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Atomic volumes, magnetic moments, mixing energies, and the elastic properties of bcc Fe1−xCux solid
solutions are studied by ab initio calculations based on the cluster expansion framework. For the calculation of
concentration-dependent elastic moduli in disordered solid solutions, we introduce a generalization of the
cluster expansion technique that is designed to handle tensorial quantities in high-symmetry phases. Calculated
mixing energies, atomic volumes, and magnetic moments are found to be in good agreement with available
measurements for metastable alloys prepared through nonequilibrium processing techniques. Additionally, the
predicted variations of the bulk modulus and shear moduli C44 and C� with respect to copper concentration are
calculated for the disordered bcc phase. While the bulk modulus and C44 are positive for all concentrations, C�
is predicted to be positive only for Cu concentration less than 50 atomic %, and negative otherwise. Our results
thus indicate that the mechanical instability of bcc Cu persists over a wide range of compositions. The
implications of the present results are discussed in relation to the observed metastability of bcc Fe-Cu alloys,
and the strengthening mechanism of nanoscale bcc precipitates in an �-Fe matrix.
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I. INTRODUCTION

In commercial steels Cu is a commonly occurring ele-
ment, present either as an intentionally added alloying spe-
cies or as an impurity. In high-strength steels, nanometer-
scale Cu-rich precipitates are utilized to provide substantial
precipitate hardening of the �-Fe matrix. While the harden-
ing effect of Cu precipitates has long been known,1 the de-
tails of the strengthening mechanism remain a topic under
debate �e.g., Refs. 2–4, and references therein�. In steels em-
ployed for nuclear pressure-vessel applications, Cu impuri-
ties are known to form precipitates under irradiation, and in
such applications these precipitates represent a primary
source of embrittlement. The phenomenon of irradiation-
induced precipitation in Fe-Cu has been the subject of nu-
merous studies aimed at elucidating the thermodynamic fac-
tors and kinetic mechanisms underlying this important
decomposition reaction �a review of much of the work along
these lines is given in the recent article by Lopasso et al.5�.

At nanometer-scale sizes Cu precipitates in �-Fe are co-
herent and form with the bcc crystal structure. With increas-
ing size these bcc precipitates are observed to transform to a
close-packed phase in the form of a twinned 9R structure.6–11

Detailed measurements based on atom-probe microscopy
yield precipitate compositions that include substantial
amounts of dissolved Fe in binary Fe-Cu alloys,6,12 as well as
a number of other solute species in commercial multicompo-
nent steels.13,14

The pronounced effect of bcc-Cu precipitates on the me-
chanical properties of �-Fe provides strong motivation for
characterizing the structural, thermodynamic, and elastic
properties of bcc Fe-Cu solid solutions. Of specific interest
are the thermodynamic properties of mixing, which provide
the driving force for precipitate nucleation, and the compo-
sition dependencies of the atomic volume and elastic moduli
that influence dislocation-precipitate interactions. Experi-

mentally, measurements of the properties of Fe-Cu alloys are
complicated by the extremely limited solubility characteriz-
ing the solid-state phase diagram between bcc Fe and fcc Cu
under equilibrium conditions. However, nonequilibrium pro-
cessing methods, including rapid quenching, vapor deposi-
tion, and mechanical alloying, have proven highly effective
in synthesizing metastable single-phase solid solutions, the
properties of which have been investigated extensively.15–27

Such detailed experimental work has provided the motiva-
tion for a number of theoretical investigations over the past
decade that have employed both first-principles and
classical-potential methods in studies of the structural, ener-
getic, and magnetic properties of metastable fcc and bcc
Fe-Cu alloys.5,28–33

While the properties of Fe-Cu solid solutions have been
the topic of several theoretical investigations, to date little
attention has been given to the result that bulk elemental Cu
in a bcc structure is mechanically unstable. Specifically, first-
principles calculations have predicted that the tetragonal
shear modulus C�= �C11−C12� /2 for bcc Cu is negative �e.g.,
Refs. 34–37�. This result implies that at low temperatures
bcc Cu is unstable with respect to a Bain distortion leading to
spontaneous transformation to the equilibrium fcc structure.
A detailed understanding of the elastic and thermodynamic
properties of bcc Fe-Cu alloys requires knowledge of the
extent of this instability with respect to both composition and
temperature. As discussed further below, such information is
particularly valuable in understanding whether the observa-
tion of coherent bcc Cu-based precipitates in �-Fe arises
from a compositional stabilization of this structure, or
whether the bcc phase is stabilized by interfacial forces as
discussed by Kraft et al.34 in relation to the observed stability
of bcc Cu in epitaxial thin films38,39 �see below�. While the
structural stability of elemental systems and ordered com-
pounds has been the subject of many detailed first-principles
calculations, far less work has been devoted to alloys,40–43
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due to the inherent challenges associated with the modeling
of disordered materials from first principles.

In the present work we investigate the composition-
dependent structural, thermodynamic, magnetic, and elastic
properties of bcc Fe-Cu solid solutions employing a first-
principles method based on the cluster-expansion
framework.44,45 This work includes the introduction of a gen-
eral and computationally efficient method to determine the
elastic constant tensor of disordered solid solutions from a
set of ab initio calculations for ordered structures. The
method represents a generalization of the cluster-expansion
framework that is widely employed for the prediction of
scalar-valued properties, such as energy and volume, for
compositionally disordered alloys. The results of the current
study show good agreement with experimental measure-
ments for the composition dependencies of the atomic vol-
ume, the enthalpy of mixing and magnetic moment. The te-
tragonal shear modulus C� is calculated to have a highly
nonlinear composition dependence, and the mechanical in-
stability of bcc Cu is predicted to persist up to relatively high
Fe concentrations.

In the next section the details of the present first-
principles approach are given, and our method for modeling
the elastic constants of solid solutions is described in detail.
In Sec. III we present the results of the calculations for
atomic volume, mixing energy, magnetic moment, and elas-
tic moduli, and compare with both previous calculations and
available experimental measurements. In Sec. IV we provide
a discussion of these results as they relate to the extent of the
thermodynamic stability of bcc Fe-Cu alloys, and the mecha-
nism of precipitation strengthening. Section V provides a
brief summary of the work.

II. FORMALISM

A. Cluster expansion

The cluster expansion is a generalization of the well-
known Ising Hamiltonian that is aimed at modeling the en-
ergetics of substitutional alloys. In this method, a spin-like
occupation variable �i is assigned to every site on the parent
lattice �bcc in this paper�. Different values of �i represent
different atomic species. A particular arrangement of atoms
on the lattice is called a configuration and can be represented
by a vector �= ��1 ,�2 ,… ,�N�, which is composed of the N
occupation variables for each lattice site. Any configuration-
dependent physical quantity F��� can be written as a
weighted sum of multisite cluster functions �����:

F��� = �
�

F������ , �1�

because the multisite cluster functions ����� form a com-
plete basis in the configurational space.44 Each cluster is
composed of a group of lattice sites �= �p1 , p2 ,… , pn�

�, and
for the case of a binary alloy the cluster functions take the
form of a product of occupation variables over the sites in
the cluster:

����� = �p1
�p2

¯ �pn�

. �2�

The coefficients F�, referred to as effective-cluster interac-
tions �ECIs�, embody the information regarding the configu-
rational dependence of property F���. The expression given
in Eq. �1� is formally exact if all possible clusters are in-
cluded. For many applications, good accuracy can be ob-
tained by retaining terms corresponding to only a relatively
few pairs, three-body, and four-body clusters. To determine
the ECIs, we will make use of the so-called structure inver-
sion method �SIM�,46,47 in which the ECIs are treated as
fitting parameters, and are obtained by fitting the truncated
form of Eq. �1� to a set of ab initio calculations for selected
ordered configurations on the bcc lattice.

