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Coarse-grained molecular dynamics �CGMD� is a technique developed as a concurrent multiscale model that
couples conventional molecular dynamics �MD� to a more coarse-grained description of the periphery. The
coarse-grained regions are modeled on a mesh in a formulation that generalizes conventional finite element
modeling �FEM� of continuum elasticity. CGMD is derived solely from the MD model, however, and has no
continuum parameters. As a result, it provides a coupling that is smooth and provides control of errors that
arise at the coupling between the atomistic and coarse-grained regions. In this paper, we elaborate on the
formulation of CGMD, describing in detail how CGMD is applied to anharmonic solids and finite-temperature
simulations. As tests of CGMD, we present in detail the calculation of the phonon spectra for solid argon and
tantalum in three dimensions, demonstrating how CGMD provides a better description of the elastic waves
than that provided by FEM. We also present elastic wave scattering calculations that show the elastic wave
scattering is more benign in CGMD than FEM. We also discuss the dependence of scattering on the properties
of the mesh. We introduce a rigid approximation to CGMD that eliminates internal relaxation, similar to the
quasicontinuum technique, and compare it to the full CGMD.
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I. COUPLING OF LENGTH SCALES

The science of materials is foremost a study of structure.
Once structure is determined, other important issues such as
dynamics and kinetics may be addressed. Structure in mate-
rials is most effectively analyzed according to its length
scale. Materials structure at different scales such as crystal
structure, crystal defect structure, microstructure, and macro-
structure has led to the development of models at the atomic
scale, nanoscale, microscale, and macroscale, not to mention
the mesoscale and a vast array of other distinctions in scale.
These models work because the physics at one scale de-
couples to a large extent from that at other scales, provided
there exists a sufficient separation of scales. Then physical
properties calculated at one scale may be passed to the next
higher scale in a hierarchical approach that can be very
effective.1,2

There are systems of interest that are inherently multiscale
where the physics at one scale is strongly coupled to that at
other scales.3 Turbulence is an excellent example, where en-
ergy input through stirring at the macroscopic scale cascades
down through vorticity across a range of length scales until it
is ultimately dissipated at the shortest length scales. The size
of the vortices varies continuously, and while there are length
scales with distinct physics, the boundaries between them are
blurred. As a result, hierarchical models have been largely
unsuccessful, and turbulence remains a hard problem.4 This
situation is in marked contrast to low Reynolds number flow,
in which the physics at small length scales can be encoded in
a few parameters, which may be computed and then fed into
simulations at a larger scale. In this way, it has been possible
to start with ab initio electronic structure calculations of H2O
and through a sequence of scales end up with a description of
tides in Buzzard’s Bay.5

Many other examples of strongly coupled multiscale sys-
tems exist. Ironically, the advent of nanoscience and the cur-
rent focus on structures of one particular scale, the nano-
scale, has led to the need to understand a class of strongly
coupled multiscale systems. Consider epitaxial quantum
dots, for example.6–8 The quantum dot consists of a dome of
semiconductor material that forms during heteroepitaxy. The
dome itself is typically a few nanometers to tens of nanom-
eters across, but its size, shape, and location are affected by
the presence of other structures during growth, even those
microns away. Another example is a nano-electro-
mechanical system �NEMS� resonator.9–12 It consists of a
semiconductor bar about 50 nm wide and a fraction of a
micron long attached to the substrate at both ends. The bar
itself is clearly nanoscale, and yet as it resonates, the oscil-
lating strain fields extend far into the substrate. Of course,
there are many other examples in metallurgy and solid state
physics, as indicated above. Remarkably, similar effects are
beginning to be appreciated in the study of soft materials,
chemistry, and even biology.

These systems are examples of what could be termed em-
bedded nanomechanics.13 The mechanical properties of the
nanoscale structure is clearly important, and these properties
may be quite different from what would be predicted accord-
ing to conventional macroscopic mechanics, but also impor-
tant is the way the nanoscale structure is coupled to its sur-
roundings. Embedded nanomechanical structures are too
small to be modeled reliably with conventional continuum
elastic theory and finite elements, and too large to be mod-
eled by conventional atomistics. Even in single crystals, sub-
micron dynamical regions bounded by surfaces or interfaces
are affected by angstrom-scale and nanoscale physics which
causes deviations from continuum elastic theory;14 dynami-
cal regions larger than 0.1 �m2 cubed exceed the current
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limit of about one billion atoms for atomistic simulation of
solids on a supercomputer.15 The atomistic effects are com-
pounded in materials with local defects or cracks that couple
to long-range strain fields.16 The situation is not entirely in-
tractable, however, because the most important atomistic ef-
fects are often localized to small regions of the system: sur-
faces, defects, regions of large deflection or internal strain,
and regions of localized heating perhaps due to friction. The
challenge is to develop a robust model for such an inhomo-
geneous system which captures the important atomistic ef-
fects without the prohibitive computational cost of a brute
force atomistic simulation for the entire system. In this paper,
we focus on the link between the micron scale and the nano-
scale and develop a model, coarse-grained molecular dynam-
ics �CGMD�,17 which bridges the disparate scales seamlessly.

The choice to use atomistic models at the finest resolution
is motivated in some cases by the fact that the inherent
length scale of the process of interest is the interatomic spac-
ing and in other cases by the ability to derive interatomic
potentials from quantum mechanics and, hence, build a
model from first principles. Yet another motivation is that the
processes of interest may be thermally activated, and mo-
lecular dynamics provides a means to simulate the thermal
effects directly. Entropic and thermal effects are often para-
mount in soft matter systems; in hard matter, thermal activa-
tion is important in defect diffusion, in the motion of dislo-
cations in metals with high Peierls barriers and in many
nucleation phenomena. Temperature is important in other
ways, too, such as in inducing phase transitions. Also, the
population of phonons increases with temperature, causing
thermal expansion, changes �typically softening� in the elas-
tic constants, and dislocation drag at high strain rates. These
are but a few well-known examples of the important role
temperature plays; thus, in our development of multiscale
models we search for methodologies capable of handling
nonzero temperatures.

The variation of the strain field and/or atomic displace-
ments in inhomogeneous solid systems suggests the use of
different computational methodologies for different regions,
as we mentioned above. The challenge is to meld them into a
seamless, monolithic simulation. The first such proposal
implemented a coupling between molecular dynamics18,19

�MD� and a finite element model20,21 �FEM� implementation
of continuum elastic theory using stress consistency as the
boundary condition at the interface.22 More recently, a dy-
namical instability in the original formulation has been
eliminated through the use of a mean force boundary condi-
tion together with uniform symplectic time evolution.23 In
both of these formulations, the same constitutive relation is
used regardless of the size of the cells in the FEM mesh,
leading to a discontinuity at the atomic limit.

At its heart, the FEM description of such a system relies
on the ability to improve the accuracy of the simulation by
going to a finer mesh.21 A mesh of varying coarseness is
chosen, adaptively or by fiat, such that no single region con-
tributes disproportionately to the error. These errors typically
result from large strain gradients, velocity gradients, or other
gradients which violate the discrete expression for the inte-
gral of the elastic energy density of a continuous medium.
This approximation may be improved by mesh refinement.

There is a limit, however. As the mesh size approaches the
atomic scale, the constitutive equations have significant er-
rors because the expression for the elastic energy does not
represent localized bonds and the standard distributed mass
expression for the kinetic energy does not account for the
fact that essentially all of the mass is localized in the nuclei,
at least 4 orders of magnitude smaller than the interatomic
spacing. At this point, the physics of the governing equations
is wrong, and further mesh refinement does not help.

The approach of Refs. 22 and 23 to improve this situation
replaces the FEM equations of motion on regions of the
mesh that are atomic sized with MD equations of motion and
implements a hand shaking between the MD and FEM re-
gions. Although this technique is remarkably successful, the
union is not perfectly seamless. In the FEM cells approach-
ing the atomic limit, the energy density varies smoothly
within each cell, whereas on the other side of the interface,
the MD energy is effectively localized to interatomic bonds.
The short-wavelength modes of the system are able to probe
this discrepancy, leading to errors that grow with the wave
number.

The quasicontinuum technique24–26 offers another ap-
proach to this problem. It is a zero temperature relaxation
technique in which the elastic energy used in the FEM region
is computed by applying the FEM interpolated displacement
field �through the Cauchy-Born rule� to a reference system of
atoms interacting by MD forces. This is a very nice idea, but
it has a number of difficulties in practice. The atoms in the
reference system are taken to be at their zero temperature
locations—no fluctuations are allowed. Thus, many degrees
of freedom are summarily set to zero �although finite-
temperature versions of the quasicontinuum technique are
currently under development27�. Also, the implementation of
the quasicontinuum technique suffers from discontinuities
�“ghost forces”� due to the mismatch of the displaced refer-
ence systems from cell to cell and nonlocality of atomic
bonding.28

Other concurrent multiscale models have been proposed
recently. There are several nice review papers on this subject
to which we direct interested readers.26,28,29 The relationships
of several multiscale models to CGMD are of particular note.
A finite-temperature dynamical model based on renormaliza-
tion group ideas has been proposed by Curtarolo and
Ceder.30 The finite-temperature coarse-graining approach
based on Monte Carlo calculations has been developed re-
cently by Wu et al.31 The bridging scale decomposition is
another approach for coupling atomistic and continuum
simulations due to Wagner and Liu that provides a coupling
between FEM and atomistics that does not require the FEM
mesh to be refined to the atomic level,32 and it has been
applied to finite-temperature simulations by Park et al.33 The
projection techniques of the bridging scale decomposition
and the ensemble averages that they use are closely related to
the techniques of CGMD introduced earlier. Also, we note
that the assumption that no defect �dislocation� propagation
takes place from an atomistic region into a finite element or
coarse-grained region has been relaxed through the develop-
ment of the coupled atomistic and discrete dislocation
�CADD� method, albeit so far just in two dimensions.34

We have proposed a replacement for conventional finite
elements suitable for a mesh which is atomic sized in some
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regions.17 This technique, CGMD, effectively provides the
scale-dependent constitutive equations needed at the inter-
face. In the atomic limit it is guaranteed to reproduce the
atomistic equations of motion. This enables MD regions to
be coupled seamlessly to regions of generalized FEM, bring-
ing the full power of MD to bear on important parts of the
system without the computational overhead of MD in other
large, but physically less complex regions. The CGMD pro-
cedure is based on a statistical coarse-graining prescription.
While various aspects of CGMD have been introduced pre-
viously, this is the first of our papers to present the model in
great detail.

This kind of multiscale simulation poses a number of
challenges. First, the model must have a well-behaved,
physical response to stationary strain fields, slowly varying
in position, that extend into the coarse-grained �CG�
region—there should be no ghost forces. Second, the model
must have sensible thermodynamics in equilibrium. The ef-
fect of short-wavelength modes cannot be set to zero unless
their energy is well above the thermal energy. Third, the
system must have realistic dynamics, free of pathologies due
to influences in the central MD region propagating out to
unphysical interfaces, reflecting and propagating back into
the central region to cause unphysical effects. Fourth, the
model should exhibit well-behaved nonequilibrium thermo-
dynamics, with a sensible response when low-lying modes
are driven out of equilibrium. Finally, the methodology needs
to be amenable to a practical implementation in terms of
being able to utilize the broad spectrum of MD models in
use, including many-body interatomic potentials that extend
beyond nearest neighbors, computationally efficient domain
decompositions for parallel distributed memory computers,
visualization, etc. In this paper, we describe in detail how
CGMD is implemented in order to meet these challenges.

In particular, we provide a detailed description of the way
CGMD may be applied to anharmonic solids and finite-
temperature simulations. Previously, we have described how
CGMD is formulated for harmonic lattices,17 including
finite-temperature contributions. We have also indicated how
anharmonic effects are included, but the details have not
been given. We give the details here and explore their impli-
cations. We also introduce a rigid approximation to CGMD
that eliminates internal relaxation, simplifying the formula-
tion and reducing the computation cost of CGMD. We exam-
ine the physical difference between CGMD and its rigid ap-
proximation. As tests of CGMD, the calculation of the
phonon spectra for solid argon and tantalum in three dimen-
sions �3D� are presented. These calculations provide a test of
the quality of the representation of elastic wave energetics.
We also present elastic wave scattering calculations, a test of
how CGMD behaves on an irregular mesh. Whenever pos-
sible, we present analytic formulas that contain a wealth of
information about the performance of CGMD in as much
generality as possible �explicitly showing dependence on the
interatomic potential, atomic masses, crystal lattice, and
mesh structure�. Of course, realistic simulations involve nu-
merical assembly and integration of the CGMD equations of
motion.

II. COARSE-GRAINING PRESCRIPTION

Consider a system of MD atoms in a solid, crystalline or
amorphous, and a CG mesh partitioning the solid into cells
�cf. Fig. 1�. The mesh size may vary, so that in important
regions a mesh node is assigned to each equilibrium atomic
position; whereas in other regions, the cells contain many
atoms and the nodes need not coincide with atomic sites.
CGMD offers a way to reduce the atomistic coordinates to a
much smaller set of degrees of freedom associated with the
displacement field at the nodes of the CG mesh, and the
equations of motion for this mean displacement field. In par-
ticular, the energy functional for the CG system is defined as
a constrained ensemble average of the atomistic energy un-
der fixed thermodynamic conditions. The equations of mo-
tion are Hamilton’s equations for this conserved energy func-
tional and in principle additional random and dissipative
forces due to fluctuations.

The classical ensemble must obey the constraint that the
position and momenta of the atoms are consistent with the
mean displacement and momentum fields. Let the displace-
ment of atom � be u�=x�−x�0, where x�0 is its equilibrium
position. The displacement of mesh node j is a weighted
average of the atomic displacements

u j = �
�

f j�u�, �1�

where f j� is a weighting function, related to the microscopic
analog of FEM interpolating functions below. An analogous
relation applies to the momenta p�. Since the nodal displace-
ments are fewer or equal to the atomic positions in number,
fixing the nodal displacements and momenta does not �nec-
essarily� determine the atomic coordinates entirely. Some
subspace of phase space remains, corresponding to degrees
of freedom that are missing from the mesh. We define the
CG energy as the average energy of the canonical ensemble
on this constrained phase space,

FIG. 1. �Color online� Schematic of a coarse-grained simulation
of a NEMS silicon microresonator �Refs. 4–6�. The coarse-grained
region comprises most of the volume, but the molecular dynamics
region contains most of the simulated degrees of freedom. Each
sphere shown in the MD region represents an atom. Note that the
CG mesh is refined to the atomic scale where it joins with the MD
lattice.
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E�uk,u̇k� = �HMD�uk,u̇k
�2�

=� dx�dp�HMDe−�HMD�/Z , �3�

Z�uk,u̇k� =� dx�dp�e−�HMD� , �4�

� = �
j

��u j − �
�

u�f j�	��u̇ j − �
�

p�f j�

m�
	 , �5�

where �=1/ �kT� is the inverse temperature, Z is the partition
function, and ��u� is a three-dimensional delta function. The
delta functions enforce the mean field constraint �1�. Note
that Latin indices, j ,k , . . ., denote mesh nodes and Greek
indices, � ,� , . . ., denote atoms. The energy �3� is computed
below 
Eq. �29��.

When the mesh nodes and the atomic sites are identical,
f j�=� j� and the CGMD equations of motion agree with the
atomistic equations of motion.35 As the mesh size increases,
some short-wavelength degrees of freedom are not supported
by the coarse mesh. These degrees of freedom are not ne-
glected entirely, because their thermodynamic average effect
has been retained. This approximation is expected to be good
provided the system is initially in thermal equilibrium, and
changes to the system would only produce adiabatic changes
in the missing degrees of freedom. In particular, the relax-
ation time of those degrees of freedom should be fast com-
pared to the driving forces in the CG region. As long as this
condition is satisfied, the long-wavelength modes may be
driven out of equilibrium without problems.36

We have written the CG energy as an internal energy, a
function of the entropy, S, rather than the temperature. This
is designed for systems in which the short-wavelength modes
change adiabatically. This is a good approximation, for ex-
ample, when long-wavelength elastic waves propagate
through a solid in the linear regime at finite temperature.37,38

In other systems, the short-wavelength modes may be in con-
tact with a heat bath, so that their evolution is isothermal
rather than isentropic. For example, the electron gas in met-
als can act as a heat bath on time scales longer than the
thermal relaxation time. Then the Helmholz free energy,

F�uk,u̇k� = − kT ln Z , �6�

should be used rather than the internal energy. In this case,
the ensemble average behavior of the CG collective modes is
exactly the same as that of the corresponding averaged
atomic modes in the underlying atomistic system as follows:

�u j1
¯ u jn

� =� du jdu̇ j�u j1
¯ u jn

�e−�F �7�

= f j1�1
¯ f jn�n� du�dp�u�1

¯ u�n
e−�HMD, �8�

which follows from plugging in the expression for F �6� and
�4� into �7� and integrating the delta functions.39 This equa-
tion shows the equivalence of all unnormalized correlation

functions, but since the partition functions �zero point func-
tions� are identical, the normalized correlation functions are
the same, as well. The emergence of the canonical distribu-
tion in other cases requires a treatment of thermal relaxation
processes �cf. Sec. V�. It should be noted that even in the
isothermal ensemble, the faithfulness of correlation functions
applies only to equal-time correlation functions at equilib-
rium, and consideration of dissipative processes is needed to
reproduce interesting correlation functions such as the auto-
correlation function �u̇i�0�u̇i�t�� associated with the fluc-
tuation-dissipation theorem.

