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X-ray intensity fluctuation spectroscopy studies of ordering Kinetics in a Cu-Pd alloy
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X-ray intensity fluctuation spectroscopy has been used to examine the coarsening kinetics in the classic
long-period superlattice Cu-Pd alloy. The evolution of the speckle intensity was examined near the centers of
both a superlattice peak (associated with local L1, order) and a satellite peak (associated with one-dimensional
antiphase correlations). The decay of the two-time correlation function C(¢,,7,,q) was independent of the
direction examined and was similar for the superlattice and satellite peaks. In agreement with published
Langevin theory and simulations, the decay time 7 of the two-time correlation function increases linearly with
average time t,,=(f,+1,)/2. It is relatively independent of the wave vector near the peak centers. However, 7

increases much more slowly with increasing ¢,, than is expected.
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I. INTRODUCTION

X-ray intensity fluctuation spectroscopy (XIFS) continues
to develop as an important tool for better understanding the
evolution of condensed-matter systems on atomic and na-
nometer length scales.!? Unlike traditional x-ray approaches,
XIFS uses a small (typically ~10 wm) x-ray beam that is
sufficiently coherent to produce speckle patterns characteris-
tic of the specific structural arrangement of the illuminated
sample. XIFS examines the temporal evolution of the
speckle pattern to reveal the underlying structural evolution
of the material being studied. In this sense, it is quite analo-
gous to dynamic light scattering (DLS). DLS requires opti-
cally transparent materials and typically probes length scales
larger than the wavelength of visible light (~400 nm); it is
unable to observe smaller defects. XIFS offers the possibility
of observing ordering phenomena on length scales as small
as 10 nm, with no restriction on optical transparency.

While a number of studies have used XIFS to examine
fluctuation dynamics, fewer have attempted to use it to probe
the kinetics of phase transitions.>* This is also an area in
which there have been few, if any, analogous DLS studies.
Here we report a XIFS study of the ordering kinetics in the
classic long-period superlattice alloy CuPd; the study mea-
sures the two-time pair-correlation function C(q,?,,t,). This
two-time correlation function contains information beyond
that available from the ensemble-averaged one-time pair-
correlation function (structure factor) S(q,7) that is obtained
from traditional time-resolved x-ray scattering experiments,
such as we have recently performed on this alloy.> Our mea-
surements probe the evolution of C(q,t,,t,) in Cu-Pd on
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length scales of 10'-10° nm and time scales of 10>~10* sec.
Such studies require high x-ray brightness—coming in these
experiments from the undulator ID-10A Troika beamline of
the European Synchrotron Radiation Facility (ESRF)—and a
relatively high scattering cross section—coming here from
ordered domains of atoms. Our results are compared with
existing theory and simulations® to better understand the
coarsening process.

II. BACKGROUND—LONG-PERIOD SUPERLATTICE
(LPS) ALLOYS

The Cu-rich Cu-Pd alloys exhibit structures based upon
face-centered cubic (fcc) lattices. In the high-temperature
disordered structure, Cu and Pd atoms occupy fcc sites at
random, though short-range chemical order (SRO) can exist.
In the simple L1, ordered structure with ideal stoichiometry
Cu;Pd, Cu atoms preferentially occupy face centers and Pd
atoms preferentially occupy corners of the unit cell. Since
there are four equivalent sites in the fcc unit cell, there is a
factor of 4 degeneracy in the L1, ordered structure. An-
tiphase boundaries (APB’s) between degenerate ordered re-
gions can be either “conservative” or “nonconservative.”’ A
conservative APB separates two ordered regions that differ
from each other by a translation vector parallel to the plane
of the APB interface. In this case, the local stoichiometry at
the interface remains unchanged. A nonconservative APB
separates two ordered regions that differ from each by a
translation vector with a component perpendicular to the
APB interface. In this case the local stoichiometry of the
interface is changed. In the simple L1, structure region of a
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phase diagram, there is a free-energy cost to forming APB’s,
and none exist in equilibrium. Because the nearest-neighbor
atomic environment is not changed by the presence of con-
servative APB’s, these are typically lower in energy than
nonconservative APB’s.

