacobian
elliptic functions, while one solution uses ordinary cosines. The quadratic term in the potential energy can have
either sign, and a double well occurs when it is negative and the quartic is positive. Solutions are also found
for this double-well potential.
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I. INTRODUCTION

We discuss the solution to classical waves on one-
dimensional lattices whose potential energy terms contain
several kinds of nonlinear forms. One case has both qua-
dratic and quartic terms

V±�qn� = ±
K2

2
qn

2 +
K4

4
qn

4, qn = Qn+1 − Qn, �1�

where Qn�t� is the displacement of an atom at site n and qn is
the relative displacement between two neighboring sites. We
have found exact analytical solutions to lattices waves that
have a period of two, three, or four lattice sites. Another case
has

Vc�qn� = K�cosh�bqn� − 1� , �2�

where �b ,K� are constants. In this case we find exact analyti-
cal solutions to lattice waves with a period of two or four
lattice sites.

There has been much interest in solutions to waves on
nonlinear lattices. The Toda lattice1,2 has a potential energy
that is an asymmetric exponential. It has exact solutions for
both soliton waves3 and lattice waves. This important result
has been an impetus to finding exact solutions to excitations
on other nonlinear lattices. The solutions are given in terms
of Jacobian elliptic functions, which are called cnoidal
waves.4–6 Our solutions use the same functions.

The quadratic-quartic lattice has been the topic of numer-
ous analytical and numerical calculations.7–20 The analytical
solutions are always approximate and make assumptions
such as a small amplitude or the rotating-wave
approximation.7,8,10,12,14,18 Our solutions are exact and con-
tain no approximations.

We found no prior work on lattices with a potential given
by Eq. �2�. However, the symmetric exponential is a natural
extension of Toda’s work on the asymmetric exponential.

Numerical solutions have identified numerous
excitations.9,13,15–17 Some are solitons, while others are quite
localized. This numerical work has been our inspiration to
find analytical solutions.

Another important kind of numerical work has been the
study of heat transport in one-dimensional lattices with non-

linear potentials. Some use the potential in Eq. �1�.19,20 Gen-
erally it is found that Fouriers law is not obeyed. Perhaps
nonlinear waves contribute to the heat flow in a way different
than Fourier’s law. The usual method of solving for the ther-
mal conductivity, using the Boltzmann equation,21 assumes
that the harmonic potential gives harmonic phonons and the
anharmonic parts of the potential cause the scattering which
gives the phonon lifetime. Toda’s result—that a nonlinear
lattice has modes that have an infinite lifetime—casts doubt
on this entire procedure, at least in one dimension.

II. LATTICE WAVES

The general description of classical vibrations on a one-
dimensional lattice assumes only interactions between first
neighbors. The displacement of an atom at site n is called
Qn�t�. The potential energy and equations of motion are

V = �
n

V�Qn − Qn+1� , �3�

m
d2

dt2Qn = F�Qn − Qn+1� − F�Qn−1 − Qn�, F�q� = −
d

dq
V�q� .

�4�

Define the relative displacement as

qn = Qn+1 − Qn, �5�

m
d2

dt2Qn = − F�qn� + F�qn−1� . �6�

Subtract the similar equation for mQ̈n+1 and obtain the final
equation

m
d2

dt2qn = 2F�qn� − F�qn+1� − F�qn−1� . �7�

For example, a harmonic lattice has

V�qn� =
K2

2
qn

2, F�qn� = − K2qn. �8�

Then the solution to Eq. �7� is given in terms of sines or
cosines:
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qn = Q0 cos��n − �0t� , �9�

�0
2 =

K2

m
4 sin2��/2� . �10�

These harmonic waves are well known. Our interest here is
to find solutions to cases where the potential function is not
just parabolic. One problem we consider is

m
d2

dt2qn�t� = ± K2�qn+1 + qn−1 − 2qn� + K4�qn+1
3 + qn−1

3 − 2qn
3� ,

�11�

which is a mixture of quadratic and quartic potential func-
tions. The quadratic term can have either sign. When it is
negative the potential function has a double well. Another
problem we consider is for the cosh�bq� potential:

m
d2

dt2qn�t� = Kb�sinh�bqn+1� + sinh�bqn−1� − 2 sinh�bqn�� ,

�12�

m
d2

dt2Qn�t� = Kb�sinh�bqn� − sinh�bqn−1�� . �13�

Either of these two equations describes lattice waves.