To end this section, we note that the definition of the
CGMD energy may appear to neglect the well-known quan-
tum mechanical contributions to lattice dynamics. Phonons
are bosons, after all, and they should obey Bose-Einstein
statistics. The definition of the CGMD energy �3� is clearly a
classical expression based on Boltzmann statistics. To what
extent can it be expected to be valid? The reason the classical
expression is valid for most of the conceivable applications
of CGMD is that the Bose-Einstein distribution most
strongly affects the lowest states, i.e., exactly the states that
are retained explicitly in the CGMD Hamiltonian. The higher
energy states have low occupation in equilibrium and are not
affected significantly by strong quantum effects such as Bose
condensation. The CGMD Hamiltonian, therefore is ex-
pected to be a good description of the coarse-grained system.
It may be necessary to use a path integral, or other quantum
mechanical version, of MD to treat the retained degrees of
freedom at sufficiently low temperature,40 but the internal
degrees of freedom are described well by Eq. �3�.

III. SHAPE FUNCTIONS

In addition to the general framework we have presented
for CGMD, a specific choice of the weighting functions is
required for calculations. They result from the introduction
of a set of shape functions �Nj�x� j=1

Nnode on the mesh from
which the interpolated fields are constructed. The shape
functions have the following properties: �i� Nj�xk�=� jk, �ii�
� j=1

NnodeNj�x�=1, �iii� C0 continuity. The first property states
that the functions are normalized and local on the mesh
nodes, xk. The second states that the functions form a parti-
tion of unity, so the center of mass mode is represented. The
third states that the functions are continuous but their deriva-
tives need not be. This continuity guarantees that the elastic
energy, proportional to an integral of the square of the strain
��u�sym, is well behaved in the continuum limit. The interpo-
lated displacement field is then defined by u�x�=�u jNj�x�.
Often there are additional considerations, such as the need to
refine the mesh onto a particular crystal lattice at the MD/CG
interface.41

Given any set of atomic displacements, we can find the
displacement field represented on the CG mesh which best
fits these data in the least squares sense,

�2 = �
�
�u� − �

j

u jNj��2
, �9�

where Nj�=Nj�x�0�. This �2 error is minimized by
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u j = �
�

f j�u�, �10�

f j� = �
k
��

�

Nj�Nk�	−1
Nk� �11�


cf. �1��. This equation defines the weighting function f j� of
�1� in terms of the interpolating function Nj�x�. We note that
recently this relationship introduced in CGMD has been gen-
eralized for use in the bridging scale and other L2 projection
techniques.29

The formulation we have described is appropriate to re-
tain the low-lying acoustic phonon modes in the coarse-
grained system. In some cases, it is desirable to retain the
long-wavelength optical phonons, as well. For example, in
the study of III-V epitaxial quantum dots, internal relaxation
of the zinc blende structure in the strained dots leads to im-
portant changes in the optical spectra of the dots.42 If it is
important to model the optical phonons or to capture the
internal relaxation in a crystal lattice with a multiple-atom
basis, each interpolation function should carry a band index
a, in addition to the nodal index j :Nj

�a��x�. Then the basis
requirements are somewhat different. The functions should
be local and normalized within each band. They should be
C0 continuous apart from variations with the unit cell. And
they should form a generalization of the partition of unity. In
particular, the requirement of forming a partition of unity is
the requirement that uniform displacement of the system be
represented in the basis of shape functions. That translation
invariance is responsible for the k=0 acoustic-mode phonons
having zero energy. We generalize the partition of unity re-
quirement to the requirement that all of the k=0 phonon,
both acoustic and optical, be represented. In particular, de-
note the displacement associated with the k=0 phonon for

band a as u�
�a�, normalized such that

�
��unit cell

�u�
�a��2 = Nbasis, �12�

where Nbasis is the number of atoms in the Wigner-Seitz unit
cell. Then the shape functions can be defined as

Nj
�a��x�0� = u�

�a�Nj�x�0� , �13�

where Nj�x� is a conventional shape function, such as a lin-
ear interpolation. The generalized partition of unity require-
ment is that

�
j

Nj
�a��x�0� = u�0

�a�. �14�

Note that in the case of a monatomic unit cell, this shape-
function basis is a linear combination of the shape functions
we have discussed above. In that case u�

�a� is the same for all
lattice sites, and the orthonormal vectors corresponding to
the three acoustic-mode phonons span three-dimensional
space. We do not discuss an example of a polyatomic CGMD
including optical phonons explicitly, but the CGMD formal-
ism continues to work. It should be emphasized, however,
that even in polyatomic materials this band-index extension

may not be needed to capture the mechanical response of
interest.

IV. THE CGMD HAMILTONIAN

We now turn to the calculation of the CGMD energy.

A. Harmonic lattices

The CG energy �3� may be computed in closed form using
analytic techniques in the case of a harmonic lattice. The
expression was originally presented in Ref. 17. We take the
form of the atomistic Hamiltonian to be

HMD = �
�

p�
2

2m�

+ �
�

E�
coh + �

�,�

1

2
u� · D��u�, �15�

where E�
coh is the cohesive energy of atom � and D�� is the

dynamical matrix. It acts as a tensor on the components of
the displacement vector at each site. We re-express the CG
energy �3� using a parametric derivative of the logarithm of
the constrained partition function �4�,

E�uk,u̇k� = − �� ln Z�uk,u̇k;�� , �16�

and we introduce the Fourier transform representation of the
delta function �a form of Lagrange multiplier� to simplify the
constraint �5�

� =� � d	

2

	3Nnode

ei	j�uj−f j�u�� � �d	�

2

	3Nnode

ei	k��u̇k−fk�p�/m��,

�17�

where here and in what follows, unless stated otherwise, the
repeated indices are summed. Expressed in this way, the con-
strained partition function for the harmonic lattice is a
Gaussian integral. The complicated domain of integration in
�3� resulting from the constraints is replaced by a simple
domain plus some extra integrals. This standard technique
gives an expression which may be evaluated in closed form.

For pedagogical purposes, we present the calculation of
the CG potential energy here in some detail. The calculations
of each of the other CG energy terms, the CG kinetic and
anharmonic potential terms, follow the same basic approach.
It may be helpful, therefore, to present the calculation of the
CG harmonic potential energy in detail, and readers who are
not interested in this algebra may skip ahead to the paragraph
at Eq. �29�.

In order to get a closed-form expression for the CG po-
tential energy, we make use of the well-known exact formula
for the integral over all space of a Gaussian times an arbi-
trary polynomial prefactor. In the interest of compact nota-
tion, we combine the atomic and spatial indices and consider
the displacements and the dynamical matrix to be objects in
3Natom-dimensional space. Similarly, we take all CG vari-
ables to live in 3Nnode-dimensional space. The form for the
Gaussian integral is known for these high dimensional
spaces, and we evaluate the integral �4� through two succes-
sive Gaussian integrations: first an integral over the MD
phase space and then an integral over the Lagrange multi-
plier space. Using �16�, we need to calculate the CG partition
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function. It factorizes into kinetic and potential parts, Z
=ZkinZpot. We focus on the potential energy part of the CG
partition function,

Zpot�uk;�� =� du� d	 exp
− 1
2�u�D��u�

+ i	 j�uj − f j�u��� , �18�

where du= �du�3Natom and d	= �d	 /2
�3Nnode. Here, and
throughout this derivation, we suppress the cohesive energy
by choosing the zero of energy such that the cohesive energy
is zero; we then restore the cohesive energy in the final for-
mulas. We first compute the integral over du by completing
the square in the argument of the exponential. Let

ũ� = u� − iD��
−1 f j�	 j/� , �19�

where we assume that the matrix inverse D��
−1 exists after a

suitable regularization to deal with the zero eigenvalues �we
will return to this point�. The shift �19� leaves the measure
du invariant, so

Zpot�uk;�� =� dũ exp�−
1

2
�ũ�D��ũ�� � d	

�exp�i	 juj +
1

2
	 j f j�D��

−1 fk�	k/�� , �20�

where the integral has now split into two independent fac-
tors. The Gaussian integral over dũ is elementary,43

� dũe−�ũ�D��ũ� = �2
�−1�3Natom/2�det� D�−1/2 = C1�−3Natom/2,

�21�

where we have used �−1=kT and det� denotes the determi-
nant without the zero eigenvalues. On the second line, we
note the simple power-law dependence on �; the constant
factor C1 is ultimately irrelevant. In order to simplify nota-
tion, we define Kjk= �f j�D��

−1 fk��−1, where again a suitable
regularization is implied on the right-hand side. Then we
have

Zpot�uk;�� = C1�−3Natom/2� d	 exp
i	 juj + 1
2	 jKjk

−1	k/�� .

�22�

Now we compute the next integral, again by introducing a
suitable shift in the variables

	̃ j = 	 j − i�Kjkuk �23�

so that

Zpot�uk;�� = C1�−3Natom/2� d	̃ exp�1

2
	̃ jKjk

−1	̃k/��
�exp�−

1

2
�ujKjkuk� . �24�

Again the Gaussian integral is elementary

� d	̃ exp
 1
2 	̃ jKjk

−1	̃k/�� = C2�3Nnode/2, �25�

where only the dependence on � is relevant.44 Finally, we
have the expression we need,

Zpot�uk;�� = C1C2�−3�Natom−Nnode�/2exp
− 1
2�ujKjkuk� .

�26�

The CG �harmonic� potential energy is then

Epot�uk� = − �� ln Zpot �27�

= 3
2 �Natom − Nnode�kT + 1

2ujKjkuk. �28�

This expression shows that the CG potential energy is ex-
actly given by the sum of two contributions. First, each de-
gree of freedom that has been integrated out contributes a
thermal energy of 1

2kT to the potential energy. And second,
the remaining CG degrees of freedom experience a harmonic
potential of the form 1

2ujKjkuk. The calculation of the kinetic
energy is essentially identical in form, but a bit more simple
due to the diagonal mass matrix. We note that while this
derivation is mathematically elegant, it finesses many subtle-
ties in a way that may not give the reader complete confi-
dence in the derivation; e.g., we have ignored the fact that
the dynamical matrix is singular and we have not been very
careful about the values of the irrelevant constants C1 and
C2. We present a more careful derivation in Appendix A that
has the distinct benefit that the reason for, and extent of, the
nonlocality of the stiffness matrix is readily apparent. We
now return to the CG energy and once again separate the
spatial and nodal indices for the following.

The full CG energy �16� for a monatomic harmonic solid
of Natom atoms coarse grained to Nnode nodes is then given by

E�uk,u̇k� = Uint +
1

2�
j,k

�Mjku̇ j · u̇k + u j · Kjkuk� , �29�

where the contribution of the internal degrees of freedom is

Uint = NatomEcoh + 3�Natom − Nnode�kT . �30�

Mjk and Kjk are defined as follows. The mass matrix is

Mjk = ��
�

f j�m�
−1fk�	−1

�31�

=m�
�

Nj�Nk� �monatomic� , �32�

where the second line applies to monatomic solids with
atomic mass m. This may be expressed in matrix notation as

Mjk = 
�NNT��NMMD
−1 NT�−1�NNT�� jk �33�

=m�NNT� jk �monatomic� , �34�

where the MD mass matrix is M��
MD=m����. Note that each

of the quantities in parentheses � � in Eq. �33� is an
Nnode�Nnode square matrix.

At times, it may be desirable to use a diagonal approxi-
mation of the mass matrix, often called the lumped mass
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matrix in the FEM literature. In CGMD it is given by3

Mij
lump = �ij�

�

Nj�m�. �35�

The CGMD stiffness matrix is given formally by

Kjk = ��
��

f j�D��
−1 fk�	−1

�36�

=
�NNT��ND−1NT�−1�NNT�� jk, �37�

where each of the entries on the second line is a matrix. The
inverses in �31�, �33�, �36�, and �37� are matrix inverses.

Remarkably, there is another way to write the CGMD
mass and stiffness matrices that does not require two in-
verses. These forms are derived in Appendix A, and the no-
tation is explained there. In particular, they are given by

Kjk = Nj�D��Nk� − Dj�
� D̃��

−1Dk�
� , �38�

Mjk = Nj�m�Nk� − Mj�
� M̃��

−1Mk�
� . �39�

We do not currently know of an easy way to show the
equivalence of Eqs. �36� and �38�, but we have checked that
they are numerically equal. Each form has its preferred uses.
In the calculation of the CGMD spectra and any other appli-
cation in which the stiffness matrix in reciprocal space is
needed, Eq. �36� is advantageous. It is formally simpler, but
it suffers from requiring two inverses and from formal sin-
gularities due to the zero modes of the dynamical matrix.
Both of these drawbacks disappear in reciprocal space,
where the dynamical matrix is diagonal �in the Fourier trans-
form of the nodal indices�. On the other hand, Eq. �38� is
well defined, and it only requires one inverse. Typically, the
inverse in the atomic indices is taken in reciprocal space
making use of the perfect crystal space group symmetry,
whereas the second inverse �36� is in the nodal indices for
which reciprocal space offers an advantage only in special
cases where the mesh is uniform. For irregular meshes, Eq.
�38� is preferred.

Consider the form of the second expression for the stiff-
ness matrix �38�. The first term represents a form of coarse
graining in which each atom is forced to be exactly at the
position defined by the interpolation function. Within the
context of CGMD, we will refer to the approximation where
the other terms are neglected as the rigid approximation. To
be precise,

P��
� → 0 �rigid approximation� , �40�

by which we mean that P��
� , defined in Eq. �A7� is set to zero

in all of the subsequent CGMD formulas. For instance, both
Dj�

� and Mj�
� vanish in the rigid approximation, so only the

first term survives in Eqs. �38� and �39�.
Now let us consider the second term in the stiffness ma-

trix �38�. This kind of term has not been discussed in the
context of concurrent multiscale modeling previously, and it
is very interesting. It is in the form of a lattice Green func-
tion contribution to the stiffness. According to our principle
of microscopic-macroscopic correspondence, the atomistic
degrees of freedom are assumed to be a best fit to the coarse-

grained degrees of freedom. Even at zero temperature, this
requirement does not necessarily mean that the atoms will be
positioned exactly where the interpolation function would
put them. Instead, they typically relax to a lower energy con-
figuration. This relaxation in the short- wavelength degrees
of freedom introduces a nonlocal coupling between the
coarse-grained degrees of freedom through the Green’s func-

tion D̃��
−1. The appearance of a Green’s function in a relax-

ation problem is natural. Consider a system governed by the
elastic energetics E= 1

2u�D��u�− f�u�. The minimal energy
state is u�=D��

−1 f� with the energy Emin=− 1
2u�D��

−1u�. Thus,
the Green’s function arises naturally in the energy of the
relaxed state. In CGMD, it is the internal modes that can
relax, and so it is the Green’s function of these internal
modes that enters the CGMD Hamiltonian and introduces the
nonlocality. This kind of weak nonlocality is not present in
finite element modeling, but it is entirely physical. In fact,
continuum formulations of nonlocality in elasticity have
been introduced to account for size effects in dislocations,
crack tips, and other nanoscale structures.45,46 It may be pos-
sible to neglect the nonlocality for a particular application,
but it is real and it arises naturally in CGMD.

The energy �29� contains terms representing the average
kinetic and potential energies, plus the thermal energy term
expected from the equipartition theorem for the modes that
have been integrated out. As mentioned above, this Hamil-
tonian continues to work for polyatomic solids, in which the
optical modes may be coarse grained in various ways to rep-
resent different physics.

B. No ghost forces

One goal of concurrent multiscale modeling is to have the
atoms in the atomistic region behave as closely as possible to
the way they would if the atomistics extended throughout the
system. Deviations from this ideal have been termed ghost
forces. Some deviation is inevitable, but two kinds of devia-
tion have received particular attention as pathologies. Both
are at zero temperature. First, if the displacement with re-
spect to the equilibrium lattice is zero throughout the system,
then the atoms at the interface should experience no force.
Second, if the displacement corresponds to uniform strain
and the uniformly strained atomistic system is in equilib-
rium, then the atoms at the interface in the concurrent mul-
tiscale model should experience no force. �See the recent
review paper by Curtin and Miller.28�

CGMD does not suffer from the first type of ghost force,
as can be seen immediately from the absence of terms linear
in u j in Eq. �29�. The second type of ghost force is also
absent from CGMD, provided the strain is admissible in the
space of shape functions. This property should be clear from
the construction of CGMD, where if the best fit interpolation
function reproduces the uniform strain at zero temperature,
the delta functions impose that the CGMD energy agree with
the MD energy exactly.

To be more precise, the strained state described by the
underlying atomistic displacement u� is admissible if there
exists a set of nodal displacements u j such that
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u� = �
j

u jNj�x�0� �41�

=u�f j�Nj� �42�

=P��
CGu�, �43�

where we have used Eq. �10� in the second line to express
the best-fit u j in terms of u�. The matrix P��

CG, defined in
Appendix A in Eq. �A6�, must act as the identity on u�. We
assume that the uniformly strained atomistic system is in
equilibrium, and hence, D��u�=0. We calculate the force on
node i �which may be an atom at the interface� using Eqs.
�38� and �10� as

− Kiju j = − Ni�D��Nj��f j�u�� − Di�
� D̃��

−1Dj�
��f j�u�� �44�

=Ni�D��P��
CGu� − Di�

� D̃��
−1 P�

�D�P��
CGu� �45�

=Ni�D��u� − Di�
� D̃��

−1 P�
�D�u� �46�

=0. �47�

Thus, the atoms �and nodes� of the coarse-grained system
experience no force. In going from the second to the third
line, we have used the admissibility condition that P��

CG act as
the identity matrix on u�; in the following line, we used that
u� is in equilibrium and so D�u�=0. This derivation proves
that any admissible equilibrium atomistic configuration is
also an equilibrium CGMD configuration. The derivation
continues to work once anharmonic forces are included, as
discussed below, since the terms in the CGMD energy up to
second order in displacements are the same. Thus, CGMD is
free of ghost forces in both senses of the term.