In contrast to the situation for the simple L1, structure,
LPS alloy phases contain APB’s as an integral part of their
structure. Thus they exhibit a modulation of the order, with
average domain size M between APB’s. The Cu-Pd alloys
are a classic LPS system with one-dimensional (1D) modu-
lated structures at Pd concentrations of approximately 18—
28 % and 2D modulated structures at elevated temperatures
and Pd concentrations of approximately 24-32 %.% The
APB’s in the 1D LPS state are conservative, while in the 2D
LPS state, one direction has conservative APB’s and the
other direction has nonconservative APB’s. In both cases, the
APB’s are preferentially oriented along the cubic crystallo-
graphic axes. Below approximately 23% Pd, the 1D LPS
states are incommensurate and have a period (5<M<15)
which varies continuously with concentration and tempera-
ture. Above this composition the 1D LPS states are commen-
surate (3<M <15) and do not change much with tempera-
ture.

The diffraction pattern from a simple L1, structure exhib-
its “fundamental” Bragg peaks for which the crystallographic
indices (hkl) are all of the same parity. These are indepen-
dent of the degree of order, and thus exist even in the fcc
disordered state. The L1, ordering also produces peaks at the
“superlattice” reciprocal-lattice points where h, k, and [ are
not all of the same parity. If the ordering is imperfect, then
the superlattice peaks will be broadened. However, because
conservative APB’s separate regions of order that differ by a
vector that lies in the plane of the interface, their presence
causes an anisotropic broadening of the superlattice peaks.
Thus superlattice peaks in alloys with L1, order typically
exhibit a “pancake” shape in reciprocal space, with the short
dimension of the pancake—which we will refer to as the
radial direction—being inversely proportional to the average
distance between nonconservative APB’s, and the long pan-
cake dimension—which we will refer to as the transverse
direction—inversely proportional to the average distance be-
tween a combination of conservative and nonconservative
APB’s.” In addition to the L1, superlattice peaks at appropri-
ate integral reciprocal-lattice unit positions (i.e., as measured
in units of 27/a), the reciprocal space structure of the 1D
LPS phase of Cu-Pd alloys has satellite peaks separated from
these by ¢,=(2M)~"' reciprocal-lattice units. The satellite
peak widths are sensitive to the correlation length of modu-
lated (long-period superlattice) order and depend on the spe-
cific phase relationships between the different sublattices on
which ordering can take place. A simple model of the satel-
lite peak widths is presented in Ref. 5.

III. EXPERIMENT

Experiments were carried out on the ID10A Troika beam-
line at ESRFE. For this experiment, a Be lens was used to
focus the beam and a Si (111) monochromator was used to
select a 8.07-keV (1.54 A) beam from the third harmonic of
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the undulator. The relative energy width was 1.4 X 10~ full
width at half maximum (FWHM). In a Gaussian wave packet
exp[—r?/ §2] this gives a longitudinal coherence length
length  &=2(In 2)"2N?/ AN pyyans = N2/ 2AN pyypp = 1 .
Higher harmonics of the monochromator were suppressed by
means of a small mirror. A 12-um-diameter pinhole was
used to define a coherent beam. The pinhole-sample distance
was 0.23 m and the sample was 45 m from the source. Para-
sitic scattering from the pinhole was limited by guard slits,
set to 20X 20 um, positioned halfway between the pinhole
and the sample. A 1340 X 1300 pixel direct-illumination
deep-depletion charge-coupled device (CCD) (Princeton In-
struments) with a pixel dimension of d=20 wm was used as
an area detector. The sample to detector distance was R
=2.25 m. Thus each pixel corresponded to a reciprocal space
width of approximately 3.6 X 10~ nm™'. The CCD detector
was used in a photon counting mode.” By this method, we
identify individual photons in each frame, and the resulting
measured intensities are the number of x-ray photons ab-
sorbed in each pixel. The incident beam intensity was moni-
tored using a small scintillation detector measuring the scat-
tering of a thin kapton foil located after the beam defining
pinhole. For each peak, 700 frames of data were collected,
with an exposure time of 50 sec and a readout time of ap-
proximately 1.6 sec. Thus the evolution of the ordering was
examined for an elapsed time of approximately 36 120 sec.