III. CNOIDAL WAVES

Some of the periodic solutions are based upon the prop-
erties of Jacobian elliptic functions,4 which are also called
cnoidal waves. They are reviewed in the Appendix. Here we
just summarize a few of their basic properties.1,4–6

The integral for the arcsine is

u = �
0

z dt
�1 − t2

= arcsin�z�, z = sin�u� . �14�

In a similar way, introduce another function that depends
upon the parameter k and its inverse

u = �
0

z dt
��1 − t2��1 − k2t2�

, z = sn�u� . �15�

The quantity sn�u� is a Jacobian elliptic function. Using it,
one can define a family of related functions

cn2�u� = 1 − sn2�u�, dn2�u� = 1 − k2sn2�u� , �16�

sd�u� =
sn�u�
dn�u�

, cd�u� =
cn�u�
dn�u�

, nd�u� =
1

dn�u�
. �17�

Other elliptic functions are the inverse of these. However, the
ones we list have nice periodic properties and could be so-
lutions to lattice waves. The inverses all contain divergences
and are not possible solutions. So we restrict our attention to
these functions.

They are periodic, with the period determined by mul-
tiples of the first elliptic integral K�k�,

K�k� = �
0

1 dt
��1 − t2��1 − k2t2�

= �
0

�/2 d�

�1 − k2 sin2 �
,

�18�

and the period of dn�u� is 2K�k�, while that for sn�u� and
cn�u� is 4K�k�. All of these functions also depend upon k,
although that dependence is not highlighted in the notation.
In the limit of small values of k,

lim
k→0� sn�u� → sin�u� ,

cn�u� → cos�u� ,

dn�u� → 1.
	 �19�

The derivatives of the functions are important. Start with the
definition �15� and take its derivative

du

dz
=

1
��1 − z2��1 − k2z2�

, �20�

dz

du
=

dsn�u�
du

= ��1 − z2��1 − k2z2� = cn�u�dn�u� . �21�

The others can be derived from this result. All the first and
second derivatives are shown in Table I. The first derivatives
are given in numerous references, but we had to obtain the
second derivatives ourselves. Second derivatives are needed
for the equations of motion. Note that they all have, on the
right, a term with a single power of a cnoidal function and a
term with a cubic power. Those are exactly the type of terms
needed for equations of motion of quadratic-quartic springs.
Additional properties are given in the Appendix.

The last three functions in Table I are simply related to the
first three. The period of sn�u�, cn�u� is 4K, so that K is a
quarter wave. An exact identity is4

sn�u ± K� = ± cd�u� , �22�

cn�u ± K� = � k1sd�u� , �23�

dn�u ± K� = k1nd�u� . �24�

Any solution that contains sn�u� is also solved by the func-
tion cd�u�: the same for cn�u� and k1sd�u�, and dn�u� and
k1nd�u�. Note, in Table I, that cd�u� has exactly the same
second derivative as does sn�u�. So we will only give solu-

TABLE I. First and second derivatives of some cnoidal func-
tions. k1

2=1−k2.

fn�u� d

du
fn�u�

d2

du2 fn�u�

sn�u� cn�u�dn�u� −sn�u��1+k2−2k2sn2�u��
cn�u� −sn�u�dn�u� −cn�u��1−2k2+2k2cn2�u��
dn�u� −k2sn�u�cn�u� dn�u��2−k2−2dn2�u��
sd�u� cd�u�nd�u� −sd�u��1−2k2+2k2k1

2sd2�u��
cd�u� −k1

2sd�u�nd�u� −cd�u��1+k2−2k2cd2�u��
nd�u� k2sd�u�cd�u� nd�u��2−k2−2k1

2nd2�u��
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tions involving the first three of the functions in Table I,
since the other cases are just a quarter-wave difference in
phase.

IV. SINGLE-WELL QUADRATIC-QUARTIC SPRING

This section discusses the solution to Eq. �1� for the po-
tential V+�q�. This potential function has a single minimum
as a function of the displacement q.