C. Anharmonic lattices

We have formulated CGMD for an underlying anhar-
monic Hamiltonian in perturbation theory, assuming again
negligible diffusion in the CG region. With an anharmonic
potential, the higher frequency modes comprising the heat
bath do not decouple, and they introduce temperature-
dependent effects such as thermal expansion and thermal
softening of the elastic constants. The basic idea of how
anharmonicity is treated was presented in Ref. 3. The details
are presented here for the first time.

In this section, we develop a formal analysis of the con-
tributions of the anharmonic interatomic forces to the
CGMD energy and equations of motion. This analysis pro-
vides insight into how effects in the coarse-grained system
are linked to their atomistic origins through analytic formu-
las and, hence, are very powerful. On the other hand, the
formulas are sufficiently complicated that a different ap-
proach is employed in practice, and we stress this point. The
formal developments that follow take the perfect T=0 K lat-
tice as the reference state; in practice, it is much more useful
to take the lattice at the temperature of interest to be the
reference state. In that case, the harmonic theory presented
above may be used, with anharmonic effects from the lattice

entering into the reference state in a quasiharmonic ap-
proach. The thermal expansion of the lattice and the thermal
softening of the dynamical matrix capture the anharmonic
forces.17 The finite-temperature lattice constant and dynami-
cal matrix are inputs to the CGMD formulation, precom-
puted in conventional MD calculations. While that approach
is very effective in practice, it is more satisfying from a
theoretical point of view to have a direct, analytic theory of
the thermal effects in CGMD, and it is to this development
we turn now.

The CGMD energy �16� is computed by perturbation
theory about the harmonic Hamiltonian �15�. Specifically,

HMD = Hh + H�, �48�

where Hh is the harmonic Hamiltonian �15� and H� consists
of the anharmonic corrections, which are assumed to be
small. This is a good approximation in silicon and many
other materials of interest below their melting point �i.e., at
low homologous temperatures�. The perturbation may be
written explicitly as

H� = �
n=3

�
1

n! � D�1¯�n

a1¯an u�1

a1
¯ u�n

an , �49�

where the �’s label the atoms, as before, and the a’s label
components of the vectors. The higher order dynamical ma-
trices D�1¯�n

a1¯an may be taken to be completely symmetric in
their indices from the form of Eq. �49�. Below we occasion-
ally use the notation D�n� to represent D�1¯�n

a1¯an schematically
in places where the additional concision should not lead to
confusion. This perturbation theory is a low-temperature ex-
pansion, as seen by switching to the scaled coordinates

ũ� =
u�

�kT
, ũ j =

u j

�kT
, �50�

p̃� =
p�

�kT
, u̇̃ j =

u̇ j

�kT
, �51�

	̃ j = �kT	 j, 	̃ j� = �kT	 j . �52�

Then,

E = Uint
h − �� ln � dũ�dp̃�e−H̃he−H�� , �53�

H̃h = �
�

p̃�
2

2m
+ �

�,�

1

2
ũ� · D��ũ�, �54�

H̃� = �
n=3

�
1

n! � ��2−n�/2D�1. . .�n

a1. . .an ũ�1

a1
¯ ũ�n

an , �55�

where Uint
h is the internal energy for the CG harmonic lattice

�29�. The temperature dependence is now in Uint
h , �, and in

the perturbation H̃�, but not in Hh.

To evaluate this integral, the exponential involving H̃� is
expanded in a Taylor series in ũ and/or kT. The resulting
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integrals are elementary. It is common practice to use a dia-
grammatic representation of the integrals to facilitate book-
keeping in this kind of expansion.47 The logarithm in Eq.
�53� is then produced by restricting to connected graphs.48

Similar perturbative approaches have been used in many
contexts; the application most relevant to the current study is
the self-consistent phonon approximation used in lattice
dynamics.49,50

The resulting form of the CG energy for the anharmonic
lattice is

E�uk,u̇k� = Uint + �
j,k

1

2
�Mjku̇ j · u̇k + u j · Kjkuk�

+ �
n=1

�
1

n! � Kj1¯jn

a1¯an�T�uj1

a1
¯ ujn

an, �56�

where now Uint is a complicated function of �, as are the
stiffness coefficients. Our goal is to calculate this expansion
analytically at each order of perturbation theory. Since the
diagrammatic approach may not be familiar to all readers, we
will not use it for the derivations, but we return to it below.
For now, consider the integral needed to calculate the CGMD
energy up to second order in D�3� and first order in D�4�.
These first few terms in the perturbation series will capture
the leading thermal and nonlinear effects. Higher order terms
could be calculated similarly, if needed. To this order, the
CGMD potential energy expansion is

U = Uint
h − �� ln � dũ�dp̃��1 −

�−1/2

3!
D�1�2�3

a1a2a3 ũ�1

a1 ũ�2

a2 ũ�3

a3

+
1

2
�−1� 1

3!
D�1�2�3

a1a2a3 ũ�1

a1 ũ�2

a2 ũ�3

a3	2

−
1

4!
�−1D�1�2�3�4

a1a2a3a4 ũ�1

a1 ũ�2

a2 ũ�3

a3 ũ�4

a4 + ¯ �e−H̃0� , �57�

where the polynomial terms have resulted from expanding
the anharmonic exponential �55� in a Taylor series. In classic
lattice dynamics analysis, a similar expansion is used. There
the cubic term is odd in ũ and integrates to zero, while the
other two terms give nonzero contributions to the heat capac-
ity of the order kT.50 In CGMD, each of the three terms gives
a nonzero contribution, as we will now show.

Integrals of the form �57�, a polynomial times a Gaussian,
may be evaluated in closed form. The algebra can be tedious,
so often generating functions are used to simplify the book-
keeping. The CGMD generating function is defined to be

Zh
J� = Zkin� dũ� exp
− 1
2 ũ� · D��ũ��eJ̃�·ũ�� , �58�

where Zkin is the part of the partition function coming from
the kinetic energy and including the nodal velocity con-
straints. The subscript on Zh indicates that it is the generating
function corresponding to the harmonic theory. Generating

functions are useful because derivatives with respect to J̃�

bring down factors of ũ�,

�J̃	
�Zh
J��J=0 = Zkin� dũ� exp
− 1

2 ũ� · D��ũ��ũ	� , �59�

so they provide a simple way of calculating the integrals of
Gaussians multiplied by a polynomial prefactor. The CGMD
internal energy �57�, therefore, may be computed from the
generating function as

U = Uint
h − �� ln�exp
− �H���J̃���Zh
J��J=0 , �60�

where the factor exp
−�H���J̃�� is intended to be expanded
in its Taylor series for practical calculations.

We return to the anharmonic terms below 
cf. Eq. �71��,
but first we compute the partition function. In order to com-
pute Zh
J� we can complete the square and relate the result to
Zh
0� as follows:

Zh
J� = Zkin exp
 1
2 J̃� · D��

−1 J̃�� � dw̃� exp
− 1
2w̃� · D��w̃��

� � ��uj − f j�w̃� − f j�D��
−1 · J̃�� �61�

=exp
 1
2 J̃� · D��

−1 J̃��Zh
J = 0;ũ j − f j�D��
−1 · J̃�� �62�

=Zh
J = 0�exp
− 1
2 J̃� · G�� · J̃� − H̃� · J̃�� , �63�

where w̃�= ũ�−D��
−1 · J̃�. We have used Eq. �29� to derive the

third line. The Green’s function G�� and the external field
H� are given by

G�� = D��
−1 f j�Kjkfk	D	�

−1 − D��
−1 , �64�

H� = u jKjkfk�D��
−1 �65�

with H̃�=�1/2H�.
Using the projection matrices defined in Appendix A,

we can rewrite this expression in a more transparent form.
The projection matrices are given by P��

CG=Nj�f j� and P��
�

=���− P��
CG. Using them together with the formula for Kij

�36� we have the alternate formulas

G�� = P��
� �D̃��

−1f j�Kjkfk	D̃	�
−1 − D̃��

−1�P��
� , �66�

H� = u jNj� + u jKjkfk�D̃�	
−1P	�

� , �67�

where D̃�� is defined by Eq. �A16�.51 These formulas show
that in the rigid approximation G��=0 and H�=u jNj�. The
result is that each occurrence of u� in the MD potential en-
ergy is just replaced by Nj�u j in rigid �R�-CGMD. Relax-
ation of the unconstrained degrees of freedom makes the
further contributions involving P��

� .
To be more explicit, the rigid approximation to CGMD

freezes the unconstrained �unresolved� modes. Formally, this
is accomplished by setting the orthogonal projectors to zero:
P��

� →0. In this approximation, the generating function sim-
plifies to

Zh�
J��rigid = Zh
0�e−�1/2�jNj�J̃�, �68�

where all of the Green’s function contributions have been
eliminated. Similarly, the mass and stiffness matrices in
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Zh
0� involve only the first terms in Eqs. �38� and �39�. The
rigid CGMD �R-CGMD� Hamiltonian is then given by

E�uk,u̇k� = Uint + 1
2 Miju̇i · u̇ j + UMD�Nj�u j� , �69�

where UMD is the full, nonlinear MD potential energy evalu-
ated with u�=Nj�u j, and Mij =Nj�m�Nk�. The rigid approxi-
mation neglects thermal effects and relaxation of the internal
degrees of freedom �i.e., those that have been integrated out�.
This expression is a conserved energy, and it is free from
spurious forces commonly referred to as ghost forces in dis-
cussions of concurrent multiscale modeling.28 It is also as
computationally expensive as MD, because unlike the stiff-
ness matrix, the nonlinear potential cannot be precomputed
except perhaps for some toy potentials. Additional approxi-
mations are needed. One set of approximations based on the
use of representative atoms and the Cauchy-Born rule leads
to the quasicontinuum method.24 Thus, the derivation above
shows the relationship between CGMD and the quasicon-
tinuum method, in particular that the quasicontinuum method
is closely related to the zero temperature rigid approximation
of CGMD. Another successful concurrent multiscale tech-
nique, coupling of length scale �CLS�,23 can also be related
to CGMD. It involves taking the large-N asymptotic limit of
the stiffness matrix in the rigid approximation, where N in
this case is the number of atoms per element. The large-N
limit yields continuum mechanics within the element; i.e., a
finite element representation of continuum mechanics. Both
CLS and the quasicontinuum method make additional ap-
proximations at the MD/CG interface.

We now consider the physics of the terms in the CGMD
energy beyond the rigid approximation. These are effects that
arise due to the anharmonicity of the interatomic potential,
and include both thermal effects and nonlinear relaxation.
The diagrammatic approach is a convenient and powerful
way to analyze perturbation theory at higher order, such as
the anharmonic contributions to CGMD. The quantities rep-
resented by the diagrams are typically generated from a rela-
tively simple set of rules, known as Feynman rules. Due to
space limitations, we cannot provide a thorough review of
the rich mathematical structure encoded in Feynman dia-
grams, but direct the interested reader to one of the numerous
texts on the subject.48 We have derived the Feynman rules
for CGMD, but they will not be presented here since they are
not actually needed. Instead, we will employ the set of Feyn-
man diagrams as a pedagogical device to consider the form
of various contributions to the CGMD energy. The Feynman
diagrams up to second order in D�3� and first order in D�4� are
shown in Fig. 2. In the diagrams, the thick external legs
represent factors of H�; i.e., factors of the CG fields u j that
are suitably dressed to account for elastic relaxation of the
internal degrees of freedom. These factors are playing the
role of external fields in the statistical field theory of the
equilibrium state of the internal degrees of freedom. The
thinner, dashed lines represent factors of the Green’s function
G��. The Green’s function accounts for thermal fluctuations
of the internal degrees of freedom, and indeed each factor of
G�� brings with it a factor of kT. Vertices in the graphs
denote contracted tensor indices.

At a given level of perturbation theory, the graphs picto-
rially represent the hierarchy of contributions to the CGMD
energy. Although graphs that split into more than one discon-
nected subgraph contribute to the partition function, only
connected graphs contribute to the free energy.48 These are
shown in Fig. 2. Consider first the graphs with no external
legs. These terms in the perturbation theory are independent
of u j; they only contribute to the internal energy resulting
from degrees of freedom that have been integrated out. Thus,
they build up the nontrivial temperature dependence of Uint.
The graphs at the other extreme—in particular those that
have no dashed lines and, therefore, are independent of
G��—make up the rigid approximation that was discussed
above, but now including some internal relaxation.

Using the generating function �63�, we have calculated
the CGMD internal energy �57� up to first order in D�4� and
second order in D�3� as follows:

U = Uint
h − �� ln Z �70�

Z = ��1 −
�−1/2

6
D�1�2�3

a1a2a3 �J̃
�1

a1 �J̃
�2

a3 �J̃
�3

a3

+
�−1

72
D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 �J̃
�1

a1 �J̃
�2

a3 �J̃
�3

a3 �J̃
�4

a4 �J̃
�5

a5 �J̃
�6

a6

−
�−1

24
D�1�2�3�4

a1a2a3a4 �J̃
�1

a1 �J̃
�2

a3 �J̃
�3

a3 �J̃
�4

a4 + ¯ 	Zh
J̃��
J̃=0

, �71�

FIG. 2. Feynman diagrams of connected graphs contributing to
the anharmonic CGMD internal energy. The thick external legs rep-
resent factors of H, which in the usual terminology correspond to
dressed external fields. Physically, they are contributions from the
CG fields with some zero-temperature relaxation of the internal
degrees of freedom. The dashed internal lines represent factors of G
that arise from the fluctuations of the internal degrees of freedom.
These fluctuations are temperature dependent, and each factor of G
comes with a factor of �−1�=kT�.

R. E. RUDD AND J. Q. BROUGHTON PHYSICAL REVIEW B 72, 144104 �2005�

144104-10



where Zh
J̃� is given by Eq. �63�. The derivatives act on the
Gaussian generating function �63� to give

Z =�1 +
1

2
D�1�2�3

a1a2a3 G�1�2

a1a2 H�3

a3 +
1

2
�1

2
D�1�2�3

a1a2a3 G�1�2

a1a2 H�3

a3	2

+
�

8
D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 H�2

a2 H�3

a3 H�5

a5 H�6

a6

+
1

4
D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 G�2�5

a2a5 H�3

a3 H�6

a6

−
�−1

12
D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 G�2�5

a2a5 G�3�6

a3a6

+
1

4
D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 G�2�3

a2a3 H�5

a5 H�6

a6

−
�−1

8
D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 G�2�3

a2a3 G�5�6

a5a6 + D�1�2�3�4

a1a2a3a4

��−
1

4
G�1�2

a1a2 H�3

a3 H�4

a4 +
�−1

8
G�1�2

a1a2 G�3�4

a3a4 	 + ¯ �
�e−�H��u�=H��Zh
0� . �72�

Next, we find the Helmholtz free energy F=−kT ln Z as
follows:

F = Fharmonic + H��u� = H�� −
1

8
D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 H�2

a2 H�3

a3 H�5

a5 H�6

a6 −
1

2
kTD�1�2�3

a1a2a3 G�1�2

a1a2 H�3

a3

−
1

4
kTD�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 G�2�5

a2a5 H�3

a3 H�6

a6 −
1

4
kTD�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 G�2�3

a2a3 H�5

a5 H�6

a6 +
1

4
kTD�1�2�3�4

a1a2a3a4 G�1�2

a1a2 H�3

a3 H�4

a4

−
1

8
�kT�2D�1�2�3�4

a1a2a3a4 G�1�2

a1a2 G�3�4

a3a4 +
1

12
�kT�2D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 G�2�5

a2a5 G�3�6

a3a6

+
1

8
�kT�2D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 G�2�3

a2a3 G�5�6

a5a6 + ¯ , �73�

where Fharmonic is the CGMD free energy for a harmonic
crystal 
cf. Eq. �29��,

Fharmonic = Fint +
1

2�
j,k

�Mjku̇ j · u̇k + u j · Kjkuk� , �74�

Fint = NatomEcoh − 3�Natom − Nnode�kT ln�kT� . �75�

The free energy is suitable for isothermal CGMD simula-
tions. On the other hand, the internal energy is appropriate
for adiabatic simulations and, hence, more closely related to
MD simulations without a thermostat. It is given by U
=����F� as follows:

U = Eharmonic + H��u� = H��

−
1

8
D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 H�2

a2 H�3

a3 H�5

a5 H�6

a6

+
1

8
�kT�2D�1�2�3�4

a1a2a3a4 G�1�2

a1a2 G�3�4

a3a4

−
1

12
�kT�2D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 G�2�5

a2a5 G�3�6

a3a6

−
1

8
�kT�2D�1�2�3

a1a2a3 D�4�5�6

a4a5a6 G�1�4

a1a4 G�2�3

a2a3 G�5�6

a5a6 + ¯ , �76�

where Eharmonic is given by Eq. �29�. Now T is understood to
be a function of the �constant� entropy and the state of de-

formation, although for many applications since the defor-
mation in the CG region is small, it can be treated as con-
stant. For reference, the expressions for the Green’s function
G�1�2

a1a2 and the field H�
a are given in Eqs. �66� and �67�, re-

spectively.
We could continue to calculate the terms in the CGMD

Hamiltonian to higher order in the MD anharmonic correc-
tions and/or the CGMD thermal perturbation expansion. The
number of terms grows rapidly, and we quickly reach the
point of marginal returns, i.e., the point at which the added
complexity is no longer rewarded with a commensurate im-
provement in accuracy. However, there are certain kinds of
contributions where improvements are possible. In particular,
it is important to capture the first nontrivial effects in the
expansion. The terms calculated thus far have contributed to
the harmonic Hamiltonian, the zero-temperature anharmonic
terms, and the energy of the internal modes. We have also
calculated the leading contributions in the free energy to the
thermal expansion and temperature dependence of the stiff-
ness, i.e., the terms proportional to u j and u j1

� u j2
. In the

internal energy, these contributions are higher order in the
anharmonic lattice expansion, so we have not calculated
them yet. Of course, there are thermal corrections to the
higher order stiffnesses, as well, but they are not as impor-
tant.