From the source size for the Troika beamline [900 wum
horizontal by 23 um vertical (FWHM)] and the above-
mentioned energy spread, the transverse coherence area of
the incident x-ray beam is estimated to be 6 X220 um (H
XV FWHM) at the sample. At 2.3 m from the sample (i.e.,
the detector position) the speckle size corresponds to 36 um
(FWHM) which is slightly larger than the CCD pixel size.
An approximate calculation gives an estimated incident
beam coherence factor S~0.3 for the resulting x-ray beam.
With the high monochromaticity of the beam, a small-angle
experiment (SAXS) provides some check of this transverse
coherence.!®!! This has been done with an aerosyl sample in
SAXS configuration. The incoherent scattering of the aerosyl
is isotropic, and a careful study of the angular variations of
the intensity provides an estimate of 8= 0.20 from the mean-
square deviation relative to an angular average.

For large-angle experiments, coherence is reduced be-
cause of the limited longitudinal (temporal) coherence
length. The difference in path length for scattering at a sur-
face point on the sample and scattering at a point below the
sample surface is dr=[sin’@, where [ is the total path length
in the sample. If we set /~2u~'~20 wm, where u~! is the
x-ray-absorption length in the material, then this gives a path
difference or~0.8 um, which is comparable to the longitu-
dinal coherence length. Detailed calculations assuming
Gaussian or boxcar wave functions suggest that the differ-
ence in path lengths would be expected to lead to an
effective decrease in coherence by a factor of approximately
30-40 %.

Experiments were performed on a (001) cut Cuy77Pdg 53
single crystal grown at the Office National d’Etudes et de
Recherches Aérospatiales (ONERA). The composition was
verified by microprobe. During the real-time x-ray experi-
ments, the sample was heated with a double-stage furnace
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FIG. 1. Detector image of superlattice peak after 35 991 s of
ordering. Dark regions around the image edge are due to masking of
the scattered x rays.

inside a small high vacuum chamber with kapton windows to
allow optimal x-ray access.

Samples were initially disordered at 510 °C, above the
transition, and then rapidly (10 sec) quenched to a tempera-
ture of 435 °C. Data from two separate quenches are reported
here. One data set was taken in the vicinity of the (001)
superlattice peak—at |g¢|=16.9 nm~'=1r.l.u. (reciprocal-
lattice unit) and incident angle 6#=11.9°. The second data set
was taken near a neighboring satellite peak (0 ¢, 1), with
q9=0.088 r.l.u. For the scattering near the (001) superlattice
peak, the CCD measured the x-ray scattered intensity on a
small part of the Ewald sphere, approximately planar, with
the x axis approximately in the crystal radial [00!] direction
and the y axis approximately in the transverse [0k0] direc-
tion through the Bragg peak. For the satellite peak, the scat-
tering geometry gave a slightly more complicated reciprocal
Space geometry.

It should also be noted that the range of wave vectors
accessible with this experimental setup, coupled with the
relatively slow coarsening kinetics, limited the reciprocal
space region examined to to the central area of the peaks
(i.e., within about =1.5 standard deviations of the center).
Thus the dynamics of the measured intensities in the CCD is
only one order of magnitude, and the tails of the order peaks
were not probed.

IV. RESULTS
A. Averaged scattering

In the late-stage coarsening regime the average domain
size d,, is expected to follow the Cahn-Allen'? law
=a(t—ty)=at’, where t, is a constant of integration. There-
fore a common approach to determining the onset of coars-

ening is to examine the time evolution of a characteristic

PHYSICAL REVIEW B 72, 144201 (2005)

A
25
dial //'/
radia
20 T
T e
o
_E_ 15 4
o «/
H
wi
5 transverse
0
0 10000 20000 30000 40000
Time [sec]

FIG. 2. (Color online) Evolution of superlattice inverse square
width in radial and transverse directions.