A. Single spring

For a single spring we can get an exact solution to the
classical equation of motion. This section discusses the solu-
tion for positive quadratic spring: the potential function for a
mass attached to a single spring is

V+�Q� =
K2

2
Q2 +

K4

4
Q4, �25�

m
d2

dt2Q = − K2Q − K4Q3. �26�

Examine Table I, and notice that the second derivative of
cn�u� looks like the equation of motion for potential �25�
with quadratic and quartic terms. Let u=�0t and then equate
coefficients to get

Q = Q0cn��0t� , �27�

K2

m�0
2 = 1 − 2k2,

K4Q0
2

m�0
2 = 2k2. �28�

Solving gives that

�0
2 =

1

m
�K2 + K4Q0

2�, 2k2 =
K4Q0

2

K2 + K4Q0
2 � 1. �29�

The amplitude Q0 is a free parameter, and it determines the
frequency �0 of the wave. The last inequality requires that
k2�1/2.

Note that a purely quartic spring has K2=0, which is
achieved by setting k2=1/2, and then

�0
2 =

K4

m
Q0

2. �30�

The purely quadratic lattice has k=0. Values in the range
0	k2	1/2 contain a mixture of quadratic and quartic po-
tential energies. One can show that the total energy in the
oscillation is

E =
1

2
K2Q0

2 +
1

4
K4Q0

4. �31�

B. Period four lattice waves

A quartic lattice also has a solution in terms of elliptic
functions. Still consider the single well with K2
0, which is
the potential V+�qn� in Eq. �1�.

Treat the case where the wave has a period of four lattice
sites. The addition theorem for cn�u� is4–6

cn�u + v� =
cn�u�cn�v� − sn�v�dn�v�sn�u�dn�u�

1 − k2sn2�u�sn2�v�
. �32�

The period of this function is 4K, where K�k� is the elliptic
integral of the first kind. For a quarter period cn�K�=0,
sn�K�=1, and dn�K�=�1−k2
k1, so that

cn�u + K� = − k1
sn�u�dn�u�
1 − k2sn2�u�

= − k1sd�u� , �33�

cn�u − K� = k1
sn�u�dn�u�
1 − k2sn2�u�

= − cn�u + K� . �34�

We find

cn�u + K� + cn�u − K� = 0, �35�

cn3�u + K� + cn3�u − K� = 0. �36�

We assume that the solution to Eq. �11� is

qn�un� = q0cn�un�, un = nK − �4t , �37�

where �4 is the frequency of a wave of period four lattice
sites. Using the above identities �35� and �36�, Eq. �11� be-
comes

m�4
2 d2

du2q0cn�un� = − 2K2q0cn�un� − 2K4q0
3cn3�u� . �38�

This equation has exactly the form of our cnoidal equation of
motion in Table I. The solution is

2K2

m�4
2 = 1 − 2k2,

2K4q0
2

m�4
2 = 2k2, �39�

�4
2 =

2

m
�K2 + K4q0

2� . �40�

Again k2=1/2 for a purely quartic lattice �K2=0� and k=0
for a purely quadratic lattice �K4=0�. In either case the lat-
tice wave has a period of four lattice sites.

The energy of the wave, per atomic site, is

E

N
=

1

2
K2q0

2 +
1

4
K4q0

4. �41�

The other interesting quantity is the atom displacement Qn.
We wish to determine the function fn, which obeys
Qn=Q0fn, and

qn = q0cn�un� = Q0�fn+1 − fn� . �42�

The solution to the above equation uses the feature that
cn�u+2K�=−cn�u� to find

fn = cn�un� + cn�un+1� , �43�

fn+1 = cn�un+1� + cn�un+2� = cn�un+1� − cn�un� , �44�
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q0cn�un� = − Q02cn�un�, q0 = − 2Q0. �45�

Thus we have derived the atomic displacement Qn�t�, which
exactly solves the problem of a lattice wave with a period of
four sites.