In the present work, cluster expansions will be performed
for two types of physical quantities, namely scalar quantities
�mixing energy, atomic volume, and magnetic moment� and
tensors �elastic constants�. In a cluster expansion of a scalar
quantity, the ECIs F� in Eq. �1� possess the same symmetry
as the parent lattice. That means symmetry-equivalent clus-
ters have the same value of F� and can be grouped as a
so-called orbit, ��, representing the set of symmetry-
equivalent clusters.48 Using this symmetry argument, we can
simplify Eq. �1� as follows:

F���
N

= �
��

F�m��̂���� , �3�

where �̂� represents an average over symmetry-equivalent
clusters:

�̂���� =
1

N�
�

����

����� , �4�

with N� the number of the symmetry-equivalent clusters in
orbit �� in the whole system and m�=N� /N is the number of
clusters of type � per lattice site.

We turn now to the application of the cluster expansion as
a framework for computing elastic constants of disordered
solid solutions. Since for the solid solution phase the elastic
constants share the symmetry of the lattice �cubic in the
present case�, there exists a simple way to extend the con-
ventional cluster expansion formalism to handle the repre-
sentation of tensor quantities in this context. The main con-
ceptual issue to resolve is that the elastic constants of the
ordered structures used in the structure-inversion method to
construct the cluster expansion typically have a lower sym-
metry than the disordered state; elastic constants that are nec-
essarily identical in the disordered state may thus be different
in an ordered structure and it is not clear which one should
be used in the fit of the cluster expansion. The idea in the
current approach is to symmetrize the tensor associated with
each structure by averaging the elastic constant tensor C
transformed under all the symmetry operations S in the point
group of the underlying lattice:
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C̄ = ��
S

S�C�����
S

1� ,

where the S�C� denotes the transformation of C under the
symmetry operation S. Specifically, since the elastic con-
stants are a fourth-rank tensor tensor we have

�S�C��ijkl = sii�sjj�skk�sll�Ci�j�k�l�,

using the repeated indices notation and letting sij denote the
matrix representing the symmetry operation S. By construc-

tion, the symmetrized elastic tensor �C̄� will have the sym-
metry of the disordered phase regardless of the symmetry of
the original tensor �e.g., for an ordered structure�. In particu-
lar, any elastic constant that must be zero by symmetry in the
disordered phase will also be zero in the symmetrized tensor.
The symmetrization process can be viewed as creating a
mixture of every possible orientation of a given ordered
structure that can be obtained by the symmetry operations of
the lattice. This picture also helps to motivate the applicabil-
ity of the cluster expansion formalism since it is clear that
the mixtures of various configurations can be used as input
data for a cluster expansion fit, by the linearity of the cluster
expansion in the �����.

A cluster expansion can be separately constructed for each
of the elements in the symmetrized elastic tensor, i.e., treat-
ing each symmetrized modulus as if it were an independent
scalar quantity. This is possible because each symmetrized
modulus is invariant under any of the symmetry operations
of the point group, just like any scalar quantity would be. Of
course, a true scalar would also be invariant under any
change of coordinates, but this distinction does not affect the
construction of the cluster expansion, which only relies on
invariance under lattice symmetry operations.

In the case of cubic symmetry, as considered in this work,
the symmetrization of the elastic-constant tensor simply
amounts to averaging C�= �C11−C12� /2 and C44 along the
three perpendicular bcc crystal axes, respectively. These two

averaged moduli C� and C̄44, together with the bulk modulus
B, entirely determine the cubic-symmetrized elastic tensor.
For configurations with cubic symmetry, such as bcc Fe, Cu,
B2-FeCu, a disordered Fe-Cu solid solution, and so on, this
averaged cubic symmetry elastic tensor is simply equal to the
actual elastic tensor.

It is a central issue to determine the number and the type
of the clusters used in a cluster expansion. If too few terms
are used in the truncated cluster expansion, Eq. �3�, the ac-
curacy is limited. If too many terms are kept, the problem of
overfitting may manifest itself. The mean-square error of the
fit may be very small, but the true predictive power of the
cluster expansion for data not included in the fit is much
lower. The choice of the clusters should lead to the best
compromise between these two undesirable effects. Follow-
ing Ref. 49, the cross-validation �CV� score is used to evalu-
ate the predictive power of a cluster expansion, which is
defined as

�CV�2 =
1

n
�
i=1

n

�Fi − F̂i�2,

where Fi is the calculated physical quantity of structure i,
while F̂i is the predicted value for structure i obtained from
the least square fit to the �n−1� other structures. As the num-
ber of the clusters increases, the CV score typically decreases
before increasing. A well-defined optimal selection of clus-
ters can thus be obtained by minimizing the CV score. Once
this set is chosen, the CV score provides an estimate of the
predictive error of the resulting cluster expansion.

In this paper, the cluster expansions are generated using
the MIT Ab-initio Phase Stability code �MAPS�.49 The MAPS

code automates the selection of clusters used in the SIM
fitting to minimize the CV score, as well as the selection of
the ordered structures used for the fit. The basic idea of the
structure-selection algorithm, which is described in detail in
Ref. 49, is that each new structure to be included in the fit is
as different �in terms of correlations� as possible from the
other structures already included in the fit. The algorithm
was used initially in the development of the cluster expan-
sion for the energy, and led to the generation of the 28 or-
dered structures described in Table I. These same structures
were also used to formulate the cluster expansions for �in
addition to energy� the volume and bulk modulus; for the
magnetic moment two additional structures were also in-

cluded. For the symmetrized elastic moduli C̄� and C̄44,
where the computations were more costly, a subset of
roughly 2/3 of the initial 28 alloy structures was used in the
generation of the cluster expansion; the final number of
structures was chosen based on the value of the CV score
resulting from the fit �further details are given in the follow-
ing section�.

The use of the same set of structures to generate cluster
expansions of different quantities can be justified as follows.
The structure-generation algorithm used in this work is based
on the idea of minimization of the variance of the coeffi-
cients in a least-squares fit. It turns out that, in a least-squares
regression of some variable y on a vector of explanatory
variables x, the variance of the regression coefficients is only
a function of �i� the prediction error and �ii� the distribution
of x. In the large-sample limit, it is well established that the
selection of structures has no effect on �i� but does have an
impact on �ii�. Hence, an asymptotically valid structure se-
lection rule can be based on the values of x only. In this
application x is a vector of correlations while y is either
energy, volume, magnetic moment, or the elastic constants.
Hence, the structure-selection algorithm does not depend on
which quantity is being cluster expanded, but rather depends
only on the correlation functions of the structures.

Once the cluster expansion has been determined, the
properties of a fully disordered solid solution �with sites oc-
cupied randomly� can be predicted from

Frandom

N
= �

�

F�m�	�
n�, �5�

where 	�
 is the average spin concentration, related to the
actual concentration of the alloy �x� through the relation
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TABLE I. A description of structures used in cluster-expansion fits for magnetic moment, mixing energy, bulk modulus, volume, and the

symmetrized elastic moduli C̄� and C̄44. In the last four columns a + sign designates that the structure was used in the cluster expansion fit
for the given property.