wave vector g, (often taken to be the FWHM of a superlat-
tice peak) that is inversely proportional to the average do-
main size. For the case of the superlattice peak, a raw image
of the superlattice peak is shown in Fig. 1. These were fit
approximately by 2D Gaussian functions; the resulting in-
verse widths squared for the radial and transverse directions
are displayed in Fig. 2. However, in determining the onset of
coarsening behavior, ambiguities can arise, particularly in
cases where the full three-dimensional reciprocal space in-
tensity near the superlattice peak has not been measured. We
therefore turned to a stronger requirement based upon dy-
namic scaling. It is expected that for an isotropic coarsening
system with a nonconserved order parameter, the ensemble-
averaged structure factor S(g,?) should exhibit dynamic
scaling!? with

S(q.1) =q.°Flglq.) =t""F(qt' "), (1)

where t'=t—1,. As also discussed above, in the classic case
of L1, alloys, the superlattice peaks are anisotropic. In this
case the dynamic scaling must be modified to account for the
different length scales in the two directions—radial and
transverse. For the case of the (001) superlattice peak, [ is the
radial direction and %,k are the equivalent transverse direc-
tions. The radial [ direction is nearly parallel to the x direc-
tion on the detector and the 4 direction is nearly parallel to
the detector y direction. Since domain-wall dynamics affect
the peak widths differently in the radial and transverse direc-
tions, in general #,, will be different from #,,=1),=t, . (here
the x,y designations always refer to the direction on the de-
tector as defined previously). Then the scaling form becomes

12,172 172 12 172 1/2
8(qxqy-951) = 1,71, 1, F(q,,". g1, q.,”)

:talc/zly,zF (qxt)lclz’qyt;{z{qzt;,/zz ’ 2)
where t,=t-1), and f,=t,=t,  are similarly defined. It
should be noted that, when the scattering follows this dy-
namic scaling form, the integrated scattering over the three-
dimensional reciprocal space volume of the Bragg peak is
guaranteed to be constant in time. For the satellite peak, our
previous studies® have suggested that the peak symmetry is
such that the peak widths in the plane of the four satellites
surrounding a given superlattice point are comparable, but
are quite different than the peak width perpendicular to that

9

plane. In this case, Eq. (2) still holds approximately if “x” is
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taken to be the direction normal to the plane of the satellites.

In order to examine when the experimental S(q,?) obeyed
dynamic scaling for the superlattice and satellite peaks, the
observed speckle intensities were separately averaged along
strips ten pixels wide in the x and y directions. The unscaled
intensities from the superlattice (001) peak in the radial di-
rection are shown Fig. 3(a). For the superlattice peak, there
are small relaxations in the radial and transverse peak posi-
tions (of order 2X 102 nm™!) during the ordering process.
As discussed further below, a similar effect has also been
reported recently in CusAu, where it was suggested that it
may be due to lattice distortions at the antiphase domain
boundaries.!*! Lattice distortions at the domain boundaries
would make the (001) peak asymmetric and shift the peak
maximum in the radial direction. However, it is unclear how
the transverse peak position could be affected by lattice dis-
tortions since there would remain a mirror symmetry about
the axes in these directions. This is analogous to the well-
known case of size-effect broadening in disordered alloys
where the (001) peak can be shifted radially, but not
transversely.'® For the satellite peak, there is a much larger
change of the transverse peak position dg=~8 X 107> nm™!
during the ordering process, as we have observed in previous
traditional time-resolved x-ray studies.’ This is apparently
due to a change in the average modulation wavelength dur-
ing ordering.

To compare the radial data with the scaling form, the
horizontal axes are scaled by ¢'> and the vertical axes by
t;”zt_i. The scaled plots are shown in Fig. 3(b) using f,
=-30000 s and t,,,=-3000 s; these offset values are in
agreement with extrapolations of the data in Fig. 2 to the
zero intercepts. The measured intensities exhibit good scal-
ing after 5000-8000 s. Figures 3(c) and 3(d) show that there
is simultaneous scaling in the transverse direction as well
after 5000-8000 s. Similar results for the time of coarsening

0 20

qt, wz [nszvz]

onset are obtained for the satellite peak. It is noteworthy that
these offset times are sufficiently large to significantly re-
strict the range of the effective coarsening times 7, . exam-
ined.