An interesting feature is the absolute value Qx of the
atomic displacements, which is not obvious from Eq. �43�.
Define �=un+K /2, and we find

fn = cn�� − K/2� + cn�� + K/2� �46�

=2cn�K/2�g��� , �47�

g��� =
cn���

1 − k2sn2�K/2�sn2���
=

cn���
1 − �1 − k1�sn2���

,

�48�

sn2�K/2� =
1

1 + k1
, cn2�K/2� =

k1

1 + k1
. �49�

The result depends upon the maximum value of �g���� as a
function of �. There are two regimes.

�i� For k1
1/2 the largest value is when �=0 or 2K,
where �g�0��=1. In this case the maximum atomic displace-
ment is

Qx = 2Q0� k1

1 + k1
. �50�

�ii� For k1	1/2, the maximum of g��� is at an interme-
diate value of �. In this case, the maximum atomic
dispslacement is Qx=Q0 /k, where k��3/2.

At k=0 �k1=1� the atomic displacment is Qx=�2Q0. For
nonzero values of k it decreases monotonically down to
k=1 �k1=0� where it is Qx=Q0.

C. Period two waves

Cnoidal waves also exist with a period of two lattice sites.
Note that sn�2K�=0 and cn�2K�=−1 which gives

cn�u ± 2K� = − cn�u� , �51�

cn3�u ± 2K� = − cn3�u� . �52�

Therefore, using a cnoidal wave of period two gives the fol-
lowing equation from Eq. �11�:

qn = q0cn�un�, un = 2Kn − �2t , �53�

m�2
2 d2

du2q0cn�u� = − 4K2q0cn�u� − 4K4q0
3cn3�u� . �54�

Compare this equation with the second derivative of cn�u� in
Table I and find

4K2

m�2
2 = 1 − 2k2,

4K4q0
2

m�2
2 = 2k2, �55�

�2
2 =

4

m
�K2 + K4q0

2� = 2�4
2. �56�

So there is an exact solution to Eq. �11� with a period of two
lattice sites in terms of cnoidal functions. These modes are at
the edge of the Brillouin zone. Since the period is 4K, then
the allowed wave vector p, in the Brillouin zone, runs in the
range −2K� pa�2K where a is the lattice constant. The
energy per site is still Eq. �41�.

The atomic displacement must still solve Eq. �42�, which
in this case is acomplished by the choice

Qn = Q0cn�un�, Qn+1 = Q0cn�un + 2K� = − Q0cn�un� ,

�57�

qn = − 2Q0cn�un�, q0 = − 2Q0. �58�

We have derived the atomic displacement Qn�t�, which ex-
actly solves the lattice wave of period two sites.

D. Period three waves

The quartic potential has a cosine solution which gives a
periodic wave. Use the identity

cos3��� =
1

4
�cos�3�� + 3 cos���� �59�

to get the lattice solution

cos3��n + �� + cos3��n − �� − 2 cos3��n�

=
1

2
�cos�3�n��cos�3�� − 1� + 3 cos��n��cos��� − 1� .

�60�

Therefore, the lattice equation �11� has a cosine solution
when choosing cos�3��=1 and �= ±2� /3. Then Eq. �11�
becomes

qn = q0 cos��n�, �n 

2�

3
n − �3t , �61�

− m�3
2q0 cos��n� = − 3K2q0 cos��n� −

9

4
K4q0

3 cos��n� ,

�62�

�3
2 =

3

m
�K2 +

3

4
q0

2K4� . �63�

The frequency depends upon the relative strength of the two
spring constants �K2 ,K4�. Note that this solution also permits
negative values of K2, as long as �3

2
0. Page8 obtained a
different value of �3

2 when using the rotating-wave approxi-
mation.

The energy in the wave, per site, is

E/N =
1

2
K2q0

2 +
9

32
K4q0

4. �64�

The atomic displacements are
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Qn = Q0 sin��n − �/3� , �65�

qn = Q0�sin��n + �/3� − sin��n − �/3��

= 2Q0 sin��/3�cos��n� , �66�

q0 = �3Q0, �67�

where we used sin�� /3�=�3/2. This solution has a period of
three lattice sites. So when the wave has a period of three
sites, the solution is a cosine function, but when the period is
two or four lattice sites, it is a Jacobian elliptic function.