Structure ID Space group �#� Wyckoff position x y z a /b /c�Å� � /� /�

Cluster expansion

M ��Emix,B ,V0� C� C̄44

0 Im3̄m �229� 2a �Fe� 0 0 0 2.826 � � � �

10 Cmmm �65� 2a �Cu� 0.000 0.000 0.000 2.891 � � �

2d �Fe� 0.000 0.000 0.500 4.089

4l �Fe� 0.500 0.000 0.254 8.178

16 Immm �71� 2c �Cu� 0.000 0.000 0.500 4.055 � � � �

2a �Fe� 0.000 0.000 0.000 2.868

4j �Fe� 0.500 0.000 0.255 8.111

24 R3̄m �166� 3b �Cu� 0.000 0.000 0.500 6.213 100 � � �

9d �Fe� 0.833 0.167 0.167

26 Fm3̄m �225� 4b �Cu� 0.500 0.500 0.500 5.736 � � �

4a �Fe� 0.000 0.000 0.000

8c �Fe� 0.750 0.750 0.750

211 R3̄m �166� 6c �Cu� 0.000 0.000 0.857 8.497 100 � �

3a �Fe� 0.000 0.000 0.000

6c �Fe� 0.000 0.000 0.287

6c �Fe� 0.000 0.000 0.426

6 I4/mmm �139� 2b �Cu� 0.000 0.000 0.500 2.879 � � �

4e �Fe� 0.000 0.000 0.174 2.879

8.637

8 P3̄m1 �164� 1b �Cu� 0.000 0.000 0.500 4.034 90 � � � �

2d �Fe� 0.333 0.667 0.129 4.034 90

2.470 120

37 I4/mmm �139� 4e �Cu� 0.000 0.000 0.800 2.874 � �

2a �Fe� 0.000 0.000 0.000 2.874

4e �Fe� 0.000 0.000 0.597 14.368

2 Cmmm �65� 2a �Cu� 0.000 0.000 0.000 2.877 � � � �

2c �Fe� 0.500 0.000 0.500 4.068

4.068

3 Pm3̄m �221� 1a �Cu� 0.000 0.000 0.000 2.887 � � � �

1b �Fe� 0.500 0.500 0.500

11 Cmma �67� 4g �Cu� 0.500 0.750 0.875 2.872 � � �

4g �Fe� 0.500 0.750 0.380 4.062

8.123

14 P4/nmm �129� 2c �Cu� 0.750 0.750 0.874 2.880 � � � �

2c �Fe� 0.750 0.750 0.386 2.880

5.760

17 Imma �74� 4e �Cu� 0.000 0.250 0.627 4.080 � � � �

4e �Fe� 0.000 0.250 0.115 2.885

8.159

27 Fd3̄m �227� 8b �Cu� 0.625 0.625 0.625 5.747 � � � �

8a �Fe� 0.875 0.875 0.875

93 Cm �8� 2a �Cu� 0.833 0.500 0.334 7.041 90 � �

2a �Cu� 0.167 0.500 0.167 4.065

2a �Cu� 0.000 0.000 0.999 4.979
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TABLE I. �Continued.�

Structure ID Space group �#� Wyckoff position x y z a /b /c�Å� � /� /�

Cluster expansion

M ��Emix,B ,V0� C� C̄44

2a �Fe� 0.833 0.500 0.667

2a �Fe� 0.167 0.500 0.831

2a �Fe� 0.000 0.000 0.503

116 P4/mmm �123� 1c �Cu� 0.500 0.500 0.000 2.880 � �

2g �Cu� 0.000 0.000 0.169 2.880

1b �Fe� 0.000 0.000 0.500 8.641

2h �Fe� 0.500 0.500 0.659

39 I4/mmm �139� 2a �Cu� 0.000 0.000 0.000 2.886 �

4e �Cu� 0.000 0.000 0.399 2.886

4e �Fe� 0.000 0.000 0.206 14.43

54 R3̄m �166� 3a �Cu� 0.000 0.000 0.000 6.891 100 � �

6c �Cu� 0.000 0.000 0.802

6c �Fe� 0.000 0.000 0.404

7 I4mm �107� 2a �Cu� 0.000 0.000 0.335 2.890 � � � �

2a �Cu� 0.000 0.000 0.998 2.890

2a �Fe� 0.000 0.000 0.667 8.670

9 Cm �8� 2a �Cu� 0.167 0.000 0.704 7.070 � � � �

2a �Cu� 0.000 0.000 0.963 4.082

2a �Fe� 0.833 0.500 0.333 2.500

94 Cm �8� 2a �Cu� 0.833 0.500 0.335 7.056 � �

2a �Cu� 0.167 0.500 0.171 4.074

2a �Cu� 0.833 0.500 0.832 4.990

2a �Cu� 0.000 0.000 0.995

2a �Fe� 0.167 0.500 0.669

2a �Fe� 0.000 0.000 0.497

12 Cmmm �65� 2c �Cu� 0.500 0.000 0.500 2.884 � � �

4k �Cu� 0.000 0.000 0.750 4.079

2b �Fe� 0.500 0.000 0.000 8.158

18 Immm �71� 2b �Cu� 0.500 0.000 0.000 4.091 � � � �

4i �Cu� 0.000 0.000 0.253 2.893

2d �Fe� 0.000 0.500 0.000 8.182

20 P4/mmm �123� 1b �Cu� 0.000 0.000 0.500 4.095 � � �

2f �Cu� 0.000 0.500 0.000 4.095

1d �Fe� 0.500 0.500 0.500 2.896

23 P2/m �10� 1e �Cu� 0.500 0.500 0.000 2.503 90 � �

2m �Cu� 0.733 0.000 0.750 4.087 100

1f �Fe� 0.000 0.500 0.500 4.792 90

25 R3̄m �166� 9d �Cu� 0.833 0.667 0.167 6.286 100 � �

3b �Fe� 0.000 0.000 0.500

28 Fm3̄m �225� 4b �Cu� 0.500 0.500 0.500 5.783 � � �

8c �Cu� 0.750 0.750 0.750

4a �Fe� 0.000 0.000 0.000

56 R3̄m �166� 6c �Cu� 0.000 0.000 0.901 6.903 100 � � � �

6c �Cu� 0.000 0.000 0.298

3b �Fe� 0.000 0.000 0.500

1 Im3̄m �229� 2a �Cu� 0.000 0.000 0.000 2.891 � � � �
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	�
=2x−1, and n� is the number of sites in cluster �. Note
that the special form of the cluster functions ����� �Eq. �2��
in a random alloy directly follows from the fact that the spins
on each site are statistically independent, so that the expec-
tation of a product of spins factors as the product of the
expectations of the spins on each site. Alternatively, the
properties of a short-range ordered or clustered solid solution
can be obtained by substituting the actual multisite spin cor-
relations �obtained, for instance, from a Monte Carlo simu-
lation� into Eq. �3�. In the present work we compare the
results of cluster-expansion predictions for solid-solution
phases with properties measured in alloys processed under
highly nonequilibrium conditions, where the extent of �clus-
tering� short-range order is presumably small. A detailed the-
oretical analysis of the effects of short-range order on the
calculated properties would require an accurate prediction of
the temperature scale for the Fe-Cu miscibility gap, which in
turn is expected to require a consideration of vibrational con-
tributions in the calculation of the mixing free energy �see
the Discussion�. Due to the expected highly anharmonic na-
ture of the vibrational free energy for this system, such cal-
culations lie beyond the scope of the current work and all
comparisons with experiments are made under the assump-
tion of random configurational disorder.