We conclude this section with the calculation of the lead-
ing temperature-dependent, quasiharmonic contributions to
the CGMD Hamiltonian �internal energy�. The graphs con-
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tributing the leading temperature dependence to the one-
point function �governing thermal expansion� are shown in
Fig. 3. The term “one-point” means a single leg and, hence,
a single factor of u j. Consider the lowest order term in kT in
Fig. 3 as it enters the free energy

−
1

2
kTD�1�2�3

a1a2a3 G�1�2

a1a2 H�3

a3 = − f j
0u j , �77�

where we define the temperature-dependent f j
0 �not to be con-

fused with f j�� to be

�f j
0�a = −

1

2
kTD�1�2�3

a1a2a G�1�2

a1a2 fk�D��3

−1 Kjk, �78�

where we have used the expression �65� for H�3

a3 . We have
written the leading one-point term from the free energy in
Eq. �77� in a form familiar from finite element models as an
eigenstrain �cf. Sec. 2.12 of Hughes21�. As in conventional
finite element formulations in uniform temperature, this term
is a total difference �the discrete analog of a total derivative�,
and it only enters through the boundaries of the simulation.
In a homogeneous system with free surfaces, the result is the
expansion of the system as the temperature increases. The
expansion is proportional to kT and D�3� to the leading order,
as expected based on conventional lattice dynamics.50 Note
that since the linear term is a total difference, the discussion
of ghost forces given above continues to be valid in the case
of thermal expansion.

The graphs contributing the leading temperature depen-
dence to the two-point function governing the temperature
dependence of the adiabatic elastic stiffness are shown in
Fig. 4. The leading contributions to the isothermal stiffness
are the three graphs containing G1 but with G1 replaced by
G. As expected, the first thermal contributions to the adia-
batic stiffness are of order �kT�2 due to the third law of
thermodynamics �the Nernst theorem�, whereas the first ther-
mal contributions to the isothermal stiffness are of order kT.

Finally, we reemphasize that we have calculated proper-
ties within the CGMD perturbation theory to show that the
theory is consistent and to gain some theoretical understand-
ing of the interplay of anharmonicity and temperature in
coarse-grained systems. In practice, we take the reference
configuration to be the crystal lattice at a particular tempera-
ture with the corresponding finite-temperature dynamical

matrix. It would be a tautology to compute thermal expan-
sion or thermal softening in CGMD: they agree with the MD
result identically by construction.

V. THERMAL FLUCTUATIONS

In Sec. IV, we developed a description of the average
motion of the collective degrees of freedom. We have shown
that the short-wavelength modes contribute to the mean mo-
tion, even though they are not explicitly present. They have
the additional effect of inducing small fluctuations about this
mean. The CG modes behave as if they were in a Brownian
heat bath; they are jostled by small, random interactions with
the �invisible, missing� short-wavelength modes. In this sec-
tion, we analyze these interactions in detail.

Consider the fluctuations of the CG fields in harmonic
MD in thermal and mechanical equilibrium,

�u juk� = f j�fk�Z−1� dx�dp�e−�HMDu�u� �79�

= f j�fk�kT�D��
tr ln�D� �80�

=kTf j�D��
−1 fk� �81�

=kTKjk
−1. �82�

This calculation shows that the two-point isothermal correla-
tion function of the CG displacements grows linearly with
the temperature. The result is reasonable and could equally
well be understood in terms of the equipartition theorem. As
the temperature increases, the average potential energy in-
creases and so the mean amplitude of the harmonic oscilla-
tions increases. Note that the amplitude decreases as the stiff-
ness Kjk increases.

FIG. 3. The leading anharmonic contributions to the partition
function affecting the thermal expansion in CGMD.

FIG. 4. The anharmonic contributions to the partition function
affecting the temperature dependence of the adiabatic CGMD stiff-
ness. The Green’s function G1 is represented by a dashed line with
a large filled circle. It is defined in the upper box.
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We can repeat the calculation in harmonic CGMD again
in thermal equilibrium for comparison,

�u juk�T = Z−1� dudu̇e−�HCGMDu juk �83�

=kTKjk
−1, �84�

where HCGMD is given by Eq. �29�. The result is exactly the
same as the correlation function of the CG fields in MD. This
equivalence of the correlation functions holds for higher cor-
relation functions as well, due to Wick’s theorem.52

While the equilibrium properties agree, there are differ-
ences in the time autocorrelation functions of the displace-
ment. These differences result from the influence of the
short-wavelength modes that are not represented on the
mesh. These additional modes act as a heat bath, exerting
random and dissipative forces on the CG fields. The effect is
entirely analogous to Brownian motion, in which a large par-
ticle is jostled by the thermal motion of the unseen atoms in
a liquid surrounding it.53

There are several practical issues that arise in the analysis
of CGMD simulations regarding fluctuations. In conven-
tional MD, the mean atomic kinetic energy is used to com-
pute the temperature. We now investigate whether a similar
connection holds in the CG region of CGMD �naturally it
continues to hold in the MD region if it is in thermal equi-
librium�. We consider the simplified case in which there is no
large-scale motion such as center-of-mass motion; our deri-
vation continues to hold provided any such nonequilibrated
modes are subtracted from the nodal velocities prior to
analysis. Consider the mean-squared velocity of node i in
thermal equilibrium. We use the partition function for
CGMD to calculate the expectation value of �u̇i�2 in the ca-
nonical ensemble at thermal equilibrium as follows:

��u̇i�2� = Zkin
−1 � du̇�u̇i

2�exp
− 1
2�Mjku̇ j · u̇k� �85�

=Zkin
−1 �Ji

2 � � du̇ exp
− 1
2�Mjku̇ j · u̇k − J̇ j · u̇ j��

J=0
�86�

=�Ji

2 �exp
 1
2�−1Mjk

−1J̇ j · J̇k��J=0 �87�

=3kTMii
−1, �88�

where the factor of 3 in the final line is the number of di-
mensions. The potential energy contribution to the partition
function is irrelevant to this calculation and has been sup-
pressed. The important result expressed in Eq. �88� is that the
mean-squared velocity is directly proportional to the tem-
perature, just as it is in conventional MD.

In fact, the MD result is recovered by replacing Mii with
the mass of atom i. This calculation also applies to concur-
rent multiscale models that use a lumped mass matrix. For
CGMD with a nondiagonal mass matrix, it is only the diag-
onal of the mass matrix that affects the amplitude of oscilla-
tion of a given node. The off-diagonal terms do introduce
correlations between the velocities of neighboring nodes that

would not be present for a diagonal mass matrix. Because of
these correlations, the simple atomistic relationship between
the mean-squared velocity and the temperature that follows
directly from the equipartition theorem must be modified ac-
cording to Eq. �88� for use in CGMD.

Thus far in this paper, we have treated CGMD as a system
that conserves energy, and these random, dissipative forces
are absent. In particular, the evolution of the system gener-
ated by the Hamiltonian �3� conserves the energy given by
that Hamiltonian. Thermostats might be added to simulate
the electron-phonon coupling, i.e., the interaction of the lat-
tice vibrations with the electronic degrees of freedom. Such
additions violate energy conservation,54 since energy can
flow to and from the heat bath and the system becomes an
open system.

Even neglecting the electron-phonon coupling, the coarse-
grained system of solid mechanics described by CGMD is an
open system. In the full MD system energy can flow between
modes that would be retained in CGMD and those that
would be integrated out.3 This interaction implies that the
CGMD energy is conserved only on average and that addi-
tional interactions are present in reality. These additional in-
teractions take the form of random and dissipative forces.
The form of these generalized Langevin forces may be com-
puted using statistical mechanical �Zwanzig-Mori� projection
operator techniques,55 although it is beyond the scope of this
paper. The resulting spatiotemporal memory kernel has been
described elsewhere.53 The random, dissipative forces not
only act to bring the CG degrees of freedom into equilibrium
with the internal degrees of freedom, but they act to absorb
short-wavelength modes incident on an interface where the
mesh is refined. In principle, they also include the propaga-
tors that reconstruct waves on the far side of the CG region if
the mesh is refined again; in practice, these propagators ap-
pear to be very expensive to implement computationally. In
fact, one of the challenges of memory kernels is their com-
putational expense both in terms of the memory required to
store the recent history and in terms of the demands they
place on parallelization to make the code suitable for super-
computers.

VI. IMPLEMENTATION DETAILS

In practice, CGMD is run much the way conventional MD
would be. The forces in the CG region are determined by the
CGMD stiffness matrix and the nodal displacements; the
forces in the MD region could be determined this way, as
well, but since we have shown that the forces in the MD
region are just the usual MD forces, the full MD potential is
used to calculate the MD forces. Using the accelerations, the
velocity Verlet time integrator is used to evolve the system in
time.56 The same time step is used throughout the simulation.
In principle, the natural frequency in the CG region is lower
as the mesh size increases, and a longer time step could be
used there; in practice, the CG region entails relatively little
computational expense, and there is little motivation to intro-
duce a spatially varying time step that could cause subtle
problems.

One difference from MD and conventional FEM is that
the topology of the CG mesh is not allowed to change.
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Neighboring nodes remain neighboring nodes throughout the
simulation. The topology of the mesh is determined by a cell
list, which contains the nodes associated with each cell in the
mesh, and a face list, which lists pairs of neighboring cells.
An edge list, which lists pairs of neighboring nodes, is also
generated.

The stiffness matrix Kij is to be computed once at the start
of a simulation, and it remains unaltered during the subse-
quent dynamics. It does not matter whether atoms vibrate
across cell boundaries, as long as the crystal lattice topology
does not change and diffusion is negligible. The elements of
Kij decrease exponentially with distance from the diagonal,
and in practice it is necessary to truncate the stiffness matrix
in order to control the memory and CPU requirements for
simulating large systems with irregular meshes. Both re-
quirements scale as at least O�N2� if the full stiffness matrix
is retained, and this scaling can be reduced to O�N� if matrix
elements are discarded if Kij ��Kii for some small number �.
This approach allows the simulation of billion atom systems
�greatly coarse-grained� on desktop workstations without ap-
proximation beyond those presented here.

For T�0, the finite-temperature dynamical matrix should
be used for D��. This quasiharmonic approximation ensures
a consistent thermodynamics, and it effectively sums the
two-legged diagrams of the finite-temperature anharmonic
perturbation theory �i.e., those terms second order in the CG
displacement�. For example, in ergodic systems, the time av-
erage of the kinetic energy term in the CG energy �29� is
related to the temperature through an equipartition expres-
sion. In general, the dynamical matrix may depend on other
macroscopic parameters, as well, such as slowly varying ex-
ternal magnetic and electric fields. D�� should be evaluated
under these conditions. Also note that while the harmonic
approximation may be good in peripheral regions, it may not
be appropriate for the important regions. We have shown that
the CGMD and MD equations of motion agree in regions
where the mesh coincides with the atomic sites. In these
regions, the full MD potential may, and should, be employed,
so that effects such as diffusion and dislocation dynamics are
allowed.

A. Normal modes and the inverse of D��

In order to simulate large CG regions, it is necessary to
take some measures to increase computational efficiency.
One such trick is to make use of the long-range order in a
single crystal to facilitate the computation of the stiffness
matrix. The eigenstates of the dynamical matrix D�� are
plane waves. For monatomic lattices, they correspond to the
normal modes of the system, the longitudinal and transverse
phonons in the acoustic and optical branches that are familiar
from lattice dynamics.50,57 In reciprocal space, where the ba-
sis elements are exactly these plane waves, the dynamical
matrix is diagonal. The inverse of the dynamical matrix is
then trivial to compute, and the subtlety of inverting a sin-
gular matrix is eliminated because reciprocal space naturally
factorizes into a direct product of the three zero modes with
k=0 and all of the other modes with nonzero eigenvalues.

To be specific, the equation for the stiffness matrix �37�
becomes

Kij
ab = �NNT�im
Nm�− k�Dab

−1�k�Nn�k��−1�NNT�nj , �89�

where k=0 is explicitly omitted from the sum. Now the in-
ner matrix inverse is the inverse of a 3�3 matrix.

B. Shape functions

This section discusses particular choices for interpolation
functions. Compatible combinations of these are also al-
lowed, as in FEM with wedge and brick elements, for ex-
ample. We emphasize how different choices for interpolation
functions meet the requirement of meshing the crystal lattice
at the MD/CG interface. The usual linear interpolation func-
tions for tetrahedral elements58 are the simplest functions
meeting the three criteria �i�–�iii� in Sec. III. They are de-
fined such that Nj�x� is 1 at node x j, it goes linearly to zero
at the nearest-neighbor nodes, and it vanishes outside of the
nearest cells. Suppose x is in the kth element with nodes xkj
where j=1, . . . ,4. Then the interpolation functions are given
by the volumnal or natural tetrahedral coordinates as fol-
lows:

Nkj
�x� = x · �kj

ln Vk�xk1
, . . . ,xk4

� , �90�

Vk =
1

6�
1 xk1

yk1
zk1

1 xk2
yk2

zk2

1 xk3
yk3

zk3

1 xk4
yk4

zk4

� , �91�

where xk= �xk ,yk ,zk� and we have written the tetrahedral vol-
ume as a determinant. The interpolation function for node kj
is simply the volume of the tetrahedron formed by x and the
other three nodes divided by the volume of the entire tetra-
hedral cell. These functions are clearly C0 continuous and
independent. It is easily checked that they are linear and
form a partition of unity. They also have the desirable prop-
erties of locality and ease of use. The locality property is
particularly important for our applications, since the domains
requiring an atomistic treatment are localized to small re-
gions of the system.

Another basis we have found useful is the set of the long-
est wavelength normal modes. These functions satisfy the
less stringent basis properties: �i�� linear independence,
det Nj�xk��0, and �ii�� representation of unity, 1
=� j=1

NnodecjNj�x� for some constants cj. This basis provides a
check of the CG Hamiltonian �3�, since these functions are
the optimal basis for a regular CG mesh—the phonon spec-
trum comes out exactly correct, apart from the missing short-
wavelength modes. The disadvantage of this basis for irregu-
lar meshes is that it is nonlocal and the short-wavelength
modes that should be supported on the finer parts of the mesh
are absent. In particular, the stiffness matrix elements de-
crease as

Kij �
1

�xij
, �92�

instead of decreasing exponentially with distance in the local
basis case. The short-wavelength modes could be restored
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locally through the use of a wavelet basis, in principle, but
we have not implemented a wavelet-based version of
CGMD.

In many cases, higher order polynomial interpolating
functions are the basis of choice. Generalizations of the
eight-node brick used for hexahedral lattices58 are particu-
larly easy to implement. For example, a generalized eight-
node brick is the element we used to calculate the CGMD
spectra for solid argon and tantalum presented in Sec. VII A
below. First, consider a simple cubic lattice. The basic eight-
node brick involves interpolations functions of the form58

N1
cubic��a� = 1

8 �1 + �1��1 + �2��1 + �3� , �93�

where throughout this section we use the scaled coordinates

�a� 
−1,1�. N1 is associated with the corner node at ��

= �1,1 ,1�. The other seven interpolation functions are gener-
ated by the action of the point group Oh on N1.

The cubic elements may be applied to a variety of hexa-
hedral elements by mapping the real-space coordinates onto
the 
−1,1�3 cube in the coordinate space using the standard
multilinear coordinate transformation often called “natural
coordinates” for the hexahedron in the finite element
literature.58 For our purposes, some especially important
cases are the monatomic Bravais lattices, such as face-
centered cubic �fcc� and body-centered cubic �bcc� lattices.
Suppose aa are the basis vectors in real space, and ba are the
reciprocal basis vectors, such that aa ·bb=�ab. For example,
in the fcc lattice the basis vectors could be chosen to be a1

= �0, 1
2 , 1

2
�a, a2= � 1

2 ,0 , 1
2

�a, and a3= � 1
2 , 1

2 ,0�a, and b1
= �−1,1 ,1� /a, b2= �1,−1,1� /a, and b3= �1,1 ,−1� /a, where
a is the lattice constant. Then interpolation functions on the
Bravais lattice are given by

Nj
Bravis�x� = Nj

cubic��a = 2ba · x − 1� �94�

using the shape functions defined in Eq. �93�. Shape func-
tions for the bcc lattice can be constructed in the same way,
with the basis vectors be chosen to be a1= � 1

2 , 1
2 ,− 1

2
�a, a2

= � 1
2 ,− 1

2 , 1
2

�a, and a3= �− 1
2 , 1

2 , 1
2

�a, and b1= �1,1 ,0� /a, b2

= �1,0 ,1� /a, and b3= �0,1 ,1� /a, where a is the lattice con-
stant.