V. DOUBLE-WELL POTENTIAL

Now consider the solution when the quadratic spring con-
stant is negative. For a lattice, we solve using V−�qn� in Eq.
�1�. For a single spring, we solve using the potential

V−�Q� = −
K2

2
Q2 +

K4

4
Q4, �68�

m
d2

dt2Q = K2Q − K4Q3 = − F�Q� . �69�

The potential has a double well. The force F�Q� is zero at
three points Q=0, Q= ±Qm, where the latter are the minima
of the double well:

Qm =�K2

K4
. �70�

Figure 1 shows the double well graphed as a function of
x=Q /Qm:

V−�Q� =
K4Qm

4

4
f�Q/Qm�, f�x� = x2�x2 − 2� . �71�

The potential minima are at x= ±1, and the potential is zero
at x= ±�2. If the total energy of vibration is negative, then

the particle oscillates in one of the two minima. If the total
energy is positive, the oscillations is over both sides of the
double well.

A. Single spring

Examine the second derivative of the third elliptic func-
tion dn�u� in Table I. Compare it to Eq. �93� and note that the
first term on the right has the sign appropriate to be a solu-
tion to Eq. �69�. The function dn�u� is a solution to this
equation. The exact solution is

Q�t� = Q0dn��0t�, u = �0t , �72�

�0
2 =

K4Q0
2

2m
, k2 = 2�1 −

K2

K4Q0
2� = 2�1 −

Qm
2

Q0
2 � . �73�

This solution applies to the case that the atom is vibrating in
one of the two potential minima: here we have chosen the
sign for the right-hand minimum. The minimum occurs at the
displacement Qm.

The restriction that k2
0 is that Q0
Qm which is
natural. In the bottom of the well, the particle oscillates in
the range Q0
Q
k1Q0, where k1

2=1−k2. The solution
is only valid for k2�1. At k2=1, then V−�Q0�=0 and
dn�u�=sech�u�, and the particle oscillates in the range
Q0
Q
0 and Q=0 is approached only asymptotically at
large time.

Another solution is needed for the case that the particle in
the double well has sufficient energy to oscillate through
both wells. In this case we again use the equation for the
second derivative of cn�u�. Rewrite this equation as

d2

du2cn�u� = �2k2 − 1�cn�u� − 2k2cn3�u� . �74�

Whenever 1
k2
1/2 the factor of �2k2−1�
0. In this
case,

Q�t� = Q0cn��0t� , �75�

2k2 − 1 =
K2

m�0
2 , 2k2 =

K4Q0
2

m�0
2 , �76�

�0
2 =

K4

m
�Q0

2 − Qm
2 �, k2 =

1

2

Q0
2

Q0
2 − Qm

2 	 1, �77�

which requires Q0
2
2Qm

2 . The function dn�u� is the solution
for Qm	Q0	�2Qm, while cn�u� is the solution when
Q0
�2Qm. The energy of the oscillation is

E = −
1

2
K2Q0

2 +
1

4
K4Q0

4. �78�

Equation �69� also has a solution that is purely decaying
in time. Try a solution of the form

Q�t� =
A

cosh��t�
. �79�

This equation is an exact solution of Eq. �69� when

FIG. 1. Double-well potential f�x� graphed as a function of
x=Q /Qm.
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�2 =
K2

m
, A = �2Qm. �80�

At t=0 the amplitude is Q=�2Qm. That is the amplitude of a
wave with zero potential energy. So if the double well starts
with that amplitude and zero kinetic energy, it does not os-
cillate, but the amplitude decays to zero.

B. Period four lattice wave

The solution for the period four lattice wave can be ex-
tended to cover the double-well solution. For 1
k2
1/2
the quadratic spring constant K2 changes sign. The solution
�37� also applies to this case, where the quadratic spring has
a negative constant as in Eq. �68�:

2K2

m�4
2 = 2k2 − 1,

2K4q0
2

m�4
2 = 2k2, �81�

�4
2 =

2

m
�K4q0

2 − K2� , �82�

2k2 =
q0

2

q0
2 − Qm

2 . �83�

We have found an exact solution for the potential V−�Q� with
a double-well potential. This solution applies when
q0

2
2Qm
2 . The energy per site is

E/N = −
1

2
K2q0

2 +
1

4
K4q0

4. �84�

The atom displacement is the same as in Eq. �43�.