B. Ab initio calculations

The ab initio calculations in this work were carried out
using the ab initio total-energy and molecular-dynamics pro-
gram VASP �Vienna ab initio simulation package�.50,51 The
calculations were carried out with the projector augmented
wave �PAW� method,52,53 employing the generalized gradient
approximation �GGA� formulated by Perdew and Wang.54

Electronic wave functions were expanded in plane waves
with a kinetic energy cutoff of 410 eV, which is about 1.5
times of the VASP-default value for Cu and Fe. All calcula-
tions were performed spin polarized. In calculations of the
equations of state �yielding the energy, atomic volume, and
bulk modulus�, the Brillouin zone was sampled employing
Monkhorst-Pack55 k-point meshes with roughly constant
mesh densities corresponding to a 13	13	13 grid for the
primitive bcc lattice. Convergence tests were conducted for
simple structures including bcc Fe, Cu and B2-FeCu, which
indicated that with the chosen plane-wave cutoff and k-point
density, the calculated energies are converged to within
0.5 meV/atom. For calculations of C� and C44, we used the
same plane-wave cutoff, and slightly higher k-point mesh
densities approximating a sampling of 16	16	16 and
25	25	25 grids for the primitive bcc structure, respec-
tively. The electronic energy levels were broadened using the
Methfessel-Paxton scheme56 with a broadening of 0.1 eV.

For each ordered structure to be included in the cluster
expansion fit, our approach consisted of the following steps.
We start with the unrelaxed ordered structure whose lattice
vectors are integral linear combinations of the primitive bcc
lattice vectors, and whose atomic positions are located at the
sites of an ideal bcc lattice. We then consider a range of
positive and negative levels of isotropic strain, and for each
value of the strain we perform a total energy calculation
relaxing only the internal degrees of freedom, while fixing

the shape of the unit cell at its ideal bcc geometry. The re-
sulting energy versus volume plot is then fit with a Mur-
naghan equation of state to obtain the equilibrium energy
�E0�, bulk modulus �B�, and atomic volume �V0�. These val-
ues correspond to a constrained equilibrium since the unit-
cell shape is forced to maintain its ideal bcc geometry. Nev-
ertheless, this “cubic” geometry is a convenient reference
state that can be compared across structures differing in their
symmetry.

In the next step, we impose various levels of anisotropic
strains to this volume-relaxed cubic reference state and com-
pute energies and/or stresses �see later� while relaxing all
internal degrees of freedom. To derive elastic constants from
these calculations, we make use of an expansion of the en-
ergy as a function of strain 
ij up to second order:

E�
� = E0 + �ij
ij +
1

2
Cijkl
ij
kl. �6�

The reference state �
kl=0� is one in which only volume and
the internal degrees of freedom are relaxed. The quantities
E0, �ij, and Cijkl are, respectively, the energy, the stress in the
solid and the elastic constants in this “cubic” reference state.

Equation �6� makes a direct connection with the method
employed by Craievich et al.,40,41 who apply the cluster ex-
pansion formalism to the function E�
� directly, while we
apply it to the coefficients of the Taylor expansion of E�
�
around a high symmetry point. In the current approach, the
�ij and Cijkl tensors are symmetrized to be made compatible
with the cubic point group of the disordered system. In this
symmetrization process, the �ij parameter vanishes and is
therefore not considered further. For a cubic parent lattice the
elastic constant tensor Cijkl reduces to three independent
components, namely the bulk modulus B, which was already
determined by the volume optimization, the C� modulus, and

the shear modulus C̄44. The latter two quantities are deter-
mined by applying strains specifically adapted to isolate each
modulus, as described in the following.

1. Tetragonal shear modulus C�

We start from the “cubic” reference state described above
and impose a volume-conserving tetragonal strain character-
ized by 
33=−2
22=−2
11�
z, where all strains and stresses
are defined in the coordinate system of the reference bcc
parent lattice. From Eq. �6� the energy as a function of 
z can
be fit to the form

E�
z� = E0 + �z
z +
3

2
Cz
z

2, �7�

where �z=�33− ��11+�22� /2 and Cz= �C1111/4+C2222/4
+C3333+C1122/2−C1133−C2233� /3. The values of �z and Cz

are then derived by fitting Eq. �7� to total energies calculated
for seven values of 
z, with magnitudes chosen to ensure
that the quadratic expansion is sufficiently accurate. In a
similar manner, values of the analogous variables �x and
Cx are derived by computing the change in energy due
to a strain state 
11=−2
22=−2
33�
x, and �y and Cy
from the energy versus strain 
22=−2
11=−2
33�
y. With
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the resulting fitted values the symmetrized elastic
modulus C� is determined as C�= �Cx+Cy +Cz� /3
= ��C1111+C2222+C3333� /3− �C1122+C1133+C2233� /3� /2.
From this final expression, it is easy to verify that in the
cubic disordered phase C�= �C11−C12� /2=C�.

2. Shear modulus C̄44

A procedure similar to that outlined in the previous para-

graph can be employed to derive C̄44 by calculating the
change in energy resulting from the application of shear
strains. In practice, such calculations are substantially more
computationally demanding than those described for C� due
to the reduction in symmetry that typically results from im-
posing a shear strain. The issue of computational efficiency
is particularly important in the construction of a cluster ex-
pansion that generally requires calculations for many ordered

structures. In computing C̄44 we thus make use of the stress
tensor computed within VASP, enabling us to compute elastic
moduli from calculations at single, rather than multiple,
strain values. Specifically, we consider the change in shear
stress ��12� resulting by imposing a shear strain 
12 to the
cubic reference state. From Eq. �7�, we have

�12�
12� = �12�
12 = 0� + 2C1212
12. �8�

From the values of �12 calculated in the reference state
�
12=0�, and with a small imposed strain 
12 �with a typical
magnitude of 0.01�, the modulus C1212 can be derived.
In a similar way we compute values for C1313 and C2323,

from which we derive the symmetrized modulus C̄44
= �C1212+C1313+C2323� /3. For simple ordered structures with
cubic symmetry, including bcc Fe and Cu and B2 FeCu, we
have checked the accuracy of this method, based on calcula-
tions of stresses, relative to the more conventional approach
for computing elastic moduli involving fitting the energy ver-
sus strain; good agreement, at the level of 5%, was obtained
for the two alternative methods.

III. RESULTS

In Table II results for atomic volume, energy, and elastic
moduli of elemental Fe and Cu are compared with previous
calculations and experimental measurements. Compared to
measurements performed at about 4 K,57,58 the atomic vol-
umes for bcc Fe are computed to be smaller by roughly
3.4%. Our calculated values for the bulk modulus B and C�
are larger than the low-temperature measured values by
roughly 10% and 30%, respectively, while C44 is smaller by
about 20%. The present theoretical values for atomic volume
and elastic moduli show good agreement �at the level of a
few percent� with previous all-electron GGA calculations,
suggesting that much of the discrepancy with measurements
for bcc Fe is attributable to the GGA. For fcc Cu, the agree-
ment between the present calculations and low-temperature
measurements for atomic volume and elastic moduli are
found to be slightly better than for Fe. For bcc Cu, where a
comparison with experiment is not possible, we compare the
results of our current GGA calculations for elastic moduli

with available previous calculations based primarily on the
local-density approximation �LDA�; the GGA results are
found to be substantially lower for B, C44, and C�, consistent
with the larger atomic volume predicted by the GGA. Note
in particular that the current GGA result of C�=−14.5 GPa
for bcc Cu is considerably more negative �by 8.5 GPa� than
the value calculated by LDA in the work of Wang et al..36,37

Table III presents a comparison between our results for
atomic volume, bulk modulus, and formation energy
��Eform�, and previously published GGA calculations for or-
dered bcc-based Fe-Cu compounds. Very good overall
agreement is found between the current and previous
calculations. In Table III, the formation energy for a
Fe1−xCux compound is defined as the difference between
the energy of the compound, and the concentration-weighted
average of the energies for bcc Fe and fcc Cu: �Eform
=E0�Fe1−xCux�− �1−x�E0�Fe,bcc�−xE0�Cu,fcc�, where
E0�Fe,bcc� and E0�Cu,fcc� are the energies per atom for bcc
Fe and fcc Cu, respectively.