One drawback of the fcc and bcc shape functions �94� is
that they break the point group symmetry of the lattice. Act-
ing on the mesh with an element of the point group returns a
new mesh with the same nodes but often a different set of
cell boundaries. One example is C4

z , the 90° rotation about z.
It changes the cell boundaries, as can be seen by its action on
1
2 �a1+a2� 
i.e., �� = � 1

2 , 1
2 ,0��. C4

z maps this face point to ���
= �1,0 ,− 1

2
�, a point on an edge of the original mesh. Another

way to understand this symmetry breaking is that we made a
choice when we selected the basis a1= �0, 1

2 , 1
2

�a, a2

= � 1
2 ,0 , 1

2
�a, and a3= � 1

2 , 1
2 ,0�a. Had we selected another basis,

say a1�= �− 1
2 ,0 , 1

2
�a, a2�= �0, 1

2 , 1
2

�a, and a3�= �− 1
2 , 1

2 ,0�a, then
the mesh would have been different. It would have different
cell edges and faces, even though the cell nodes would be the
same. More importantly for our purposes, a displacement
field interpolated using one set of shape functions cannot,
apart from a few special cases, be represented exactly with

the rotated shape functions. The results of CGMD modeling
then depend to some extent on the choice of basis and asso-
ciated shape functions.

The symmetry breaking is small and of no consequence in
most applications; however, we are interested in using wave
spectra as a test of CGMD, plotting the spectra along high
symmetry directions in the Brillouin zone. The symmetry
breaking is somewhat troublesome in this case because high
symmetry directions no longer possess the high symmetry
and directions that are supposed to be equivalent by symme-
try are not. We have developed a symmetrization procedure
to eliminate the effects completely. Its use is limited to ap-
plications where high symmetry is important, such as wave
spectra, so we present it below where the spectra are calcu-
lated.

Another approach to this problem is to introduce polyno-
mial bases that respect the point group symmetry. The well-
known serendipity functions21,59 are an example of a mini-
mal polynomial basis that respects cubic symmetry. The
serendipity functions may be generalized in a way that
makes them suitable for a cubic fcc or bcc cell such that
there is a node for each atom in the cubic unit cell, so that the
MD degrees of freedom are recovered in the atomic limit.
These are different than the usual serendipity functions and,
indeed, are not as well suited for conventional FEM applica-
tions because of the location of the nodes �e.g., the bcc ele-
ment has an internal node�.21 They do, however, meet our
need to match the atomic lattice and preserve symmetries in
the atomic limit. For example, the fcc serendipity functions
have nodes at the corners and at the middle of the faces of a
cube. To the best of our knowledge, this kind of FEM inter-
polation function has not been used previously. They are well
suited to Bravais lattices, because of their simple action un-
der the point group symmetry. Consider a cubic unit cell of a
fcc lattice with local coordinates �a, where −1��a�1 for
a=1,2 ,3. Define the function

N1��a� =
1

8
�1 + �1��1 + �2��1 + �3�
2��1 + �2 + �3 − 1�

− ��1�2 + �2�3 + �3�1�� �95�

associated with the corner node at �� = �1,1 ,1� and the func-
tion

N9��a� =
1

2
�1 + �1��1 − �2

2��1 − �3
2� �96�

associated with the face node at �� = �1,0 ,0�. Basis functions,
Nj��a� associated with the other nodes are generated from
�95� and �96� by the action of the point group. These func-
tions satisfy the strong requirements for an interpolation ba-
sis. Each function vanishes outside of the cells containing the
corresponding node, and it goes to zero at the opposite faces
of those cells: it is local and continuous. Also, taken together
they form a partition of unity, as is easily checked. These 14
functions comprise only part of the set of 26 polynomials of
order at most �2,2,1�, i.e., the set of polynomials with terms
no higher than x2y2z �or x2yz2, etc.�. But they are specified
uniquely by the three basis requirements and the fact that
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they respect the point group; i.e., a point group operation
which leaves a particular node invariant also leaves the cor-
responding function invariant. These fcc shape functions are
most useful for testing purposes such as the computation of
phonon spectra and scattering properties where it is desirable
to maintain as many symmetries as possible.

Other �novel� fcc symmetric bases are possible if one
abandons the notion of self-contained elements. Typically,
equations of motion in finite elements are assembled element
by element. In CGMD, the interaction between two nodes
decreases exponentially with their separation. Since the in-
teractions are not contained within an element �in fact there
is no absolute cutoff to their range in principle�, the equa-
tions of motion are not constructed element by element, and
the role of the elements is simply to guide in the construction
of an interpolation basis. So we can consider a fcc lattice of
nodes as four interlaced simple cubic lattices. The interpola-

tion function for the corner node at �� = �1,1 ,1� is given by

N1��a� = 1
16�1 + �1��1 + �2��1 + �3���1 + �2 + �3 − 1� �97�

and the functions for the other corners follow from symme-
try. This completely determines a basis set which satisfies the
criteria of locality and continuity. It does not satisfy the par-
tition of unity requirement in the strictest sense, since the
uniform displacement mode is over-represented: it is repre-
sented once for each sublattice. A constraint must be intro-
duced that the uniform displacement on each sublattice is
equal to the mean displacement as follows:

ū = �
j

u j
�p�/Nnode �98�

for all sublattices p. Note that all the nodes are equivalent.
This is possible when the nodes are in a Bravais lattice such
as fcc, but it is not true of the fcc basis in �95� and �96�.

Interpolation functions for other crystal lattices are also
available, either because they exist already in the finite ele-
ment literature or because they are easily generated. We con-
sider a few cases here.

Interpolation functions for the bcc lattice may be con-
structed in a similar fashion. They are of the order �2,2,2�. In
particular, the shape function for the center node �0,0,0� is

N9��a� = �1 − �1
2��1 − �2

2��1 − �3
2� , �99�

which is unity at the associated node and vanishes on each
face of the cell. Then the shape functions associated with the
corners of the cell are of the form

N1��a� = 1
8 
�1 + �1��1 + �2��1 + �3� − N9��a�� , �100�

where this particular function is associated with the node at
�1,1,1�. The shape functions associated with the other corners
are generated by the appropriate rotations of this function.
Again, these shape functions satisfy the criteria of locality,
partition of unity, and continuity.

Finally, we consider a two-dimensional case that is rel-
evant for many of the crystal lattices: the square lattice. In
particular, suppose that the CG region will be treated as a
two-dimensional projection of the 3D lattice along the 
001�
direction. The square lattice has been used extensively in the

literature, and we include the minimal interpolation functions
here for reference,

N1��a� = 1
4 �1 + �1��1 + �2� . �101�

These interpolation functions are not only useful for two-
dimensional projections of the lattices treated above �simple
cubic, fcc and bcc with 
001� projection�, but also other more
complicated lattices such as the diamond cubic lattice with

001� projection.

C. Shape functions in reciprocal space

In order to make use of the reciprocal space representa-
tion of the dynamical matrix, it is necessary to have the
Fourier transform of the shape functions. The Fourier trans-
form can be computed numerically, of course, using fast
Fourier transform �FFT� techniques. In some cases, it is also
possible to compute the Fourier transform analytically. In
this section, we derive the atomic-index Fourier transform of
the linear interpolation function in one dimension �1D�. The
result is immediately applicable to the four-node square and
the eight-node brick in two and three dimensions, respec-
tively. The result is given in Eq. �110� below, and readers
who are not interested in the derivation are free to skip to
Sec. VI D.

Consider the symmetric linear interpolation function on a
regular mesh in one dimension as follows:

Nj�x� = �1 − � x − xj

xj+1 − xj
� for �x − xj� � xj+1 − xj

0 otherwise.
�

�102�

Let a be the lattice constant and Nper= �xj+1−xj� /a. We first
note the useful identities,

�
�=0

Nper

eika� = eikaNper/2
sin
ka�Nper + 1�/2�

sin�ka/2�
, �103�

�
�=−Nper

Nper

eika� =
sin
ka�2Nper + 1�/2�

sin�ka/2�
, �104�

that follow from the well-known formula to sum geometric
series 
1+z+z2+ ¯ +zN= �1−zN+1� / �1−z�� together with de
Moivre’s formula.

We first transform the atomic index � of the shape func-
tion to the Fourier conjugate variable k as follows:

Nj�k� = �
�

Nj�eika�. �105�

The shape function Nj� is expressed as the sum of two terms
in Eq. �102�: the transformation of the first term, just equal to
unity, is given by Eq. �104�, but the transformation of the
second is more involved. It is calculated as follows:

�
�=−Nper

Nper

���eika� = �2/a��k Im��
�=0

Nper

eika�� �106�
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=�2/a��k Im�eikaNper/2
sin
ka�Nper + 1�/2�

sin�ka/2� � �107�

=�2/a��k�sin2�kaNper/2�cot�ka/2� +
1

2
sin�kaNper��

�108�

=Nper
sin
ka�2Nper + 1�/2�

sin�ka/2�
−

sin2�kaNper/2�
sin2�ka/2�

. �109�

Combining the two contributions, we find

Nj�k� =
1

Nper

sin2�kaNper/2�
sin2�ka/2�

eikxj , �110�

where Nper is the number of lattice sites per CG cell. In
higher dimensions, Nper would be replaced by Nper

x , Nper
y , and

Nper
z . This result applies to the regular CG lattice. The corre-

sponding formula for a general one-dimensional CG lattice is
much more complicated, and using a numerical FFT to cal-
culate it is generally recommended.

D. The center-of-mass mode

The stiffness matrix definition involves two matrix in-
verses. This is somewhat ill-defined because D�� is singular,
due to the zero modes. The zero modes are the zero energy
phonons at the � point in reciprocal space that are associated
with translation invariance of the center of mass. There are d
zero energy phonons in any d-dimensional system corre-
sponding to uniform translation in each of the d directions.
These zero modes make the matrix singular. Since we have
imposed the criterion that the center-of-mass mode should be
represented within the set of interpolation functions, the sin-
gularity is superficial. There are two inverses in Eq. �36�, the
matrix Kij is finite after a suitable regularization. Indeed, the
alternate derivation of the stiffness matrix given in Appendix
A is free from any zero mode problems, so it must be pos-
sible to devise a suitable regularization scheme. An obvious
example is

Kjk = lim
�→0

��
��

f j��D�� + �I���−1fk�	−1
, �111�

where I�� is the identity matrix.
The regularization �111� is conceptually simple, but in

practice a small but finite � must be used, and error is intro-
duced into the contribution of the long-wavelength modes.
The error can be controlled through the choice of an � which
is small enough that frequencies of interest are not affected
appreciably, but large enough that the matrix is numerically
well conditioned. This regularization is cheap and adequate
for many purposes.

We have developed an alternative resolution of the zero
mode problem, which gives an exact formula for the stiffness
matrix with a well-defined double inverse �36�. Let �va�� be
the �th component of the ath zero mode of D��; i.e.,
��D���va��=0 for a=1,2 ,3. Define the zero mode matrices
as

��� = �
a

�va���va��, �112�

�ij� = �
a,�,�

Ni��va��Nj��va��

�Nva�2
. �113�

Using these matrices, we construct the projected shape ma-
trix

Ñj� = �
k

P jkNk�, �114�

P jk = � jk − � jk� . �115�

Then the stiffness matrix �36� is given by the matrix equation

K = �ÑÑT�
Ñ�D + c��−1ÑT + c����−1�ÑÑT� . �116�

The nonzero numbers c and c� are arbitrary, but should be
comparable to the eigenvalues of D�� to make the matrices
well-conditioned. This formula works by shifting the zero
eigenvalues in the atomic space and those in the nodal space
by c and c�, respectively, without affecting the other eigen-
values. The projection matrices undo this shift. They are
needed within the brackets to stifle the cross terms between
the zero modes and the nonzero modes for incommensurate
meshes. For commensurate meshes, this formula simplifies
to

Kcommensurate = �NNT�
X − X · ����NNT� , �117�

X = 
N�D + c��−1NT�−1, �118�

where X ·�� is a symmetric matrix since ��Ni��va�� are
eigenvectors of Xij.

The zero modes are not integrated out, so a short-ranged
D�� results in a short-ranged Kij. On the other hand, a
nearest-neighbor D�� does not generally produce a nearest-
neighbor Kij, except where the mesh is atomic sized. The
stiffness matrix elements typically decrease exponentially
with separation, so the effective interaction is short ranged,
but not nearest neighbor. This is an important point, since it
is this quality that improves the CGMD phonon spectrum.

VII. (QUASI-)HARMONIC CRYSTALS

Various properties of harmonic crystals have been com-
puted within CGMD as a validation of the methodology.

A. Phonon spectra

The CGMD phonon spectrum offers a good first test of
the model. Consider a regular, but not necessarily commen-
surate CG mesh. The equations of motion for the Hamil-
tonian �29� are

Mijüj
a = − Kil

abul
b, �119�

where üj
a is the nodal acceleration of the jth node in the ath

direction. Substitution of a plane-wave normal mode uj
a�t�

=u0
aeik·xj−i�t produces the secular equation
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M�k��2�ab = Kab�k� , �120�

where M�k� and Kab�k� are the Fourier transform of the mass
and stiffness matrices, respectively. The form of the mass
matrix for a monatomic lattice allows further simplification
as follows:

m2�2�ab = 
M�ND−1NT�ab
−1��k� , �121�

where we have used Eqs. �32� and �37�. For incommensurate
meshes, we have calculated the right-hand side of Eq. �121�
in real space, then found its Fourier transform and solved the
secular equation for the phonon frequencies. One such spec-
trum is plotted in Fig. 1 of Ref. 17. In principle, this could be
done in any case, but the computational cost limits the size
of the systems that can be treated in this manner. We have
done calculations with billions of atoms per CG cell, but in
order to do this, it is necessary to eliminate the real-space
representation of the dynamical matrix.

For commensurate meshes with uniform mesh size, we
may go to reciprocal space and the formulas simplify con-
siderably. It is even possible to derive analytic formulas for
the spectra in some cases. Suppose the CG mesh contains
Nnode

a nodes in the ath dimension for a total length of La. The
CG shape functions in reciprocal space may be expressed in
terms of a Bravais lattice character � for the CG mesh and a
CG element structure factor S as follows:

N�k,k�� = �
j,�

eik·xj−ik�·x�Nj� �122�

=��k − k��S�k�� , �123�

����k�� = �
a=1

3 � sin��kaLa/2�
sin„�kaLa/�2Nnode

a �…
	 , �124�

S�k�� = �
���j

e−ik�·�x�−xj�Nj�, �125�

where � j is any one element from the CG mesh. Note that in
the atomic limit S is just a delta function in the first Brillouin
zone. The CG phonon spectrum for a monatomic lattice is
given by

�2�k� = � 1

m
�
k�

���k − k���2�S�k���2�
���

k�

����k − k���2�S�k���2
D�k���−1�−1
,

�126�

where D�k�� is a 3n�3n matrix where n is the number of
atoms in the unit cell, and the two inverses are matrix in-
verses. The frequencies are the eigenvalues of the resulting
matrix. As in Eq. �121�, the first term represents the mass
matrix in reciprocal space divided by m2; the second term is
the middle factor of the stiffness matrix. In the atomic limit,
the formula reduces to the usual expression, D�k� /m.

B. Analytic formula for CG spectrum

The CGMD spectrum �126� may be computed in closed
form for a monatomic solid with a commensurate CG mesh
in one dimension. We presented the analytic expression for
the spectrum with nearest-neighbor interactions and linear
interpolation in Ref. 17, Eq. �12�

��k� = 2�K

m��
p

sin−4�1

2
ka +


p

Nper
	

�
p

sin−6�1

2
ka +


p

Nper
	�

1/2

, �127�

where the sums over p run from 0 to Nper−1, Nper
=Natom/Nnode is the number of atoms per cell and K is the
nearest-neighbor spring constant. This formula shows the
contribution of many modes of the underlying crystal to each
CGMD mode, resulting from the choice of interpolation
functions which have many normal mode components. Near
the center of the CG Brillouin zone, a single mode �p=0�
dominates the sums �127�. This dominance reflects the fact
that long-wavelength modes are well represented on the CG
mesh. Near the boundary of the CG zone 
k
�Nnode
 / �Na��, many modes contribute. The many modes
are needed because periodicity forces the slope of the spec-
trum to zero, and the modes act in concert to keep the
CGMD spectrum close to the true spectrum which is not
smooth at the boundary. For comparison, the formula for the
lumped mass FEM spectrum is

�lump�k� = 2�K

m

1

Nper
sin� 1

2kNpera� , �128�

the formula for the FEM spectrum with the distributed �con-
sistent� mass matrix is

�dist�k� = 2�K

m

1

Nper

sin� 1
2kNpera�

�1 − 2
3 sin2� 1

2kNpera�
, �129�

and the formula for the exact MD spectrum is

�MD�k� = 2�K

m
sin� 1

2ka� . �130�

The coarse-grained mass and stiffness matrices conspire to
produce a Padé approximant of the true spectrum, and
thereby achieve the O�k4� improved relative error, compared
to the O�k2� relative error of the two FEM spectra.