C. Period two lattice wave

The double well V−�qn� also has a lattice wave with a
period of two lattice sites. The earlier solution using cn�un�
can be extended to include the double-well potential. For
1
k2
1/2 the quadratic spring constant K2 changes sign.
The solution �53� also applies to this case, where the qua-
dratic spring has a negative constant as in Eq. �68�.

4K2

m�2
2 = 2k2 − 1,

4K4q0
2

m�2
2 = 2k2, �85�

�2
2 =

4

m
�K4q0

2 − K2� = 2�4
2, �86�

2k2 =
q0

2

q0
2 − Qm

2 . �87�

We have found another exact solution for the potential V−�Q�
with a double-well potential. This solution applies when
Q0

2
2Qm
2 . The energy is Eq. �84�. The atom displacement is

the same as in Eq. �57�.

D. Period three lattice wave

Again use a cosine function and find

qn = q0 cos��n�, �n 

2�

3
n − �3t , �88�

− m�3
2q0 cos��n� = 3K2q0 cos��n� −

9

4
K4q0

3 cos��n� ,

�89�

�3
2 =

3

m
�3

4
q0

2K4 − K2� , �90�

which is valid as long as �3
2
0. The energy per site is iden-

tical to Eq. �64� after changing the sign of K2. The atom
displacement is still Q0 sin��n−� /3�.

Our solutions for the lattice waves of the double well only
apply to the case of positive energy of the wave, so that the
oscillations are over both sides of the double well. We do not
have a solution for the case of negative total energy, where
the periodic motion is restricted to one of the two well
minima. For the single spring, the function dn�u� provided a
solution to this case. This function does not work for the
lattice, and we have not identified a function that does work.

E. Numerical examples

Here we wish to compare the properties of these three
solutions. Table II shows the frequencies and wave vectors
�pa� for three cases k2=1/4 ,1 /2 ,3 /4. The case k2=1/2 is a
purely quartic lattice �K2=0�. The case k2=1/4 has equal
parts quadratic and quartic energies. The case k2=3/4 is a
double well. The frequencies are normalized to

2 =
K4q0

4

m
. �91�

For k2=1/4 ,3 /4 we also set 2=K2q0
2 /m. This choice is

arbitrary. We could alternately define 2 in terms of the

TABLE II. Three solutions with values of k2=1/4 ,1 /2 ,3 /4. The case k2=1/2 is a purely quartic lattice
�K2=0�. The case k2=3/4 is a double well.

n

k2=1/4 k2=1/2 k2=3/4

pa �n / pa �n / pa �n /

2 2K=3.708 2 2K=3.372 �8 2K=4.313 �8/3

3 2� /3=2.094 3/2 2� /3=2.094 �21/4 2� /3=2.094 �5/4

4 K=1.854 �2 K=1.686 2 K=2.157 �4/3
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maximum atomic displacements or else in terms of the aver-
age energy of each mode. In these cases the comparisons are
slightly different. The above choice seems the most conve-
nient, and the comparison is made only to show that the
modes have a regular progression in terms of frequency ver-
sus wave vector.

The double-well case �k2=3/4 ,Q0
2=3Qm

2 � has a peculiar
solution, since the lattice wave of period three has a lower
frequency and a lower value of pa than does the lattice wave
of period four. This feature is unavoidable, since the period
three has a spacing of 2� /3, while the period four has a
spacing of K�k�. As k nears 1, then K�k� gets very large and
passes 2� /3 in value.

VI. cosh„q… POTENTIAL

This section solves some of the properties of a lattice with
the potential K�cosh�bq�−1� between neighboring atoms.

A. Single spring

For a single spring we can get an exact solution to the
classical equation of motion. The potential function for a
mass attached to a single spring is

V�Q� = K�cosh�bQ� − 1� , �92�

m
d2

dt2Q = − bK sinh�bQ� , �93�

d2

d�2� = − sinh���, � = bQ, � = �0t, �0
2 =

b2K

m
.