We conclude, then, that the coarsening kinetics appears to
be consistent with the Cahn-Allen prediction and with the
dynamic scaling predicted for systems with a nonconserved
order parameter, despite the complexities of the LPS struc-
ture. This is in agreement with our previous work.® It is
noteworthy that theoretical investigations of coarsening in
axial next-nearest-neighbor Ising (ANNNI) models have also
found agreement with the Cahn-Allen w~ ¢/ prediction.!”!

B. XIFS

Having addressed the applicability of dynamic scaling to
the ensemble averaged structure factor S(g,t), we can now
examine the behavior of the fluctuations about the ensemble
average. Because the speckle patterns evolved relatively
slowly over time, CCD frames were binned together by 10 to
improve statistics.

To calculate the two-time correlation function, we begin
by examining the normalized intensity fluctuation:

_ I(qat) - <I(CIJ)>
Dlan ==y

Calculating D(g,t) requires the determination of the en-
semble average intensity (I(q,t)) for each pixel and time.
This is the intensity measured in the incoherent experiment.
This was estimated by smoothing the observed speckle pat-
tern using an algorithm with a weighted averaging of each
pixel with its nearest neighbors. This algorithm was iterated
approximately 1000 times to produce relatively smooth
structure factors. Due to the central limit theorem, this is

3)
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FIG. 4. Evolution of pixel intensities near the center of the su-
perlattice peak. With increasing coarsening, the speckles become
longer lived. Each binned frame corresponds to an elapsed time of
516 sec.

roughly equivalent to convoluting our intensity with a
Gaussian of about 30 pixels FWHM. The normalized inten-
sity fluctuations D(g,) were then calculated for each pixel.
The theoretical work of Brown et al.® predicts that, with
increasing time, the speckles themselves become longer
lived. Indeed comparison of speckle patterns over the period
of the experiment shows that individual speckles develop
with lifetimes comparable to the duration of the experiment.
This increase in speckle lifetime can be seen in Fig. 4, where
the pixel intensity is plotted as a function of time for a sec-
tion of the detector near the superlattice peak center.
During the course of the experiment small motions of the
incident beam due to small changes in the electron beam
position in the storage ring can alter the observed scattering
pattern independently of any structural changes occurring in
the sample. To first approximation, small changes in incident
beam angle shift the entire speckle pattern on the detector if
the change in the angle is perpendicular to the scattering
plane. If the change in angle is not perpendicular to the scat-
tering plane, then it is still true that beam motion causes a
shift if the speckles are significantly longer in the radial di-
rection than in the transverse direction. This is indeed ex-
pected to be the case here as the penetration depth into the
sample (u”'sin )/2~1 um is much smaller than the foot-
print on the sample (12 wm/sin #~58 um). Such small
shifts can be occasionally seen by the eye. As a particularly
large example, Fig. 5 shows a shift of the speckle pattern by

625 630 635 640 645 630 635

Pixel Number

Pixel Number
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approximately one pixel between two subsequent frames.
While we did not find it absolutely necessary to correct for
these small shifts to obtain reasonable two-time correlation
functions C(q,1t,,1,), the behavior of the functions was im-
proved by implementing the corrections described here. Each
D(q,1), in the time sequence of detector frames was com-
pared to the speckle pattern D(q,f,44.) Mmeasured at the
middle of the time sequence. Before further analysis, each
pattern was shifted slightly to maximize the overlap sum
2,D(q,0)D(q ,t,yiqq.)- To estimate the shifted pattern for frac-
tional translations, a 2D quadratic function was used for in-
terpolation. The nine parameters for the quadratic were ob-
tained by requiring that it pass through a central pixel and its
eight nearest and next-nearest neighbors. In most cases,
frame shifts smaller than one pixel were necessary. In some
cases, shifts appeared to be gradual, while in other cases
(most dramatically shown in Fig. 5), shifts occur on the time
scale of individual frames. The shifts were not applied at the
earliest times because the speckle patterns change suffi-
ciently quickly that the overlap sum was not deemed reliable.