The remainder of this section is devoted to the derivation
of the analytic formula for the CGMD spectrum �127�. We
make use of the formula for the Fourier transform of the
symmetric linear interpolation function on a regular mesh in
one dimension, given above in Eq. �110�,

Nj�k�� =
1

Nper

sin2�k�aNper/2�
sin2�k�a/2�

eik�xj ,

where in this formula only the atomic index has been trans-
formed. The Fourier transform of the index j is straightfor-
ward, and the spectrum could then be derived using Eq.
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�126�. We take a different approach. The spectrum is given
by

��k� =�K�k�
M�k�

�131�

=� 1

m
� �NNT�k

�ND−1NT�k
, �132�

where we have made use of the formulas for the stiffness and
mass matrices, Eqs. �37� and �33�, respectively. The subscript
k denotes the Fourier transform of wave number k, and we
note that the Fourier transforms of both the nodal indices and
the atomic indices take on values of the form 2
n /L, but for
the atomic indices − 1

2L /a�n�
1
2L /a whereas the Fourier

transform of the nodal index lives in a reduced Brillouin
zone, − 1

2Nnode�n�
1
2Nnode, where Nnode is the number of

nodes �in one dimension�.
Evidently, we need to calculate quantities of the form

�NXNT�k, where the matrix X is either the identity matrix or
the inverse of the dynamical matrix. Such quantities are cal-
culated in the following way:

�NXNT�k = Nnodes
−1 �

i,j
e−ik�xi−xj��NXNT�ij �133�

=Nper
−1 �

�j=0

Nnode−1

�
k�

e−i�k−k���jNperaX�k��

�� sin2�k�aNper/2�
sin2�k�a/2� �2

�134�

=Nper
−1 sin4�1

2
k�aNper	 �

p=0

Nper−1 X�k +
2
p

Npera
	

sin4�1

2
ka +


p

Nper
	 ,

�135�

where Eq. �134� follows from Eq. �110�, and we have used
xi−xj = ��j�Npera, where �j= i− j. To get from �134� and
�135�, we have used the fact that the sum over �j gives a
delta function in the reduced Brillouin zone; i.e., a sum of
delta functions periodically repeated through the full Bril-
louin zone.

The CGMD spectrum is then calculated using Eq. �132�
together with Eq. �135� with X equal to the identity in the
numerator and D−1 in the denominator. The result is

��k� =� 1

m� �
p

sin−4�1

2
ka +


p

Nper
	

�
p

sin−4�1

2
ka +


p

Nper
	D−1�k +

2
p

Npera
	�

1/2

,

�136�

where D�k� is the dynamical matrix in k space and the sums
over p run from 0 to Nper. For a nearest-neighbor harmonic
model D�k�=4K sin2� 1

2ka�. Substitution of this into Eq. �136�

results in the analytic formula for the CGMD spectrum that
appears above �127�. This calculation may be generalized to
3D, where D�k� is a 3�3 matrix and the shape functions are
products of linear interpolations functions in each of the
three dimensions.

The first test is the phonon spectrum for atoms with har-
monic interactions coarse grained to a regular, but not nec-
essarily commensurate mesh. The normal modes are plane
waves both on the underlying ring of atoms and on the CG
mesh. The wave vector k is a good quantum number for
both. The nonzero terms of the dynamical matrix are of the
form: D��=2K ,D�,�±1=−K. Figure 1 of Ref. 17 shows the
resulting phonon spectra in four cases: exact, CGMD, dis-
tributed mass FEM, and lumped mass FEM.60 The latter two
use the long-wavelength elastic constants. The spectra are for
a periodic chain of 1024 atoms with lattice constant a coarse
grained to 30 nodes.

Figure 1 of Ref. 17 shows that CGMD gives a better
approximation to the true phonon spectrum than the two
kinds of FEM do. All three do a good job at the longest
wavelengths, as expected, but CGMD offers a higher order
of accuracy. The relative error for CGMD is O�k4� while that
of the two versions of FEM is only O�k2�. At shorter wave-
lengths, there are significant deviations from the exact spec-
trum. The worst relative error of CGMD is about 6%, better
by more than a factor of three than that for FEM. This im-
provement is made possible by the longer-ranged interac-
tions of CGMD as compared to FEM. The continuity condi-
tion satisfied by linear interpolation is enough to ensure that
the hydrodynamic modes �k�0� are well modeled, but the
lack of continuity of the derivatives shows up as error in the
spectrum of the modes away from the zone center. This error
vanishes for the smooth, nonlocal basis consisting of the
longest wavelength normal modes. It turns out that the
CGMD error at the CG zone boundary is relatively small
�less than 1%� for technical reasons. Also note that even
though the number of atoms varies from cell to cell in the
incommensurate mesh, the CGMD spectrum is free of
anomalies. Other computations have shown that CGMD with
linear interpolation is well behaved on irregular meshes, as
well.

We are now in a position to investigate the effect of the
CGMD relaxation terms eliminated in R-CGMD. They make
the CGMD stiffness matrix nonlocal and, therefore, add to
the cost of CGMD. What is the benefit of this additional
computational complexity? Using the same procedure out-
lined above, we have computed the R-CGMD spectrum as
follows:

��k� =� 1

m
��NDNT�k

�NNT�k
�137�

=� 1

m��
p

sin−4�1

2
ka +


p

Nper
	D�k +

2
p

Npera
	

�
p

sin−4�1

2
ka +


p

Nper
	 �

1/2

,

�138�

where the two lines are to be compared with the CGMD
results �132� and �136�, respectively. The CGMD and
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R-CGMD spectra are plotted together with the MD spectrum
in Fig. 5. It is clear that both approaches work well for long
wavelengths �k�0�. In fact, it is reasonable that the relax-
ation should be unimportant in this regime since the dis-
placement field is varying slowly on the scale of the mesh, so
the lowest energy configurations of the MD best fits to the
interpolated displacement field should be close to having the
atoms at their linearly interpolated positions. At short wave-
lengths �near the CG zone boundary�, the story is different,
however. The displacement field is varying at the scale of the
mesh, and the atoms can reduce the energy through relax-
ation. This is evident in the improved value of the zone
boundary frequency for CGMD �0.67% error� vs R-CGMD
�10.2% error�. As shown in Fig. 6, these values are typical
and close to the asymptotic value for coarse meshes. This
difference in the performance of CGMD and R-CGMD is
evident in many properties sensitive to the coarse-grained
lattice dynamics at the zone boundary, such as the scattering
properties we consider below. It is interesting to note that
while the magnitude of the error is appreciably different, it is
small in both cases. This suggests that there may be ways to
formulate an approximation to CGMD that is intermediate
between CGMD and R-CGMD, both in terms of the detail of
the physics that is described and the computational cost. This
is a topic we will address in the future.

C. Numerical calculation of argon CG spectrum

It was shown in Ref. 17 that the CGMD phonon spectrum
is closer to the true spectrum than that of FEM for a one-
dimensional chain of atoms with nearest-neighbor interac-

tions. We now compare phonon spectra for a three-dimen-
sional real material: solid argon. Some of these results were
reviewed briefly in Ref. 3. We also treat tantalum below. We
find that CGMD again offers an improved spectrum.

Solid argon crystallizes in the fcc structure where it is
well described by the Lennard-Jones potential

V = 4�� 1

�r/��12 −
1

�r/��6	 , �139�

where �=1.63�10−21 J and �=3.44 Å.61 The elastic con-
stants for this potential are given by C11=105.3� /�3

=4.21 GPa and C12=C44=60.18� /�3=2.41 GPa.
We use the fourfold symmetrized eight-node brick inter-

polation functions defined on the fcc Bravais lattice for both
CGMD and FEM. The fcc lattice is generated by the unit cell
vectors a1= �0,a /2 ,a /2�, a2= �a /2 ,0 ,a /2�, and a3

= �a /2 ,a /2 ,0�. As discussed above, the conventional rhom-
bohedral interpolation functions of the eight-node brick con-
sist of products of one-dimensional linear interpolation func-
tions,

Nj�x� = �
a=1

3

Ñ
2ba · �x − x j� − 1� , �140�

as in Eq. �94�. These interpolation functions break the cubic
symmetry. Even though the effect of the symmetry breaking
is small, it complicates the analysis of the spectrum, causing
deviations from the true spectrum that have nothing to do
with the intrinsic accuracy of the methods.

In order to eliminate the small symmetry-breaking effects
completely, we introduce a symmetrized version of the inter-
polation functions that is useful for spectrum calculations.
We construct a multiplet of interpolated fields, where each
component of the multiplet is an image of the mesh associ-
ated with Eq. �140� under the action of the point group. For
the fcc lattice with rhombohedral cells, there are four in-

FIG. 5. A comparison of the acoustic wave spectra for CGMD,
R-CGMD, and MD with frequency vs wave number plotted. The
units are k0=
 / �Npera� and �0=k0a�K /m. The MD spectrum, cor-
responding to a simple 1D ball and spring model, is the ideal case.
The CGMD and R-CGMD spectra are computed on a regular mesh
with Nper=32 atoms per cell. Both full CGMD and its rigid approxi-
mation, R-CGMD, are in good agreement with the MD spectrum
for k�0, i.e., at long wavelengths. At short wavelengths near the
zone boundary, the CGMD spectrum is more accurate than the
R-CGMD spectrum, a property that we attribute to the relaxation
effects accounted for by CGMD but eliminated in the rigid
approximation.

FIG. 6. A comparison of the error in the acoustic wave fre-
quency at the zone boundary 
k=
 / �Npera�� for CGMD and
R-CGMD as a function of the level of coarse graining, as expressed
by Nper. At Nper=1, there is no error in either frequency. At all other
values of Nper, the error in the CGMD frequency is less than that of
R-CGMD, asymptotically going to 0.66% and 10.3%, respectively.
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equivalent transformations of the mesh, so our field becomes
a four-component vector. The frequency values are then av-
eraged over these four components. This is equivalent to the
standard group theoretic operation of averaging over the or-
bit in order to restore symmetry. The four inequivalent group
operations are the C2 elements

g = �±1 0 0

0 ±1 0

0 0 ±1
� �141�

with −1 appearing an even number of times, such that g is a
proper rotation with det�g�=1. Another way to view this
symmetrization procedure is that a symmetrized stiffness
matrix is used

Kab
sym�k� =

1

4�
g

gaa�Ka�b��gk�gbb�, �142�

where the sum is over the four diagonal matrices g �141�. If
the meshing did not break the point group symmetry, there
would be no need for symmetrization and, indeed, the sum in
Eq. �142� would reduce to a single term. The symmetrization
procedure is simply a way to restore the symmetry broken by
the mesh in order to facilitate analysis and comparison of the
spectra.

We now undertake the actual calculation of the stiffness
and mass matrices. The FEM matrices are computed as fol-
lows. The mass matrix takes one of two forms. The mass
matrix computed strictly from the interpolation functions is
known as the distributed or consistent mass matrix. It is
given by

Mij
dist =� d3x�Ni�x�Nj�x� �143�

=
1

8
mNper

3 �
−1

1

d3�Ni��a�Nj��b� �144�

=mNper�2

3
	3−l�1

6
	l

, �145�

where l �0� l�3� is the number of edges in the shortest path
along a single hexahedral cell connecting nodes i and j. The
number Nper is a generalization of the one-dimensional case,
where now it is the number of lattice sites along one dimen-
sion of the cell, and for cells with different dimensions in the
three directions, Nper

3 should be replaced by Nper
x Nper

y Nper
z . The

Fourier transform of Mij
dist may then be calculated as a sum

over the 27 neighboring nodes �indexed by n1 , n2 , n3 run-
ning from −1 to 1�

Mdist�k� =
8mNper

3

27 �
na=−1

1 �1

4
	��na�

�
a=1

3

cos�Npernaaa · k� , �146�

where ab is the bth real-space basis vector.
For many applications, it is sufficient �and in some cases

even more accurate� to use a diagonal approximation to the
mass matrix known as the lumped mass matrix. It is given by

Mij
lump = �ijmNper

3 �147�

so each element of the diagonal is just equal to the mass
contained in the Voronoi cell about the corresponding node.
The Fourier transform of Mij

lump is

Mlump�k� = mNper
3 . �148�

Note that Mdist�k=0�=Mlump�k=0�, and they are equal to the
Voronoi mass as they should be.

The FEM stiffness matrix is given by

Kij;bd
FEM = Cabcdbaa�bcc�� d3x�a�Ni�x��c�Nj�x� �149�

=
a

8
Nper

3 Cabcdbaa�bcc��
−1

1

d3��a�Ni����c�Nj��� , �150�

where the prefactor a is the lattice constant of the rhombo-
hedral unit cell and the elastic tensor Cabcd has been con-
tracted with the reciprocal space metric as appropriate for the
nonorthogonal coordinates. This equation has too many com-
ponents to present the complete expression here 
cf. Ref. 58�.
Nevertheless, the calculation is elementary algebra, and the
results were used to calculate the Fourier transform. The re-
sult is a 3�3 matrix for each value of k :Kbd

FEM�k�.
The formulas for the CGMD mass and stiffness matrices

in real space for rhombohedral elements are computed simi-
larly. The mass matrix is given by

Mij
CGMD = mNper

3 �1 − Nper
−2

6
	l�2 + Nper

−2

3
	3−l

, �151�

where as in Eq. �145�, l �0� l�3� is the number of edges in
the shortest path along a single rhombohedral cell connecting
nodes i and j. The correspondence of the leading terms to the
terms in the FEM distributed mass matrix �145� is evident, so
that CGMD reproduces the FEM distributed mass matrix in
the large-Nper limit. This expression assumes that the mesh
consists of trigonal cells in which the linear dimensions are
equal in all three dimensions, but it could be generalized
immediately to unequal dimensions. The Fourier transform is
given by

MCGMD�k� = mNper
3 �

na=−1

1 �1 − Nper
−2

6
	��na�

� �2 + Nper
−2

3
	3−��na�

�
a=1

3

cos�Npernaaa · k� ,

�152�

where as in Eq. �146�, the 27 neighboring nodes are indexed
by n1 , n2 , n3 running from −1 to 1. Note that the CGMD
mass matrix also satisfies the mass sum rule: MCGMD�k=0�
=mNper

3 .
The CGMD stiffness matrix is calculated according to Eq.

�37� using the reciprocal space representation of the dynami-
cal matrix. In particular, we calculate the spectrum using Eq.
�132�, suitably generalized to a monatomic lattice in three
dimensions as follows:
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�ab
2 �k� =

1

m2 M�k��ND−1NT�−1�k� , �153�

where the actual frequency on each phonon branch is given
by the square root of one of the three eigenvalues of the
3�3 matrix �ab

2 �k�. Here, we have made use of the expres-
sion for the mass matrix of a monatomic lattice �32�. The
denominator is part of the stiffness matrix,

K̃ab = �NDab
−1NT�−1�k� �154�

=„N�k,k��Dab
−1�k��N*�k,k��…−1, �155�

where Dab
−1�k�� is the matrix inverse of the 3�3 matrix

Dab�k��. The outer inverse is a 3�3 matrix inverse, as well.
The Fourier transform of the shape functions is found using
Eq. �110� to be

�N�k,k���2 = Nper
3 �

b=1

3

�
pb=1

Nper sin4�ab · kNper/2�
Nper

4 sin4�ab · k/2�

���k − k� +
2
pb

Lb
	 , �156�

where Lb is the length of the CG cell in the bth direction.
Upon substitution back into Eq. �153�, we find that

�ab
2 �k� = � �

pb=1

Nper

�
b=1

3 � sin4�ab · kNper/2�
Nper

4 sin4�ab · kp/2��Dab
−1�kp��−1

� M�k�/�m2Nper
3 � , �157�

where kp=k+2
pb /Lb. The mass matrix M�k� is given by
Eq. �152�. It is in the numerator, what might seem to be the
wrong place, because of the form of the monatomic secular
equation �121�. It is clear from Eq. �157� that CGMD repro-
duces the MD spectrum in the long-wavelength limit

�ab
2 �k� � Dab�k�/m for k � 0, �158�

which follows from expanding sin�x�=x+¯ for small argu-
ments. In the short-wavelength limit, the many terms in the
sum over pb contribute to Eqs. �156� and �157�, ensuring
periodicity in the CG reciprocal space.

The spectrum is then computed in each case from the
resulting secular equation at each value of k. For the true
spectrum, the secular equation is

det
�2�k��ab − Dab�k�/m� = 0, �159�

for the CGMD spectrum the secular equation is

det
�2�k��ab − �ab
2 �k�� = 0 �160�

with �ab
2 given by Eq. �157�, and for the FEM spectra the

secular equation is

det
�2�k��ab − Kab�k�/M�k�� = 0 �161�

with M�k� given by Eqs. �146� and �148� for distributed and
lumped mass, respectively. The determinant of the 3�3 ma-
trix gives a cubic secular equation with three eigenvalues.
The eigenvalues are real for all of the cases considered here.
The Lennard-Jones potential for argon was cut off in real

space after the 12th nearest-neighbor shell for both the MD
and CGMD spectra. For many applications it would not be
necessary to extend the range this far; however, in this case
we wanted to test a potential extending well beyond nearest
neighbors. The semianalytic formulas that we have presented
here, such as Eq. �157�, have been used in order to calculate
the spectra of extremely large systems with minimal compu-
tational expense, and all of the plots presented below were
calculated using these equations. It should be emphasized,
however, that the spectra could have been calculated using
the basic real-space matrix formulas or using numerical Fou-
rier transforms. This has been done for the smaller systems
as a validation.

The spectra have been computed for three levels of coarse
graining: the atomic limit �1�1�1 or no coarse graining�, a
slight coarse graining �2�2�2�, and a case approaching the
continuum limit �32�32�32�. The numbers nx�ny �nz in-
dicate the number of atoms within an unsymmetrized CG
cell in each direction, i.e., Nper=1 ,2 ,32, respectively. These
values correspond to cells containing 1, 8, and 32 678 atoms,
respectively. The results are shown in Figs. 7, 8, and 9.