�94�

The solution to the equation of motion is

� = ± 2 ln�dn�u�
�k1

�, u = �� , �95�

where dn�u� is a Jacobian elliptic function.4–6 Evaluating the
two sides of Eq. �94� gives

d2

d�2� = � 2�2�dn2�u� −
k1

2

dn2�u�� , �96�

− sinh��� = �
1

2
�dn2�u�

k1
−

k1

dn2�u�� . �97�

These two expressions are identical if

4�2k1 = 1, �98�

� =
1

2�k1

, �99�

u =
�

2�k1

, � =
�0

2�k1

, �100�

which completes the exact solution for a single spring.

Equation �24� has a well-known property dn�u+K�
=k1 /dn�u�. Define X=dn2�u� /k1. At the time u, then
�=ln�X�. At the later time u+K, then �=ln�1/X�=−ln�X�.
This sign alternation gives the oscillatory behavior. The
function X�u� oscillates in value around 1, and ln�X� oscil-
lates in value around 0. At u=0, then dn�0�=1, while at u
=K, then dn�K�=k1. These two points are the limits of the
oscillations ±q̂0, where

q̂0 = − ln�k1� , �101�

E =
K

2k1
�1 − k1�2 = K�cosh�q̂0� − 1� . �102�

The last equation gives the energy.

B. Period two lattice waves

The exponential lattice has periodic solutions in terms of
elliptic functions. Exact solutions have been found for lattice
waves with a period of two and four lattice sites.

The function dn�u� has a period of u=2K, so that
dn�u+2K�=dn�u�. A period of two sites is obtained by
choosing

�n = Kn − �� , �103�

�n = bQn = ± ln�dn��n�
�k1

� . �104�

The � sign is confusing, so omit it. However, a solution is
found for either choice. Using the plus sign, the periodicity
gives

�n+2 = �n, �105�

�n±1 = − �n, �n±1 − �n = − 2�n, �106�

where the latter identity used Eq. �24�. For this case, Eq. �13�
can be written as

d2

d�2�n = − 2 sinh�2�n� . �107�

This is the same equation we solved for the single spring,
except for occasional factors of 2. The solution is Eq. �104�
with

� = ±
1

�k1

, �108�

�n = Kn ±
�

�k1

, �2 =
�0

�k1

. �109�

We have derived the atomic displacement Qn�t�, which ex-
actly solves the lattice wave of period two sites. The energy
in the wave, per site, is

E

N
=

K

2k1
�1 − k1�2 = K�cosh�q̂0� − 1� . �110�

The maximum displacement in this case is q̂0 /2.
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C. Period four waves

Consider the case where the wave has a period of four
lattice sites. The relative displacement has the expression

rn = bqn = 2 ln�dn��n�
�k1

� , �111�

�n = vn − ��, v =
K

2
. �112�

This choice gives rn+4=rn for a period of four. In evaluating
Eq. �12�, the left-hand side is

d2rn

d�2 = − 2�2k1�X −
1

X
�, X 


dn2��n�
k1

. �113�

The first two terms in the force are

sinh�rn+1� + sinh�rn−1� =
1

2
�dn2��n+1� + dn2��n−1�

k1
� �114�

� − k1� 1

dn2��n+1�
+

1

dn2��n−1���
�115�

=
1

2
�dn2��n+1� + dn2��n−1��� , �116�

� =
1

k1
−

k1

dn2��n+1�dn2��n−1�
. �117�

When v=K /2, then an identity4–6 for these functions is

dn�u + v�dn�u − v� = k1. �118�

This identity can be proved by using an equation in the Ap-
pendix and

sn2�K/2� =
1

1 + k1
, cn2�K/2� =

k1

1 + k1
, dn2�K/2� = k1.

�119�

In this case �=0 and the two terms in Eq. �114� cancel to
zero. Therefore our equation of motion becomes, for period
four,

d2rn

d�2 = − 2 sinh�rn� . �120�

This equation is similar to that of a single spring. The solu-
tion has 2�2k1=1 or

� = ±
1

�2k1

, �121�

�n =
K

2
n ±

�

�2k1

, �4 =
�0

�2k1

. �122�

The energy per site is again given by Eq. �110�.
The single-site displacement is

�n = − ln�dn��n�dn��n+1�
k1

� , �123�

�n+1 = − ln�dn��n+1�dn��n+2�
k1

� , �124�

rn = �n+1 − �n = ln� dn��n�
dn��n+2�� , �125�

rn = 2 ln�dn��n�
�k1

� , �126�

where again we used Eq. �24� to evaluate dn��n+2�
=dn��n+K�.