After obtaining the optimal shifts, the products
D(q,t1,)D(q,1,) were calculated at each pixel. The average of
the product of the normalized intensity fluctuations gives a
two-time correlation function:

C(q’ tl b t2) = C(q’ At7 tm) = <D(q7 t])D(q’ t2)>equivalentq 2 (4)

where the average is over equivalent wave vectors, and we
have introduced At=t,-t, and t,,=(t,+1,)/2. The evolution
of the correlation function was examined independently
along the x and y directions to study any kinetic anisotropy.
To gain statistical accuracy, the bins of “equivalent wave-
vector” pixels were chosen to be 70 pixels in radial width
(corresponding to 0.025 nm™" in reciprocal space) and to in-
corporate only those pixels within 17° of the axis of interest.
The use of other binning arrangements did not affect the
analysis results. For simplicity, when referring to wave num-
ber below, we will quote the value at the center of the rel-
evant bin. The “zero” wave vector is taken to be the peak
center.

As was noted above, however, the peak centers move a
small amount during the coarsening process. Examination of
the speckle patterns shows that the speckles themselves do
not follow this motion—rather they remain relatively fixed
on the detector while speckle maxima in the direction of

640 645 650

FIG. 5. Shift of satellite
speckle pattern by approximately
one pixel downward observed be-
tween frames at 33280 s (left)
and 33 800 s (right).

640 645 650
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peak motion tend to grow more than do those in the opposite
direction. This would be difficult to explain if the motion of
the peaks were due to sample motion (tilting) during the
ordering process. Instead we turn to a more microscopic
viewpoint. The scattering that we are observing is dominated
by correlations between antiphase domains. If the entire lat-
tice were to expand or contract uniformly without altering
the geometry of the domains, the speckle pattern would sim-
ply expand or contract relative to the origin of reciprocal
space. This is not what is observed—the peak centers shift,
but not the speckle patterns. This would appear to be consis-
tent with the conjecture that the shifts are associated with
lattice distortions inhomogeneously distributed in the sample
at domain boundaries.!> To analyze the speckle patterns, an
average center was therefore chosen and held fixed.

For Ar=0,C(g,1,,t,) is the sum of a term due to Poisson
noise from the photon statistics and one due to the coherence
factor B. The first term can be removed from the data by
extrapolating from neighboring time bins 7+ 6t. With increas-
ing Ar,C(q,At,t,) decays to zero. For a system in equilib-
rium, C(g,At,t,) will be independent of ¢,, and its behavior
can be related to the dynamics of equilibrium fluctuations.
For a nonequilibrium system, however, the two-time correla-
tion function will in general change with time as the system
evolves.

During the data analysis process, there are several meth-
ods to evaluate the degree of coherence of the scattered x
rays. As mentioned above, the coherence measured in a
SAXS pattern from an aerogel gave a coherence factor in the
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scattered beam of B=0.20. However, for the wide angle
scattering experiment, we can expect significantly reduced 8
due to the penetration of the beam into the sample and the
slightly asymmetric scattering geometry. One way to calcu-
late B is from the variations of intensity among pixels for
which the average structure factor should be approximately
constant:

_(Pla) = Ulg.0)
(1(g,07

Another method is by examining the limit of the two-time
correlation function:

B (5)

ﬁ= lim C(q7tl’t2)’ (6)

11—ty

where the limit avoids the Poisson noise present for ¢, =1,.
Both calculations are in agreement and give a value of 0.03—
0.04 %. This is considerably reduced from the value of
~(.20 observed with this incident beam in SAXS patterns
from aerosyl. Since calculations of the effect of finite pen-
etration into the sample suggest that the coherence of the
scattered beam should be decreased by approximately 30—
40 %, it is unclear why the measured value of 8 is reduced
so much here.

In order to remove the effects of the imperfect coherence,
it is convenient to follow earlier work®*® by normalizing the
two-time correlation function:

ZC(q’tl’IZ)

Cnorm(q’ Iy, t2) =

where ot is the time step between recorded frames. By con-
struction, the function is symmetric in #; and #,. Contours of
Coorm (4,1, ,1,) near the (001) superlattice peak are shown in
Fig. 6. Figure 7 shows slices through the correlation func-
tions at particular values of ¢, for different directions and
wave numbers for both the superlattice and satellite peaks.
As can be observed qualitatively in Figs. 6 and 7, and as
predicted by theory, correlations become longer lived with
increasing time following the quench. Moreover, in this
wave-number regime, there appears to be little, if any, dif-
ference between the correlation functions in different direc-
tions, different wave numbers, or for different peaks (super-
lattice vs satellite).