Elastic wave spectra are of interest because they provide a
means of quantifying the small-amplitude dynamics of the
system. They represent the energetics of every normal mode
of vibration of a system of atoms. In coarse-grained dynam-
ics, the wave spectra provide an excellent way to quantify
the fidelity of the coarse-grained model. Since the normal
modes of a crystal are plane waves, they are uniquely iden-
tified by a wave number k and a branch index, for example
indicating a transverse optical mode or a longitudinal acous-

FIG. 7. The phonon spectra for solid argon in the atomic limit
are shown as plots of wave frequencies vs wave number along
various high symmetry lines through the Brillouin zone �Ref. 3�.
The high symmetry points are labeled according to the standard
convention for an fcc lattice �Refs. 62 and 63�; for example, � is at
the center of the zone, k=0 and X= �1,0 ,0�
 /a where a is the fcc
lattice constant. The nine curves represent the three branches of the
spectra for CGMD and two versions of FEM, one using the con-
ventional distributed mass matrix and one using a diagonal lumped
mass matrix. In the atomic limit, CGMD reproduces the Lennard-
Jones MD spectra exactly, whereas the FEM spectra show signifi-
cant error, especially with the distributed mass matrix.
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tic mode. The normal modes correspond to a lattice of points
in reciprocal space �k space� inside a bounded region known
as the Brillouin zone. It is not possible to plot ��k� for k
throughout the three-dimensional Brillouin zone, so typically

��k� is plotted along lines, in particular high symmetry lines,
through the 3D Brillouin zone.62,63 This convention has been
used in Figs. 7, 8, and 9.

Consider the spectra in the atomic limit shown in Fig. 7.
The CGMD spectrum agrees precisely with the true spec-
trum. Of the two FEM spectra, the lumped mass spectrum is
closer to the true spectrum. This is sensible because the mass
is localized to the nodes in the atomic limit, since each node
represents one atom. Overall, the lumped mass frequencies
are lower than the true frequencies, whereas the distributed
mass frequencies are higher. This ordering remains true re-
gardless of the level of coarse graining.

In the continuum limit shown in Fig. 9, the CGMD spec-
trum no longer agrees exactly with the true spectrum, but it
is still a better approximation than either FEM spectrum. It is
clear that in the continuum limit, the distributed mass pro-
duces the better spectrum of the two finite element cases.
This again makes sense, because the mass is becoming more
evenly spread throughout the CG cell. Still, the CGMD spec-
trum is significantly better than the distributed mass FEM
spectrum.

The intermediate case is shown in Fig. 8. Already the
distributed mass FEM is in better agreement with the MD
spectra than the lumped mass FEM is. It is remarkable that
cell containing as few as eight atoms are beginning to exhibit
continuum behavior. This one-two-many qualitative depen-
dence is typical of many large-N expansions, where the
large-N limit quickly becomes a good approximation to the
real system behavior, and even for N as low as two or three
it is a good approximation. The CGMD spectra are again in
better agreement with the MD spectra than either of the FEM
spectra are.

It should be emphasized that the shape of the FEM spectra
is the same in the three plots. Continuum elasticity is scale
invariant, and the changes in FEM spectra are a simple res-
caling of frequency and wave number. This scaling is clearly
evident in Eq. �146� for the FEM distributed mass. The scale,
Nper, enters through the prefactor Nper

3 scaling the frequency
and the factor of Nper in the argument of the cosine scaling
the wave number. The same scaling of the wave number is
present in the stiffness matrix, but its prefactor goes like Nper

than Nper
3 . As a result, the frequency ���K /M� and the wave

number scale like 1/Nper. In the linear portion of the spectra
near k=0, the two effects cancel, but the spectra are modified
significantly near the zone boundary. Thus, when we discuss
the comparison of the MD spectra with the FEM spectra and
find better agreement with the lumped mass FEM for small
cells and better agreement with distributed mass FEM for
large cells, it is not that the FEM spectra are changing. The
MD spectra are changing from discrete atomic behavior to
continuum behavior. It is the natural scale dependence of
true lattice dynamics. CGMD has this scale dependence arise
naturally, as well, and so it is able, to a large extent, to track
the changes in the MD spectra with cell size.

If we look at the differences between the spectra in more
detail, we can start to understand how the underlying physics
gives rise to these differences. On all three plots, the trans-
verse phonons are degenerate �have the same frequency�
along the lines connecting the zone center and the middle of

FIG. 8. The phonon spectra for solid argon on a mesh with
slight coarse graining are shown as plots of wave frequencies vs
wave number along various high symmetry lines through the Bril-
louin zone �cf. the caption to Fig. 7�. The 12 curves represent the
three branches of the spectra for MD, CGMD, and two versions of
FEM, one using the conventional distributed mass matrix and one
using a diagonal lumped mass matrix. Each cell of the CG mesh
contains eight atoms. For this first level of coarse graining the
CGMD spectra is in better agreement with the MD spectra than
either of the FEM spectra. Of the two FEM spectra, the lumped
mass spectrum is somewhat better.

FIG. 9. The phonon spectra for solid argon on a mesh approach-
ing the continuum limit �32 768 atoms per cell� are shown as plots
of wave frequencies vs wave number along various high symmetry
lines through the Brillouin zone �Ref. 3; cf. the caption to Fig. 7�.
The 12 curves represent the three branches of the spectra for MD,
CGMD, and two versions of FEM, one using the conventional dis-
tributed mass matrix and one using a diagonal lumped mass matrix.
With this significant level of coarse graining, the CGMD spectra is
again in better agreement with the MD spectra than either of the
FEM spectra. Of the two FEM spectra, now the distributed mass
spectrum is better.
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the zone faces, �−X in the 
100� direction and �−L in the

111� direction.63 This degeneracy follows from the C4 and
C3 symmetry along those lines, respectively. The lines along
the zone boundary and the �−K line have reduced symmetry
�at most C2�, and the transverse phonons are not degenerate
in those cases. There are some isolated points of increased
symmetry. The W point is an example. One transverse pho-
non and the longitudinal phonon are degenerate at W
= �2,1 ,0�
 /2a, as can be seen in the MD curve in Fig. 7.
This happens because W is the midpoint on a line between X
on two adjacent Brillion zones, and the longitudinal mode at
one X becomes the transverse mode at the other X, and vice
versa. The two branches must cross at the midpoint; hence,
they are degenerate at W. This is no longer true for the MD
phonons in the coarse-grained systems, since WGG no longer
has this midpoint property. As a result, the frequency of the
longitudinal MD mode increases going from L to W �W is
farther from ��, whereas it decreases for CGMD and the two
versions of FEM since the longitudinal frequency is drop-
ping to meet the transverse frequency. This is the most pro-
nounced discrepancy in the spectra. It is particularly bad for
the lumped mass FEM as the cell becomes large. CGMD is
in better agreement with the two transverse MD modes at W,
while the distributed mass FEM, which tends to be high
overall, is in better agreement with the high longitudinal MD
frequency at W. In general, the CGMD spectra are in sub-
stantially better agreement with the MD spectra than either
of the FEM spectra are.

It is not obvious, but even in the long-wavelength limit
�near the � point�, the CGMD spectrum is better than either
of the two FEM spectra. The relative error for the CGMD
spectrum is of order O�k4�, whereas it is O�k2� for the two
FEM cases. This improved error was demonstrated above
with the formulas for the 1D frequencies, and it continues to
hold in 3D. An order O�k2� relative error is the naive expec-
tation, since the phonon dispersion relation is linear, with the
leading corrections of order O�k3� due to symmetry. The
higher order error for CGMD is due to a subtle cancellation
between the mass and stiffness matrices. This cancellation
can be seen from the formula for the general 1D CGMD
spectra �136� and its 3D generalization

�ab
2 �k� =

1

m
�
b=1

3 �
pb=1

Nper

sin−4� 1
2ab · kpb

�

�
pb=1

Nper

sin−4� 1
2ab · kpb

�Dab
−1�kpb

�

, �162�

where kpb
=k+ �2
pb� / �Nper

b a�bb and bb is the reciprocal lat-
tice basis element. Note that this formula is equivalent to Eq.
�157�, which is the equation we actually used to compute the
CGMD spectra. The two equations differ because they make
use of different expressions for the mass matrix.

It is interesting again to compare the spectra for CGMD
and R-CGMD, now for the 3D phonons. In the atomic limit
�Nper

b =1�, the two agree with each other and with the exact
MD spectrum. For coarsened lattices �Nper

b �1�, near the �
point �k=0�, CGMD and R-CGMD are in good agreement
�R-CGMD is not plotted here�, as was observed in the 1D

case and shown in Fig. 5. We may compare the formulas for
the spectra, Eq. �162� and its R-CGMD counterpart,

�ab
2 �k� =

1

m
�
b=1

3 �
pb=1

Nper

sin−4� 1
2ab · kpb

�Dab�kpb
�

�
pb=1

Nper

sin−4� 1
2ab · kpb

�

. �163�

The two equations for the spectra may be expanded about the
� point, and both exhibit the improved relative error, O�k4�.
Near the zone boundary, R-CGMD behaves more like the
distributed mass FEM case. It is here that the relaxation
physics built into CGMD has its most pronounced effect,
especially at the high symmetry point L on the acoustic
branch, where the full CGMD error is very small.

D. The finite-temperature tantalum CG spectrum

We have calculated the elastic wave spectrum for a vari-
ety of materials. As a second example, we present results for
the phonon spectra of tantalum at room temperature. Tanta-
lum was chosen to demonstrate CGMD in a more open crys-
tal structure �bcc� and in a system using many-body inter-
atomic potentials. We use the Finnis-Sinclair many-body
potential for tantalum64 with the improved Ackland-Thetford
core repulsion.65 The elastic constants for this potential are
C11=266.0 GPa, C12=161.2 GPa, and C44=82.4 GPa. We
calculate the finite-temperature dynamical matrix in a con-
ventional MD simulation consisting of 2000 atoms in a lat-
tice of 10�10�10 bcc unit cells with periodic boundary
conditions. The system is equilibrated to T=300±0.1 K and
P=0±10−3 GPa through scaling of the box size and veloci-
ties every 100 time steps until the target temperature and
pressure were attained and then an additional 5000 steps
without rescaling to ensure equilibration. The equilibrium
lattice constant at this temperature was found to be
3.3129 Å, expanded by 0.2% from the T=0 K value of
3.3058 Å.

Subsequently, the dynamical matrix was calculated every
1000 time steps averaged over every atom in the simulation.
With the Finnis-Sinclair potential, it is possible to use an
analytic expression for the dynamical matrix, since it is pos-
sible to take two derivatives of the energy analytically with
respect to atomic displacements. The expression is given in
Ref. 64. In principle, we are computing an ensemble average,
which we have implemented by averaging over the equiva-
lent lattice sites of the system and over multiple time steps
�relying on ergodicity for the equivalence of ensemble and
temporal averages in equilibrium�. In all, we have averaged
over a total of 10 snapshots of the system and imposed the
cubic �Oh� point group symmetry by averaging over the
point group operations. The range of the dynamical matrix
includes out to the sixth nearest-neighbor shell in tantalum at
T=300 K �the range of the pairwise functions entering the
potential includes the first and second nearest-neighbor
shells�.

The results for tantalum are very similar to those for solid
argon in terms of quality. The elastic wave spectra are plotted
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in Figs. 10 and 11. The first figure shows the spectrum of
elastic waves on a fully refined mesh. The CGMD and MD
spectra agree exactly and are overlapping. The second figure
shows the spectrum on a mesh consisting of eight atoms per
rhombohedral cell, as described in the argon case. Here the
spectra do not agree exactly, but the results are comparable
in quality to those from the argon simulations. In comparing
to the corresponding argon plots �Figs. 7 and 8�, it should be
noted that the high symmetry k points are somewhat differ-
ent due to the differences in the bcc and fcc crystal struc-
tures. For example, the �-H line is in the 
100� direction and
the �-P line is in the 
111� direction for bcc tantalum. Again
CGMD performs better than either of the two FEM models

�data not shown� in reproducing the MD spectra. The many-
body potential and the more open crystal structure do not
have a significant impact on the quality of the results.

E. Dynamics and scattering

Most of the applications that we envision for CGMD are
dynamical and have varying mesh size. For example, in stud-
ies of crack propagation it may be advantageous to introduce
a coarse-grained model of the far-field regions away from the
crack.23 For these applications, it is important that elastic
waves generated at the crack tip do not reflect from the
coarse-grained region and perturb the crack propagation.66–70

CGMD offers the chance to allow the longest wavelength
modes to propagate much farther into the periphery within
incurring a commensurately greater computational expense.
Other coarse-grained models of the periphery, such as hybrid
FEM and/or MD schemes, may offer the same advantage. In
energy-conserving CGMD, the short-wavelength modes are
reflected from the CG region, but this process is sufficiently
dispersive that shock waves are smoothed out and the poten-
tial wave-reflection pathologies are averted. The unphysical
wave reflection may also produce a nonzero Kapitza resis-
tance at the interface, which can lead to an unphysical tem-
perature gradient across the interface. Of course, a stationary
system started in thermal equilibrium remains at a constant,
uniform temperature given a reasonable measure of tempera-
ture in the CG region, but a system driven out of equilibrium
may exhibit unphysical gradients on time scales shorter than
the relaxation time.

Given the potential problems associated with wave reflec-
tion, we have developed a methodology to quantify the prob-
lem. The natural measure of the ability of waves to propagate
from an atomistic region into a CG region is the S-matrix of
scattering theory, or in one dimension, the transmission and
reflection coefficients, T and R, respectively. The basic ap-
proach to scattering problems is to look for solutions of the
equations of motion of the form of an incoming plane wave
and an outgoing spherical wave,

u�r,t� �
1

�2
�3/2�eik·r−i�t + fk�k̂�
eikr−i�t

r
� , �164�

where this asymptotic form of the displacement field holds
well outside the scattering region. The S-matrix and the scat-

tering cross section may be determined from fk�k̂�. For
CGMD, the scattering region is the region where the stiffness
matrix differs from the MD dynamical matrix. A tremendous
amount of theoretical analysis has been developed for scat-
tering problems.71 In lattice dynamics, scattering is compli-
cated by the anisotropy of the lattice. The asymptotic form
given above �164� is only applicable to isotropic scattering,
but the formalism is readily generalized. To the best of our
knowledge, 3D scattering cross sections have not been com-
puted for any of the proposed solutions to the wave-
reflection problem.

We restrict our discussion to the one-dimensional case, for
which the analysis is more straightforward. We have calcu-
lated these scattering properties for CGMD and FEM, for
comparison. The reflection coefficients are computed in the

FIG. 10. The room temperature phonon spectra for solid tanta-
lum on a mesh with no coarse graining are shown as plots of wave
frequencies vs wave number along various high symmetry lines
through the Brillouin zone �for comparison to the solid argon case
shown in Fig. 7�. As in the case of argon, the CGMD phonon
spectrum agrees exactly with the MD spectrum when the mesh is
refined to the atomic limit. It is common practice to leave the gap
between the second N and P points since that part of the spectrum
is already represented to the left.

FIG. 11. The room temperature phonon spectra for solid tanta-
lum on a mesh with eight atoms per mesh cell are shown as plots of
wave frequencies vs wave number along various high symmetry
lines through the Brillouin zone �cf. Fig. 8�. As in the case of argon,
the CGMD phonon spectrum agrees very well with the MD spec-
trum in the limit of long wavelengths �near the � point�, and it
agrees reasonably well throughout the coarse-grained Brillouin
zone.
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same way for both. The asymptotic region is described by
harmonic MD on a regular lattice, and the normal modes are
the well-known plane wave solutions. As in Eq. �164�, the
asymptotic form of the displacements is known for each fre-
quency:

uj�t� = �A�eikxj−i�t + re−ikxj−i�t� for j � 1

Ateikxj−i�t for j � N
,� �165�

where the reflection and transmission coefficients are given
by R= �r�2 and T= �t�2, respectively. We have assumed that the
scattering region is contained between x1 and xN, in the sense
that these points bound the CG region of the mesh and are
separated by more than the range of the MD potential from
any coarse-grained cell. This requirement guarantees that the
form of uj�t� in the relation �165� is a strict equality and not
just an asymptotic relation like �164�. The wave number k is
determined by the frequency, m�2=D�k�, where D�k� is the
MD dynamical matrix. The leading coefficient A just deter-
mines the amplitude and is irrelevant for our purposes, so we
set A=1. In principle, the displacement field could have com-
ponents with many different frequencies, but since the prob-
lem is linear, we may restrict the analysis to a single fre-
quency without loss of generality. Note that while we are
considering the harmonic problem with a short-range MD
potential, this analysis could be generalized to nonlinear
wave propagation and nonlinear or long-range scattering us-
ing the Lehmann-Symanzik-Zimmerman �LSZ� scattering
formalism.52 The incoming and outgoing waves forming the
asymptotic boundary conditions �165� would need to be suit-
ably dressed. Then the scattering cross section could be ex-
pressed in terms of the one-point irreducible Feynman
graphs. This extension could be interesting, but the linear
case will suffice for our purposes.