The details related to the cluster expansion fits for the
mixing energy ��Emix�, the atomic volume �V0�, magnetic
moment �M�, bulk modulus �B�, and the cubic-symmetrized

elastic moduli �C� and C̄44� are summarized in Table IV.
The mixing energy �as opposed to the formation energy,
defined above� represents the difference in energy between
the alloy and a concentration-weighted average of the ener-
gies of elemental bcc Fe and bcc Cu, i.e., for a compound
Fe1−xCux we have �Emix=E0�Fe1−xCux�− �1−x�E0�Fe,bcc�
−xE0�Cu,bcc�. In the fitting of �Emix, it was found that
seven pair and two triplet cluster interactions were required
to fit the 28 calculated values with a CV score of
0.013 eV/atom �the maximum fitting error was
0.018 eV/atom�. In this mixing-energy cluster expansion,
the nearest-neighbor ECI was dominant with a value of
−0.034 eV, which is three times larger in magnitude than the
second-neighbor pair interaction, and one and two orders of
magnitude larger than the more distant pair and triplet inter-
actions, respectively. The quality of the resulting fit can be
seen by comparing the open �direct VASP calculations� and
filled �cluster-expansion fit� symbols in Fig. 1 that represent
results for the 28 ordered structures, described in Table I,
generated by the MAPS code for the cluster-expansion fits.
Similar comparisons between calculations and the cluster-

expansion fits for V0, magnetic moment M, B, C�, and C̄44
are given in Figs. 2, 3, 4, 5, and 6, respectively.

The mixing-energy results in Fig. 1 are seen to be positive
at all concentrations, for all of the ordered structures consid-
ered, as well as the random solid solution. These results are
consistent with the presence of a metastable miscibility gap
for bcc Fe-Cu solid solutions in the assessed phase
diagram.74 In Fig. 7 these energy results are compared with
experimental calorimetry measurements for metastable
single-phase bcc solid solutions prepared by mechanical al-
loying, as reported in the studies by Eckert et al.22 and Ma
et al.23 Also shown in Fig. 7 are results of recently published
calculations by Gong et al.,33 obtained from molecular-
dynamics �MD� simulations based on a classical potential
model fit to first-principles calculations for ordered Fe-Cu
compounds. The theoretical results in Fig. 7 are plotted as
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formation energies, referenced to bcc Fe and fcc Cu, to com-
pare with the measured values of the enthalpies of formation.
The agreement between the present calculations and experi-
mental measurements is seen to be very good, with a maxi-
mum discrepancy of about 0.02 eV/atom for the most con-
centrated alloy. A similar level of agreement is found with
the calculations by Gong et al.,33 which are seen to be
slightly larger in magnitude for near-equiatomic composi-
tions.

The atomic volumes �V0� for Fe-Cu solid solutions plotted
in Fig. 2 show a pronounced positive deviation from linear-
mixing behavior, consistent with experimental measurements
for metastable Fe-Cu alloys.15–18,20,22,23 The origin of this
behavior has been discussed in the theoretical work by
Zhang and Ma,30 who show that the positive deviation from
linear-mixing behavior is associated with the coupling be-
tween magnetism and atomic volume. A comparison between

experimental measurements and the present calculations is
given in Fig. 8, which plots the formation volume �V0 ver-
sus concentration for bcc Fe-Cu solid solutions. The quantity
�V0 for an Fe1−xCux alloy is defined analogously to the for-
mation energy as the difference between the alloy volume
and the concentration-weighted average of the volumes for
elemental bcc Fe and fcc Cu. Figure 8 compares this quantity
with measurements, rather than V0 itself, to remove discrep-
ancies associated with the underestimation of the atomic vol-
ume for bcc Fe by the GGA, and to focus on the predictions
for concentration dependencies. Although the experimental
data shows considerable scatter, the theoretical predictions
for �V0 are of comparable magnitude to the measurements
�note that the early data of Kneller,15 which also showed
positive deviations from Vegard’s law, was not included in
Fig. 8 since it showed considerable scatter�. It is noteworthy
that we find particularly good quantitative agreement with

TABLE II. A comparison between current and previous first-principles calculations and experimental measurements for atomic volumes,
magnetic moment, and elastic constants of pure Cu and Fe. FLAPW stands for the full-potential linearized augmented plane-wave method.
PAW represents a projector augmented wave method. USPP �VASP� stands for ultrasoft pseudopotentials, as implemented in VASP. The
calculations are performed with a GGA or LDA exchange-correlation potential, which includes PW91 �Ref. 54�, PBE96 �Ref. 59�, PW92
�Ref. 60�, CA �Ref. 61 and 62� and Wigner �Ref. 63�. Both scalar-relativistic �SR� and nonrelativistic �NR� calculated results from Ref. 64
are included.

Method
Exchange
correlation

Atomic volume
�Å3�

Magnetic moment
��B / atom� B�GPa� C44�GPa� C��GPa� Reference

Fe bcc PAW �VASP� GGA PW91 11.3 2.16 194 101 69 This work

USPP �VASP� GGA PW91 11.5 2.32 176 115 85.5 65

USPP �VASP� GGA PW91 11.7 2.32 160 31

LMTO-ASA GGA PW91 11.4 2.24 176 66

FLAPW GGA PW91 11.6 2.32 169 67

FLAPW GGA PW91 11.4 2.17 189 68

FLAPW GGA PW91 11.5 180 69

FLAPW GGA PW91 11.7 171 32

FLAPW GGA PW91 11.8 2.29 30

FLAPW GGA PW91 11.5 2.20 29

FLAPW GGA PBE96 11.4 2.17 186 99 69.5 Ref. 70

FLAPW GGA PBE96 11.6 2.14 188 99.5 73 71

Experiment ��4 K� 11.7 2.20, 2.23 173 122 52.5 R15, 17, 57, and 58

Cu bcc PAW �VASP� GGA PW91 12.1 133 95.9 −14.5 this work

PAW �VASP� GGA PW91 12.0 72

USPP �VASP� GGA PW91 12.1 160 31

FLAPW LDA PW92 11.0 188 112 −6 36 and 37

FLAPW GGA PW91 12.2 141 32

FLAPW GGA PW91 12.2 30

FPLMTO LDA CA 11.0 69 34

FLAPW �SR� LDA Wigner 11.5 179 64

FLAPW �NR� LDA Wigner 11.7 160 64

Cu fcc PAW �VASP� GGA PW91 12.0 134 64.5 29.9 This work

USPP �VASP� GGA PW91 12.1 140 31

FLAPW GGA PW91 11.9 179 32

FLAPW GGA PW91 12.2 30

FLAPW GGA PW91 11.8 29

Experiment �0 K� 11.7 142 81.8 25.6 58 and 73
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the most recent measurements due to Ma et al.23