We now quantitatively examine how correlation times
grow. As mentioned above, Brown et al.® have used analyti-
cal Langevin theory and simulations to examine the behavior
of C(g,At,t,) for the late-stage coarsening regime in phase
ordering systems with nonconserved order parameters. Their
work suggests that, in the coarsening regime, C(q,At,1,,)
should obey scaling laws. In particular, they predict that a
scaling variable x=¢?t exhibits two regimes of behavior. For

[C(g.t1,t; — &) + Clg,t1,t; + 60) ] [C(q. 12,1, — ) + Cq, 12,15 + )]V’

(7)

t, [seq]

sy
o~

1 15 2 25 3 35
£ Isec] x 10"

FIG. 6. Contour plot of the normalized two-time correlation
function C,,,,,(g=0.0126 nm™',7,,1,) for the superlattice peak.
Contours are at 0.2 intervals, with the highest contours being >0.8.
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small x,,=g’t,,, the characteristic decay time of the two-time
correlation function, x.=¢>7, is predicted to be linear in x,,.
For large x,,, it is predicted that x7~x,1n/2. In this latter re-
gime, it is predicted that the two-time correlation function
decays as

Cm)rm(z) = [ZZKZ(Z)/2]27 (8)
where K,(z) is a modified Bessel function of the second kind
and a different scaling variable is introduced: z=AAt/ trln/z,
where A makes the variable dimensionless. Although this
equation strictly only applies for large x,,, it appears to work
well for all times measured in these experiments and pro-
vides an accurate way of estimating the FWHM correlation
decay time 7. In determining 7, fits can be made to the data at
constant ¢, or at constant ¢,,; similar results are obtained in
either case. Representative fits at constant 7,, are shown in
Fig. 8. This figure again shows that the correlation decay
time increases with increasing 7,,.

Figure 9 shows the fit decay times for the superlattice and
satellite peaks as a function of average time ¢,, for different
wave vector and directions. The increase of correlation times
is approximately linear with 7,, as predicted by theory.
Moreover, for the relatively small wave vectors studied here
(within +1.5 standard deviations of the peak center), the de-
cay times depend little, if at all, on the wave vector. As

1.20
* tm=5676s
x tm=17286s
100 o tm=30440's
A gy, A
A o
0.80
=
K
. 060
R
g
2
O 040
0.20 -
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P x
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X . 3 X
0.00 . . .
-30000 -20000 -10000 0 10000 20000 30000

At [s]

FIG. 8. Normalized two-time correlation functions C,,,,(¢q
=0.0126 nm™',7,,,Ar) for the satellite peak in the y direction for
three different mean times 7,,. Lines are fits to the theoretical line
shape of Eq. (8).

tector x and y directions.

expected from the previous graphs, there appears to be little,
if any, difference between the behavior of the superlattice
and satellite peaks.

As discussed above, theory is usually expressed in terms
of the scaling variable x=¢’t. Figure 10 shows the resulting
scaled variables for the superlattice peak in the radial (x)
direction. As predicted by theory for this wave-number
range, the graph is linear with a slope of unity (as suggested
by the linear behavior observed in Fig. 9). Quite similar re-
sults are obtained for the correlation decay time in the y
direction and for correlation decay times in the two orthogo-
nal directions for the satellite peak.

V. DISCUSSION AND CONCLUSIONS

The XIFS results presented here show that, during the
coarsening process, both the L1, ordering (i.e., that associ-
ated with the superlattice peaks) and the 1D LPS ordering
exhibit increasingly long structural correlations as measured
by the two-time correlation function. The behavior of the
two-time correlation function is very similar for the two
types of order. This may reflect the fact that local L1, order
is a prerequisite for forming the 1D LPS phase. The correla-
tion time 7 increases linearly with ¢,, as predicted by theory®
for the low-wave-number regime.