Table III shows the evaluation of this function at the
moment when �=0. The last entry �n=4� is identical to the
first �n=0�. Table IV shows the evaluation when the
time has advanced half a lattice step ���=K /4�, giving �n

= �K /2��n−1/2�. The amplitude qx is

qx = ln�dn2�K/4�/k1� , �127�

�2 = dn2�K/4� = �k1� �1 + k1 + 1
�1 + k1 + �k1

� . �128�

Note that qx
 q̂0 /2 and qx is the maximum displacement at a
site.

VII. DISCUSSION

We have examined classical waves on several nonlinear
lattices. One lattice has potential energy terms which are
quadratic and quartic. Another lattice has the symmetric ex-
ponential cosh�bq�, where q is the relative displacement of

TABLE III. Period four wave amplitudes when �=0.

n �n dn��n� qn

0 0 1 −q̂0 /2

1 K /2 �k1 +q̂0 /2

2 K k1 +q̂0 /2

3 3K /2 �k1 −q̂0 /2

4 2K 1 −q̂0 /2

TABLE IV. Period four wave amplitudes when ��=K /4 and
n*=n−1/2.

n* �n dn��n� qn

1/2 K /4 � 0

3/2 3K /4 k1 /� +qx

5/2 5K /4 k1 /� 0

7/2 7K /4 � −qx

9/2 9K /4 � 0
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two neighboring sites. Exact analytical solutions have been
found for several periodic lattice waves for each potential.
The quadratic-quartic potential has waves with a period of �i�
two, �ii� three, and �iii� four lattice sites. Two of the solutions
have been found using Jacobian elliptic functions, called
cnoidal waves, and the third uses ordinary trigometric func-
tions. For the symmetric exponential potential, we found
analytical solutions for periodic waves with a period of two
and four lattice sites.

Finding these solutions is always a bit of luck. One tries
to solve the equation of motion using many different kinds of
functions, and occasionally one works. Are there exact ana-
lytical solutions for other periods? We do not know, but con-
tinue to search. Our hypothesis is that there are periodic-
wave solutions for all wavelengths, but only in a few cases
are they expressed in known mathematical functions. In
other cases we will need to derive a new function which
gives the right solution. We are presently exploring methods
of doing this, such as series expansions. Incidently, we
started out trying to find analytical solutions to soliton waves
on these lattices. We have not yet found any, but continue to
search.

We believe all one-dimensional nonlinear lattices have
both soliton waves and periodic lattice waves that travel
without damping. If that hypothesis is correct, then thermal
transport theories in one dimension need to include these
excitations. First we need to find these solutions, which is
our present quest.
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APPENDIX: JACOBIAN ELLIPTIC FUNCTIONS

Here we list some addition theorems and other identities
for elliptic functions, as found in Refs. 4–6:

sn�u + v� =
sn�u�cn�v�dn�v� + sn�v�cn�u�dn�u�

1 − k2sn2�u�sn2�v�
, �A1�

cn�u + v� =
cn�u�cn�v� − sn�v�dn�v�sn�u�dn�u�

1 − k2sn2�u�sn2�v�
, �A2�

dn�u + v� =
dn�u�dn�v� − k2sn�v�cn�v�sn�u�cn�u�

1 − k2sn2�u�sn2�v�
,

�A3�

sn�u + v�sn�u − v� =
sn2�u� − sn2�v�

1 − k2sn2�u�sn2�v�
, �A4�

cn�u + v�cn�u − v� =
cn2�v� − sn2�u�dn2�v�

1 − k2sn2�u�sn2�v�
, �A5�

dn�u + v�dn�u − v� =
dn2�v� − k2sn2�u�cn2�v�

1 − k2sn2�u�sn2�v�
, �A6�

dn2�u/2� =
k1

2 + dn�u� + k2cn�u�
1 + dn�u�

. �A7�
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