In Fig. 3 the present ab initio results for magnetic moment
of ordered bcc-based Fe-Cu compounds are plotted with
open symbols; the filled symbols represent the cluster-
expansion fit, while the solid line is the cluster-expansion
prediction for random bcc solid solutions. The ab initio re-
sults are seen to display a highly linear dependence on Cu
concentration, and are well fit by a cluster expansion con-
taining only the point and one pair cluster. These results are
in good agreement with previous first-principles
investigations29,30 and confirm the noted trend that the mag-
netic moment is highly insensitive to the atomic configura-
tion at fixed composition. In Fig. 9 the cluster-expansion
predictions are compared with experimental measurements
of the magnetic moment for bcc Fe-Cu solid solutions.15,17,23

Overall, the agreement is seen to be quite good, with the
cluster-expansion results being slightly larger at the higher
Cu concentrations. The temperature-dependent data of
Kneller15 and Sumiyama et al.17 shows a clear and expected
trend toward increasing magnetic moment with decreasing
temperature, and it is noteworthy that our zero-temperature
results show the best agreement with the 4.2 K data.

The cluster expansion predictions for the elastic moduli of
disordered bcc Fe-Cu solid solutions are plotted with solid
lines in Figs. 4, 5, and 6. The cluster-expansion results show
significant negative deviations from linear mixing behavior
for the bulk modulus and C�, while C44 is predicted to dis-
play a weak positive deviation from linearity. Of particular
interest in the current work is the predicted concentration
dependence of C�, which is computed to be positive in the
Fe-rich region and negative for Cu-rich alloys. The Cu-rich
bcc solid solution is thus predicted to be mechanically un-
stable over a wide concentration range. Outside of that range,
the mechanical stability �i.e., the magnitude of C�� of the
alloy increases sharply with increasing Fe concentration
greater than 50 atomic %. This behavior is very similar to
that obtained for C� in theoretical calculations for the Ni-Cr

TABLE III. Atomic volume, bulk modulus and formaton energy for three selected bcc-based Fe-Cu
compounds, comparing the results of the present and previous first-principles calculations.

Method Exchange-Correlations
Atomic Volume

�Å3� B�GPa� �Eform�eV/atom� Reference

B2 FeCu FLAPW GGA PW91 12.2 30

FLAPW GGA PW91 12.2 29

PAW �VASP� GGA PW91 12.1 139 0.275 33

PAW �VASP� GGA PW91 12.0 134 0.281 This work

D03 FeCu3 FLAPW GGA PW91 12.4 30

PAW �VASP� GGA PW91 12.1 33

PAW �VASP� GGA PW91 12.1 143 0.180 This work

D03 Fe3Cu FLAPW GGA PW91 11.98 30

FLAPW GGA PW91 12.0 29

PAW �VASP� GGA PW91 12.0 0.153 33

PAW �VASP� GGA PW91 11.8 166 0.162 This work

TABLE IV. Details related to the cluster-expansion fits for the
mixing energy ��Emix�, atomic volume �V0�, magnetic moment �M�,
bulk modulus �B�, and the symmetrized moduli C� and C̄44. N is the
number of structures used in the SIM fitting. Here �B stands for
Bohrs magneton.

Number of clusters

Property N Pair Triplet Quadruplet CV score

�Emix 28 7 2 0.013 eV/atom

V0 28 4 6 2 0.10 Å3

B 28 4 6 2 4.01 GPa

C� 18 4 5 2 4.81 GPa

C̄44
17 4 6.71 GPa

M 30 1 0.0850 �B / atom

FIG. 1. Mixing energy versus Cu concentration in Fe-Cu bcc
alloys. The symbols represent the values for selected ordered struc-
tures. Open triangles are the ab initio calculations �VASP� while the
solid circles are the predictions from the cluster expansion �CE�.
The solid curve is the CE prediction for a random disordered bcc
solid-solution phase.
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system by Craievich et al.,40,41 where the bcc solid solution
is stable only for relatively high Cr concentrations.

IV. DISCUSSION

A. Stability of bcc Fe-Cu solid solutions

A central result of the present study concerns the rela-
tively extended width of the unstable region �i.e., the region
of concentration with negative C�� for bcc Fe-Cu solid solu-

tions plotted in Fig. 5. This result, and the highly nonlinear
concentration dependence, are entirely compatible with ex-
isting semiempirical d-band models describing the relative
stability of different lattice types across the transition metal
series �see Ref. 75 and references therein�. The basic picture
is analogous to the Jahn-Teller mechanism, where, above a
critical number of electrons, a degenerate energy level be-
comes partially occupied. The energy of the system can
therefore be reduced by splitting this level, which can be

FIG. 2. Atomic volume versus Cu concentration in bcc Fe-Cu
alloys. The symbols represent the values for selected ordered struc-
tures. Open triangles are the ab initio results �VASP� while the solid
circles are the values predicted by cluster expansion �CE�. The solid
line is the CE prediction for a random disordered bcc Fe-Cu solid-
solution phase.

FIG. 3. Magnetic moment per atom �M� versus Cu concentra-
tion for bcc-based Fe-Cu alloys. Open triangles represent the results
from ab initio �VASP� calculations for selected ordered structures.
Solid circles represent the predictions from the cluster expansion
�CE�. The solid line is the CE prediction for random disordered bcc
Fe-Cu solid solutions.

FIG. 4. Bulk modulus versus Cu concentration in bcc Fe-Cu
alloys. The symbols represent the values for selected ordered struc-
tures. Open triangles are the ab initio results �VASP� while the solid
circles are the values predicted by cluster expansion �CE�. The solid
line is the CE prediction for the random disordered bcc Fe-Cu solid-
solution phase.

FIG. 5. Tetragonal shear modulus C̄� �symmetrized� versus Cu
concentration in bcc Fe-Cu alloys. The symbols represent the values
for selected ordered structures. Open triangles are the ab initio re-
sults �VASP� while the solid circles are the values predicted by clus-
ter expansion �CE�. The solid line is the CE prediction for a random
disordered bcc Fe-Cu solid-solution phase.
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achieved by breaking the bcc symmetry. This mechanism
helps explain why the transition to mechanical stability is so
nonlinear. As seen in Fig. 12 in Ref. 75, the critical electron
number in elemental solids is about 6 d electrons per atom,
placing the transition at the electron concentration corre-
sponding to pure Fe. This picture thus clarifies why bcc re-
mains unstable until a large amount of Fe is added to the
solution. Of course, this picture is mostly qualitative, be-

cause both the magnetic nature of Fe and the focus on a
random alloy, rather than on a pure element, substantially
complicate the analysis. In fact, these complications further
emphasize the need for the accurate ab initio treatment pre-
sented above.

FIG. 6. Modulus C̄44 �symmetrized� versus Cu concentration in
bcc Fe-Cu alloys. The symbols represent the values for selected
ordered structures. Open triangles are the ab initio results �VASP�
while the solid circles are the values predicted by the cluster expan-
sion �CE�. The solid line is the CE prediction for a random disor-
dered bcc Fe-Cu.