One notable difference between previous theory and
simulations and these experiments, however, is the signifi-
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12500

10000

7 [s]

+ supx:q=0.0126 nm-1
supx: q =0.189 nm-1
supy: q =0.0126 nm-1
satx: q = 0.0126 nm-1
x saty:q=0.0126 nm-1
----2-d Langevin slope: 1.325
—— Fit slope: 0.50
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» o o

5000 [

2500

0

0 10000 20000

tm [s]
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FIG. 9. Half width decay time 7 of the normalized two-time
correlation functions C,,,,,(q.,1,,,Ar) for the superlattice and satel-
lite peaks as a function of the mean transformation time ¢,,. Also
shown are lines with the 2D Langevin slope and data fit slope.
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FIG. 10. Scaled correlation time ¢>7 as a function of scaled
mean coarsening time ¢, for the superlattice peak in the radial (x)
direction. The power-law slope is in good agreement with the the-
oretical prediction of unity when near the peak center.

cantly slower growth of the correlation decay time 7 with
increasing t,, average time observed in the experiment. This
ratio is a dimensionless quantity. Langevin calculations and
simulations give a ratio of 1.325 in two dimensions. In three
dimensions, the Langevin model would give a slightly higher
ratio. In contrast, the observed ratios in both the superlattice
and the satellite peaks are approximately 0.50 in both per-
pendicular directions. Interestingly, a recent XIFS study'#!>
of coarsening in CuzAu finds a ratio of approximately 0.75—
significantly less than predicted by theory and simulation but
somewhat greater than that observed here. It is unclear what
properties of the system this ratio depends upon. The elapsed
time is proportional to the square of average domain size and
the correlation time measures the rate of structural rearrange-
ments in the crystal. This ratio therefore might be viewed as
measuring how efficiently structural rearrangements lead to
average domain growth with increasing coarsening. The low
measured ratio suggests that the growing average domain
size leads to more structural rearrangement than is the case in
the Langevin model. It is difficult to understand why this
would be the case. However, in evaluating the veracity of the
results, it should be noted that they have been reproduced in
two separate quenches (one used to examine the superlattice
peak and the other to examine the satellite peak), that the
correlation times are indeed linear with ¢,, as predicted by
theory and simulation, and that similar disagreement be-
tween experiment and theory has been observed by Fluerasu
et al.'13

In order to investigate the issue further, we have per-
formed 2D simulations on model systems. Nearest-neighbor

PHYSICAL REVIEW B 72, 144201 (2005)

Ising-model simulations with spin-exchange dynamics were
performed with quenches from random configurations to
0.87, and 0.9T.. In both cases, the two-time correlation de-
cay times behave in excellent agreement with the Langevin
model. We also examined an Ising model with vacancy-
mediated dynamics. Again, the results appear to be generally
consistent with Langevin predictions. Finally, in order to ex-
amine the effect of ground-state degeneracy, we examined a
model with an A;B concentration ratio, interactions to the
third neighbor, and spin-exchange dynamics. The interac-
tions were chosen to stabilize an ordered structure that has
rows in each axis direction that alternate between pure A and
50%A+50% B. In the mixed rows, the A and B atoms alter-
nate. This structure is, in some ways, a 2D analog of the L1,
ordered structure; it has a fourfold degeneracy, partially or-
dered structures can exhibit conservative and nonconserva-
tive domain walls, and the superlattice peaks are anisotropic.
However, in this case we again found that the two-time cor-
relation function decay times are in general agreement with
Langevin predictions.

Another possibility for the difference between experiment
and theory and simulations is that local lattice distortions at
domain walls (possibly evidenced by the evolving peak cen-
ter) may play a role in kinetics that is not captured in the
theory and lattice simulations. However, these would pre-
sumably affect local structure—not the larger scale structure
probed at the wave numbers examined in this experiment. It
is unclear, moreover, how the observed small superlattice
peak shift might be related to such distortions. As discussed
above, the relatively fixed speckle positions suggest that the
peak shifts are not associated with a homogeneous lattice
relaxation, consistent with the hypothesis of an inhomoge-
neous lattice distortion relaxation at domain walls. However,
it is unclear how such a mechanism could lead to the ob-
served (001) peak motion in the transverse direction. Clearly,
we still have something new to learn from XIFS studies of
kinetics in alloys.
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