FIG. 7. Formation energy versus Cu concentration in Fe-Cu bcc
solid solutions. Open circles and triangles represent experimental
measurements performed on metastable alloys obtained through
mechanical alloying from Eckert et al. �Ref. 22� and Ma et al. �Ref.
23�, respectively. Solid squares correspond to theoretical results de-
rived from molecular dynamics simulations by Gong et al. �Ref.
33�. The solid curve represents the current theoretical prediction
based on the cluster expansion �CE� approach.

FIG. 8. Formation volume �V0 versus Cu concentration for bcc
Fe-Cu solid solutions. Open squares and solid circles are experi-
mental results from mechanically-alloyed samples due to Ma et al.
�Ref. 23� and Eckert et al. �Ref. 22�, respectively. Solid triangles are
experimental measurements from alloys obtained by rapid quench-
ing by Klement et al. �Ref. 16�. Open triangles and crosses are
experimental results from sputter-deposited samples due to Sum-
iyama et al. �Ref. 17� and Chien et al. �Ref. 18�. The current theo-
retical predictions, obtained from the cluster-expansion approach,
are given by the solid lines.

FIG. 9. Measured and calculated magnetic moments �per atom�
in bcc Fe-Cu solid solutions. Open squares are measured results
from mechanically alloyed samples due to Ma et al. �Ref. 23�. Solid
and open triangles represent measurements from vapor-deposited
samples at temperatures of 4.2 and 293 K, respectively, due to
Kneller �Ref. 15�. Solid and open circles are measurements from
sputter-deposited alloys due to Sumiyama et al. �Ref. 17�. The solid
line represents the present calculated results for random Fe-Cu bcc
solid solutions.
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It is interesting to analyze experimental observations con-
cerning the stability of bcc Fe-Cu alloys in light of the
present results. Through the nonequilibrium processing tech-
nique of mechanical alloying, it has been possible to synthe-
size Fe-Cu solid-solution phases over the entire concentra-
tion range. As reviewed by Zhang and Ma,30 it is generally
observed in such studies that bcc solid solutions are only
observed for Cu concentrations below 40 atomic %; at higher
Cu concentrations only the fcc structure is observed. These
observations have been analyzed in previous studies employ-
ing models for the free-energy differences between the com-
peting fcc and bcc solid solutions,23,33 and the observed
ranges of stability have been correlated well with the cross-
ing of the free energy curves for these competing phases with
respect to concentration. In light of the current work, it is
important to emphasize that these previous analyses have
been based either on calculations of energy alone, i.e., ne-
glecting entropic contributions, or on free-energy models
employing an ideal entropy of mixing. The results in Fig. 5,
featuring negative values for C� for Cu-rich compositions,
suggest that the thermodynamics of bcc alloys, and thus the
phase competition between fcc and bcc solid solutions, is
substantially more complex. Specifically, due to the small
and negative values of C� for Cu-rich alloys, realistic models
of the thermodynamics of bcc Fe-Cu alloys should account
for anharmonic vibrational-entropy effects and the possibility
that the bcc structure is inherently unstable beyond a critical
Cu concentration.

In supersaturated Fe-Cu alloys, nanometer-scale precipi-
tates are known to form with the bcc crystal structure for
diameters less than 3–4 nm.6–8,11 The concentration of these
precipitates has been a topic of debate, with alternate experi-
mental methods leading to significantly different reported
compositions, as summarized in Table V. In this table it is
seen that direct measurements based on the technique of
atom-probe microscopy consistently yield precipitate con-
centrations with high Fe concentrations, in the range of 50
atomic % for sizes below 4 nm.6,12 By contrast indirect de-
rived values based on both positron-annihilation and
neutron-scattering techniques give much lower Fe
concentrations.76,77 It is interesting to note that the atom-
probe measurements for bcc precipitates correspond well
with the limiting Fe concentration for the mechanical stabil-

ity of the bcc solid-solution phase predicted in the present
study. In other words, the high concentrations of Fe reported
by atom-probe microscopy could be understood, in light of
the results in Fig. 5, as having the effect of stabilizing the bcc
structure of the precipitate. If the precipitates in fact have the
higher Cu concentrations suggested by neutron scattering
and positron annihilation, other factors would need to be
considered to reconcile the results in Fig. 5 with the observed
stability of the bcc structure in small coherent precipitates.
One such possibility is that, in a Cu-rich precipitate, the bcc
structure could be stabilized by the strains imposed by the
constraint of coherency with the higher-density Fe-rich ma-
trix. To investigate this possibility, we performed ab initio
calculations of C� for bcc Cu at the atomic volume of bcc Fe,
finding an increase to −12.0 GPa from the equilibrium value
of −14.5 GPa. While this strain effect has the right sign, it
does not appear to be of sufficient magnitude to stabilize a
Cu-rich bcc structure. An additional factor that could pro-
mote the stability of a bcc structure in a small coherent pre-
cipitate are the epitaxial forces imposed by the interfacial
bonds with the bcc matrix. For example, to explain the ob-
servation of the mechanically unstable bcc structure in epi-
taxially grown Cu films on Fe and Ag �001� substrates,38,39

Kraft et al.34 have suggested that due to the epitaxial con-
straint on 
001� surfaces the spontaneous sliding on 
011�
planes will be prevented since C44 is positive for bcc Cu.
Additionally, it is possible that anharmonic vibrational ef-
fects could lead to a stabilization of C� at finite temperature.
Further experimental and theoretical work is clearly war-
ranted to resolve the controversy surrounding precipitate
concentrations and the associated origins for the stability of
the bcc structure in these nanoscale particles.

B. Implications for the strengthening mechanism

The pronounced strengthening effect of nanoscale bcc
precipitates in Fe-Cu alloys has traditionally been attributed
to a modulus effect, as first proposed in the work of Russel
and Brown.78 In this model, precipitates with a softer shear
modulus than the matrix provide an attractive interaction
with dislocations and thus act to “pin” their motion. A key
parameter in the Russel-Brown model is the ratio of the iso-
tropic shear modulus in the precipitate ��1� and matrix ��2�.
In applying the model to Fe-Cu alloys Russel and Brown
estimated �1 as the measured isotropic shear modulus for fcc
Cu, since values for bcc Cu were not available. This yields a
ratio �1 /�2=0.6, with which Russel and Brown demon-
strated very reasonable agreement between their theory and
available experimental measurements for the dependence of
peak hardness on precipitate volume fraction, provided the
one remaining free parameter, namely the dislocation core
radius �r0�, was fit with a value of roughly twice the Burger’s
vector �b�. With these values for �1 /�2 and r0, the Russel-
Brown theory predicts that the precipitate radius at peak
strength is approximately twice r0, or about 1 nm. It was
noted by Russel and Brown that this result is about a factor
of 2 smaller than the measured values for average precipitate
radii at peak hardness.

With the present results for the single-crystal elastic con-
stants of bcc Fe-Cu alloys, it is interesting to revisit the

TABLE V. Summary of experimental measurements for the di-
ameter and Fe concentraton of precipitates in a binary Fe-Cu alloy.

Method Diameter �nm� Fe concentration �at %� Reference

APa 1.7 51 12

2.7 54

3.0 45

5.0 32 6

PASb �10 76

SANSc 4.1 0 77

4.4 0

aConventional �one-dimensional� atom probe.
bPositron annihilation spectroscopy.
cSmall angle neutron scattering.
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analysis of Russel and Brown for Fe-Cu alloys. A more com-
plete analysis will be given in a separate publication; here
the results are only briefly summarized. In applying the
model of Russel and Brown to Fe-Cu alloys, the appropriate
shear modulus is that for the primary slip plane 
110�:79

�
110�	11̄1
 =
3C44�C11 − C12�
C11 − C12 + 4C44

�9�

Figure 10 plots the concentration dependence of this quan-
tity, as derived from the results in Figs. 4–6. We also include
in Fig. 10 plots of the isotropic shear modulus computed
according to the prescriptions of Voigt, Reuss, and Hershy,
according to the equations listed in the Appendix; these
moduli find wide application in the literature on precipitation
and are thus included for completeness. If we assume that the
precipitates have a concentration near 50 at.% Fe, as reported
by atom-probe microscopy,6,12 the results in Fig. 10 predict
that the ratio �1 /�2 is approximately zero. If this value is
employed in the Russel-Brown model, we obtain the same
agreement with the measured volume-fraction dependence of
shear strength, as previously reported,78 provided we assume
a significantly larger value for the core radius of r0�4b.
This result leads to a predicted precipitate size at peak
strength of approximately 2 nm, in good agreement with
measurements.

Recently, the ability of the Russel-Brown model to ex-
plain the precipitate-strengthening mechanism in Fe-Cu al-
loys has been called into question.2–4,80 In Ref. 4, Fine and
Isheim obtained an inaccurate estimate of the level of
strengthening arising from the Russel-Brown formulation of
modulus-mismatch hardening from precipitates with vanish-
ingly small shear moduli, due to the use of an incorrect for-
mula; this has been corrected in the present analysis that
yields a substantial contribution to hardening from modulus
mismatch.

It has also been noted by Harry and Bacon2 that �i�
empirical-potential models81,82 predict that the shear modu-
lus for bulk bcc Cu is actually larger than that of � -Fe.
These potentials also predict that while bulk bcc Cu is stable
at zero presssure, �ii� it becomes unstable with respect to
shear under hydrostatic compression. Harry and Bacon2 have
concluded based on these predictions that there is significant
doubt that the component of hardening due to modulus mis-
match is significant compared with the measured increases in
yield strength. These authors propose a novel alternative
strengthening mechanism, based on a detailed analysis of
atomistic simulations employing the potentials of Ref. 82,
which is related to the transformation of the unstable bcc Cu
lattice to a close-packed structure when it is sheared by a
dislocation. It is important to point out that both predictions
�i� and �ii�, which arise from classical-potential models, are
inconsistent with the present first-principles results. As de-
tailed above, the present calculations suggest that the hard-
ening due to modulus mismatch is likely to be significant. It
should be noted, however, that in the analysis leading to this
conclusion we have used the precipitate compositions re-
ported from atom-probe measurements, which have high
enough Fe concentrations to lead to a positive value of �1. If
the precipitates have a much lower Fe concentration, as sug-
gested by PAS and SANS measurements, and thus negative
�1, the structural-transformation mechanism proposed by
Harry and Bacon may indeed be relevant. It would thus be of
interest to refit empirical potential models for Fe-Cu employ-
ing the present and previous first-principles results as a basis
for further atomistic-simulation work of the type reported in
Ref. 2 to examine the nature of the hardening mechanisms in
more detail. In such an analysis, the present results �e.g., Fig.
10� point to the importance of considering deviations in the
precipitate concentration away from pure Cu.

V. SUMMARY AND CONCLUSIONS

Ab initio calculations, in conjunction with the cluster ex-
pansion framework, were used to compute the composition
dependencies of the atomic volume, mixing energy, magnetic
moment, and elastic moduli of disordered bcc solid solutions
in the Fe-Cu system. While cluster expansions are tradition-
ally used to represent the configuration and concentration
dependence of scalar quantities, we have demonstrated how
the same formalism can be extended to the calculation of the
elastic constants for disordered solid solutions. The mixing
energy and atomic volume obtained in the present calcula-
tions both deviate positively from linear-mixing behavior,
and are in good quantitative agreement with available experi-
mental measurements. The calculated magnetic moment dis-
plays a highly linear dependence on the Cu concentration
and agrees well with experimental measurements. The bulk
modulus B and shear modulus C44 are both positive through-
out the entire concentration range, while C� is calculated to
be negative in the Cu-rich region, indicating that bcc solid
solutions with Cu-rich concentrations are mechanically un-
stable. The present results suggest that the thermodynamic
properties of bcc Fe-Cu solid solutions are likely to contain a
sizable contribution from vibrational entropy, which itself is

FIG. 10. Isotropic shear modulus � and shear modulus
�
110�	11̄1
 on primary slip plane 
110� versus Cu concentration for
random bcc Fe-Cu solid solutions predicted from the present
calculations.
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expected to be highly anharmonic in nature. Due to the low
values of C� for bcc alloys with the precipitate compositions
measured by atom-probe microscopy, we conclude that the
Russel-Brown modulus effect is likely to represent a sizeable
contribution to the measured strengthening effect of
nanoscale bcc precipitates in Fe-Cu.
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APPENDIX: ISOTROPIC SHEAR MODULUS

For anisotropic cubic structures there are several methods
to estimate the isotropic shear modulus ��� for a totally ran-
dom polycrystal from the single crystal elastic constants Cij,
including the methods of Voigt,83 Reuss,84 Hill,85 and
Hershey.86 In Voigt’s83 method ��V�, based on the assump-
tion of uniform local strain, the isotropic shear modulus is
expressed as

�V =
C11 − C12 + 3C44

5
. �A1�

On the other hand, in Reuss’s84 method ��R�, based on the
assumption of uniform local stress, the isotropic shear modu-
lus is expressed as

�R =
5

4�S11 − S12� + 3S44
, �A2�

where Sij’s are the elastic compliances. Despite their wide
usage, neither Voigt’s nor Reuss’ relation is believed to be

exact. Accordingly, Hill85 showed that Voigt’s equation pro-
vides an upper limit for � while Reuss’s equation gives a
lower limit for �. Hill85 suggested averaging by either the
arithmetic or the geometric mean of these two limits, i.e.,

�Hill =
�V + �R

2
or ��V�R. �A3�

To mimic an ideal isotropic elastic solid, Hershey86 mod-
eled the elasticity of a polycrystalline aggregate in terms of
the elasticity of individual grains with a spherical boundary,
and proposed the following quartic equation:

64�H
4 + 16�4C11 + 5C12��H

3

+ �3�C11 + 2C12��5C11 + 4C12� − 8�7C11 − 4C12�C44�

	�H
2 − �29C11 − 20C12��C11 + 2C12�C44�H

− 3�C11 + 2C12�2�C11 − C12�C44 = 0. �A4�

Hershey’s method, proposed independently by Kröner,87

is viewed generally as exact.
The calculated isotropic shear modulus � of pure bcc Fe

derived from the present first-principles calculations of the
single-crystal elastic moduli, has been summarized in Table
VI and compared with the polycrystal experimental measure-
ments. The shear modulus � for bcc Fe-Cu solid solution is
illustrated in Fig. 10, which is calculated from the cluster
expansion predicted cubic symmetry elastic constant tensor
for the solid solution phase based on Eqs. �A1�–�A4�. As a
lower bound, the � of Reuss’ estimation becomes negative in
the Cu-rich region, which is consistent with the C� instabil-
ity. Hence, the second type Hill estimation, defined as the
geometrical average of the Voigt and Reuss isotropic shear
modulus, has no physical meaning in that region. As for the
Hershey estimation, it gives an imaginary value for Cu con-
centrations larger than about 66 at.%.
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