The equations of motion are given by

Mijüj�t� = − Kilul�t� , �166�

and we look for solutions with angular frequency �,

uj�t� = eikxj−i�t + v je
−i�t, �167�

such that the asymptotic boundary conditions �165� are sat-
isfied as follows:

v j = �re−ikxj for j � 1

�t − 1�eikxj for j � N
,� �168�

where again these boundary conditions are a strict equality.
The equations of motion for v j are

�Kij − �2Mij�v j = − �Kij − �2Mij�eikxj . �169�

In principle, there are many ways to solve the equations of
motion �169� with the boundary conditions �168�; in practice,
we found this problem to be rather subtle. A similar scatter-
ing problem must have been solved before, but we have not
been able to find a solution in the literature. The approach we
take here is to note that we can relate the solution in the outer
regions to the solution at the boundary points

v1−n = einkav1, �170�

vN+n = einkavN, �171�

where n�0. Here a is the lattice constant. Using this trick,
the problem is reduced to the calculation of v1 , . . . ,vN using
the following N equation:

�Kij − �2Mij�v j = − �Kij − �2Mij�eikxj + �
n=1

�

Ki�1−n�e
inkav1

+ �
n=1

�

Ki�N+n�e
inkavN, �172�

where in practice the sums just run out to the range of the
potential. The implicit sums over j run from 1 to N. Then the
scattering coefficients are determined by R= �r�2 and T= �t�2
with

r = eikx1v1, �173�

t = e−ikxNvN + 1, �174�

which follow from Eq. �168�.
In Fig. 12, we plot the reflection coefficient R�k� for scat-

tering from a CG region of 72 nodes representing 652 atoms
in the middle of an infinite harmonic chain of atoms. The
reflection coefficients for CGMD, lumped mass FEM, and
distributed mass FEM, are plotted. The lattice is shown in
Fig. 13. The cell size increases smoothly in the CG region, as
it should, to a maximum of Nmax=20 atoms per cell. In all
three cases, the shown R becomes exponentially small in the

FIG. 12. A comparison of the reflection of elastic waves from a
CG region in three cases: CGMD and two varieties of FEM. Note
that the reflection coefficient is plotted on a logarithmic scale. A
similar graph plotted on a linear scale is shown in Ref. 17. The
dashed line marks the natural cutoff 
k0=
 / �Nmaxa��, where Nmax is
the number of atoms in the largest cells. The bumps in the curves
are scattering resonances. Note that at long wavelengths, CGMD
offers significantly suppressed scattering.

FIG. 13. A plot of the mesh used for the scattering calculations.
The atomic scale mesh, partially visible at the ends, extends infi-
nitely to the right and left. The mesh is commensurate with the
underlying atomic lattice, and the largest cell size is Nmax=20
atoms.
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long-wavelength limit, and it goes to unity as the wavelength
becomes smaller than the mesh spacing—a coarse mesh can-
not support short-wavelength modes. The threshold occurs
approximately at k=
 / �Nmaxa�, the natural cutoff corre-
sponding to a wavelength of 	=2Nmaxa. The threshold for
CGMD takes place almost exactly at this point because the
CGMD phonon frequencies are more accurate than those of
the two versions of FEM. According to three-dimensional
scattering theory in the limit of wavelengths much larger
than the size of the scattering region, the scattering cross
section should vary like ��k4. This favorable transmission
of long wavelengths is the well known Rayleigh scattering
that gives us a blue sky.72 In these one-dimensional scatter-
ing calculations, the trend is for R�k� where the exponent
� is roughly ��4±1 for FEM and ��8±2 for CGMD. We
hypothesize that the difference is due to the improved accu-
racy of CGMD at long wavelengths. Using the Born approxi-
mation, the scattering strength should go roughly like r
�k�, where � is the order of the error, or �=2 in FEM and
�=4 in CGMD. Then the reflection coefficient would go like
R= �r�2�k2�, giving ��4 for FEM and ��8 for CGMD in
rough agreement with the numerical solution; however, we
should stress that this hypothesis has not been proved math-
ematically and the resonance structure of the scattering curve
leads to large uncertainties in the � fit. If we fit to the tops of
the peaks at long wavelengths in scattering from an abruptly
changing mesh, the uncertainty is reduced to ��4±0.2 and
8±0.2 for FEM and CGMD, respectively.

A series of bumps is visible in each of the curves in the
transmissible region. Most of these bumps were not visible
in the plot of the reflection coefficients in Fig. 2 of Ref. 17
with a linear scale. The logarithmic scale used in Fig. 12
brings out these features in regions with extremely low scat-
tering. These bumps are scattering resonances, wavelengths
at which the scattering cross section is increased because the
frequency of the incoming wave is in resonance with an in-
ternal mode of the scattering region. Of course, they are
much more peaked on a linear scale, where their width is an
indication of the lifetime of the state. The curvature of the
peaks in the logarithm-linear plot is low, indicating short-
lived resonances. The height of the peaks is an indication of
the scattering strength. If a peak were high and narrow, it
would indicate a strongly scattering localized mode, which
would be pathological behavior in a concurrent multiscale
simulation. In general, weak scattering with broad reso-
nances �if any� is desirable. The wave reflections in CGMD
are weaker and the resonances much less strong than in
FEM, although the distributed mass FEM actually has a 10%
higher threshold than CGMD because its frequencies are
higher.

It is also interesting to consider the transmission coeffi-
cient, plotted in Fig. 14 for CGMD and the two versions of
FEM. There is a simple relationship between the transmis-
sion and reflection coefficients, T=1−R, so in principle the
calculation of one is equivalent to the other. However, be-
cause the logarithm-linear plot brings out features near zero
while suppressing features near unity, the two plots show
different information. The transmission coefficient drops ex-
ponentially above the threshold, similar to quantum me-
chanical tunneling through a rectangular potential barrier or

the transmission of evanescent waves in optics. As in those
cases, the transmission coefficient also decreases exponen-
tially as the size of the scattering region is increased. One
interesting feature of the transmission coefficient curves is
the absence of resonances. The peaks are absent because the
CG region lacks the degrees of freedom that would cause
resonances at these high frequencies.

We have calculated the scattering on many different
coarse-grained regions. The general features of the reflection
coefficient curves remain as the mesh is varied, but the de-
tails change. One of the most pronounced changes happens if
the mesh varies too abruptly. In this case, strong scattering
resonances may occur near the threshold, even for CGMD,
as shown in Fig. 15. Note the linear scale in this plot. The
mesh used for the comparison between FEM and CGMD,
shown in Fig. 13, was generated using a tanh function for the
cell size to ensure smoothness. For comparison, we have

FIG. 14. A comparison of the transmission of elastic waves
through a CG region in three cases: CGMD and two varieties of
FEM. The dashed line marks the natural cutoff 
k0=
 / �Nmaxa��.
Note that the bumps evident in the plot of the reflection coefficient
are absent from the transmission coefficient.

FIG. 15. A comparison of the reflection of elastic waves from a
CG region for a mesh with smoothly varying cell size and one with
an abrupt change in cell size, both computed in CGMD. The dashed
line marks the natural cutoff 
k0=
 / �Nmaxa��. Note that on the
linear scale the resonances are not visible for the smooth mesh, but
are quite pronounced for the abruptly changing mesh.
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plotted in Fig. 15 the reflection coefficient for a CG region of
the same size but consisting almost exclusively of cells of
size Nmax=20, and it is clear that the abrupt change in mesh
size leads to much stronger resonances. The increased reflec-
tion of waves with k at resonance could lead to an unphysical
size scale, and smooth meshes should be used to prevent this
undesirable behavior. Apart from ensuring smoothness, we
have not optimized the mesh, and it may be possible to re-
duce the scattering further still through a more optimized
mesh.

It should also be noted that the plots of wave reflection on
a logarithm-linear scale provide a sensitive test of the nu-
merical formulation. The CGMD data plotted in Fig. 12 are
not the same data plotted in Fig. 2 of Ref. 17. The data were
noisy at the level of 10−10, and we ultimately recalculated the
stiffness matrix using Eq. �38� in order to remove the noise.

The reflection coefficient provides a measure to quantify
the 1D scattering properties of CGMD. What information
does it give about the reflection problem. The actual amount
of reflection in any application is the product of the elastic
wave power spectrum and the reflection coefficient. Suppose
the application of interest �e.g., crack propagation� can only
tolerate scattering at 1% of the natural level. If 99% of the
power is at wavelengths greater than 	c, then there will be an
acceptable level of scattering if the mesh size is less than or
equal to 	c.

In applications like the crack propagation problem, it may
be important to consider nonlinear effects as well. In the
anharmonic MD crystal, waves of sufficiently large ampli-
tude will steepen into shock waves. The wave velocity in-
creases with the pressure, so that a wavefront with a slow
rise to a higher pressure will steepen into a step-like shock
wave in which the abruptness of the rise is ultimately limited
by dissipative processes at the front. As a result, compressive
waves that are generated at the crack tip evolve into shock
waves that have a strong impact on the crack if they return to
it due to the boundary conditions. The reflection coefficient
is a property of the system in the small amplitude, harmonic
limit, and as such does not give any information about the
behavior of shock waves. Shock waves, of course, have an
abrupt rise and, hence, have power at short wavelengths lo-
calized at the wavefront. When a shock wave is incident on
the CG mesh, the short wavelengths are reflected. Since the
mesh spacing increases gradually, this reflection disperses
the power at the front; i.e., the shortest waves are reflected
first, then the next shortest and so on. The shock wave is
dispersed and much of the power flows out to the CG mesh,
so the reflected wave is a low amplitude wave that does not
steepen into a shock wave. Thus, while some short wave-
length components are reflected, they are not shock waves
and do not appear to have an appreciable impact on the pro-
cesses in the MD region. The majority of the power is carried
out into the CG region, effectively delaying its return to the
MD region by the transit time across the CG region.

This dispersion and delay in wave reflection due to the
CG region is the way CGMD and FEM and/or MD hybrid
methods solve the reflection problem. Several other solutions
have been proposed that make use of absorbing
boundaries.29,53,68–70 Those techniques have much lower
scattering of short wavelengths and, hence, a lower Kapitza

resistance at zero temperature. They also involve consider-
able computer memory usage and considerable coding over-
head. At this point it is clear that several approaches exist
that solve the wave-reflection problem in principle, but it is
not yet clear which will offer the ease of use and scalability
that will be demanded for widespread use in large-scale
simulation.

VIII. CONCLUSION

Coarse-grained molecular dynamics provides a means of
concurrently coupling MD with a coarsened description of
the mechanics similar to FEM. The practical formulation re-
lies heavily on the properties of a crystal lattice, and it is
therefore suited to solids. The formulation discussed here is
based on a Hamiltonian, a conserved energy for the system,
and is free from ghost forces. We have applied CGMD to
three-dimensional systems with interatomic potentials that
are many-body in nature and extend well beyond nearest
neighbors. In this paper, we have elaborated on how CGMD
is implemented to include anharmonic �nonlinear� and finite-
temperature effects. It has been shown that these effects are
described by analytic matrix formulas that may be precom-
puted prior to the simulation. The formalism is useful from
the point of view of both providing the means to take the
calculations beyond the harmonic description and to be able
to estimate the errors that are made in resorting to a har-
monic model. In the process, we have shown how CGMD is
related to other concurrent multiscale methodologies such as
the quasicontinuum technique.

We have also reported on several calculations done with
CGMD in order to understand its properties. The elastic
wave spectra for solid argon and tantalum have been com-
puted in MD, CGMD, and FEM for comparison. In some
cases, it has been possible to derive largely analytic formulas
for these spectra and to analyze their differences. In this
investigation, the MD spectrum has been taken as the ideal,
and the CGMD and FEM models have each been formulated
to give within its own framework the optimal agreement with
MD. Several interesting results were found, including some
reported briefly in previous publications. First, both CGMD
and FEM agree well with MD in the long-wavelength limit,
as expected. It was shown that CGMD provides a better de-
scription, in that the error is O�k4�, than FEM with errors of
the order O�k2�. Second, throughout the Brillioun zone, the
CGMD errors are smaller than those of FEM, especially at
certain points on the zone boundary. Of course, the CGMD
spectrum is exact in the limit of one atom per mesh cell.

We have also used elastic wave spectra to examine the
effect of the internal relaxation terms present in CGMD. This
relaxation is the difference between forcing the atomic dis-
placements to agree exactly with the interpolated displace-
ment field and allowing fluctuations about the interpolated
displacement field provided the interpolated field remains the
best fit to the atomic displacements. We have shown how the
relaxation effects can be eliminated to produce a rigid ap-
proximation to CGMD �R-CGMD�, a formalism similar to
the quasicontinuum technique. We have compared the
CGMD and R-CGMD elastic wave spectra and found that
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the two agree well in the long-wavelength limit, but that
CGMD provides a better description of elastic waves of short
and moderate wavelengths. The internal relaxation is able to
give a better description of the energetics of waves changing
rapidly on the mesh.

Much remains to be done with CGMD, and we are ac-
tively developing the model. Many questions of numerical
efficiency still need to be addressed. A controlled means of
bandwidth reduction for the CGMD stiffness matrix is
needed. Also an efficient and consistent treatment of wave
absorption is an open challenge. We have not discussed the
implementation of CGMD on parallel platforms; the decom-
position of the MD region into parallel domains is straight-
forward, but the decomposition of the CG region is less ob-
vious and is linked to the question of the stiffness bandwidth.
Finally, the formulation of CGMD presented here provides
the foundation for use in full-scale applications, a subject to
which we plan to return soon.
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APPENDIX A: ALTERNATE DERIVATION OF CG
HAMILTONIAN

In this appendix, we compute the CG Hamiltonian using a
more rigorous and straightforward, albeit laborious, ap-
proach. The choice to put this computation in an appendix
rather than the main text was made because it repeats a cal-
culation done in the main text. It gives different formulas for
the mass and stiffness matrices, which are quite useful, and
the positioning in an appendix is not intended to indicate that
these derivations and formulas are less important than those
in the main text. For this computation, as in Sec. IV A, we
will concentrate on calculating the contribution of the poten-
tial to the partition function �18� as follows:

Zpot�uk;�� =� du�e−1/2�u�D��u�, �A1�

where once again we combine the atomic and spatial indices
to form the 3Natom-dimensional configuration space for the
atoms and the 3Nnode-dimensional space for the CG displace-
ments. Notice that we have left � as a product of � functions,
rather than using the Fourier representation as we did above

� = �
j=1

3Nnode

��uj − f j�u�� . �A2�

Suppose that the constraints were of a particularly simple
form,

�simple = �
j=1

3Nnode

��uj − � j�u�� . �A3�

Then the evaluation of the integral would be easy. The first
3Nnode atomic displacements would not be integrated, but
rather just set to the corresponding uj value. The remaining
3�Natom−Nnode� degrees of freedom would be integrated by
completing the square and evaluating the Gaussian integrals.
The only problem is that the constraints are not of the simple
form �A3�.

We must introduce some mathematical formalism to
transform the constraints into a form analogous to the simple
kind �A3�. The approach we take in this derivation is based
on an explicit factorization of the 3Natom-dimensional space
into the direct product of the subspace spanned by the con-
straints and the orthogonal subspace. In order to accomplish
this factorization, we introduce two projection matrices in
3Natom-dimensional space,

P��
CG � f j��f j	fk	�−1fk� �A4�

=Nj��Nj	Nk	�−1Nk� �A5�

=Nj�f j�, �A6�

P��
� � ��� − P��

CG, �A7�

where repeated indices are summed, as usual, and the in-
verses are 3Nnode�3Nnode matrix inverses. These are projec-
tion matrices in the sense that P��

CGf j�= f j� and P��
� f j�=0.

Since Nj� is a linear combination of fk�, it likewise holds that
P��

CGNj�=Nj� and P��
� Nj�=0. The matrices are useful because

PCG projects onto the constrained subspace as follows:

P��
CGu� = Nj�f j�u� �A8�

=Nj�uj , �A9�

where we have used Eq. �A6�. Thus, whenever PCG acts on
the configuration space, its result depends only on the nodal
displacements; it is completely independent of the uncon-
strained degrees of freedom. This is just what we need.

Using the fact that the two projection matrices sum to the
identity, ���= P��

� + P��
CG, we can rewrite the potential part of

the partition function

Zpot =� du�e− 1/2 �u��P��
� +P��

CG�D���P��
� +P��

CG�u�

=� due− 1/2 ��u�D��
� u�+2ujDj�

� u���e− 1/2 �ujNj�D��Nk�uk,

�A10�

where we have introduced the notation of the orthogonal and
cross components of the dynamical matrix as follows:

D��
� = P��

� D��P��
� , �A11�

Dj�
� = P��

� D��Nj�. �A12�

Note that there is no DCG defined or used in Eq. �A10�.
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We can now compute the integral �A10� with a slight
trick. We can integrate over the constrained degrees of free-
dom

Zpot = C� d�ue− 1/2 ��u�D��
� u�+2ujDj�

� u��e− 1/2 �ujNj�D��Nk�uk,

�A13�

where the argument of the exponential is independent of the
constrained subspace, so C is just a constant �independent of
�� and, hence, irrelevant. Now we can restore the con-
strained subspace in order to make the integral easier by
inserting an integral that equals unity,

1 =� dCGu�2


��
	−3Nnode/2

e− 1/2 �u��P��
CGu�, �A14�

where � is an arbitrary constant that we are free to determine
below. This integral is unity because PCG is just the identity
matrix on the constrained subspace. Inserting this expression
into Eq. �A13�, we have

Zpot = C� due− 1/2 �
u��D��
� +�P��

CG�u�+2ujDj�
� u��

� �2


��
	−3Nnode/2

e− 1/2 �ujNj�D��Nk�uk, �A15�

where now we are left with an Gaussian integral over all
space. Most importantly, the matrix in the Gaussian

D̃�� = D��
� + �P��

CG �A16�

is nonsingular provided ��0, as it must be since Zpot has
been well defined at each step of the calculation.

Now we complete the square to transform Eq. �A15� into
a purely quadratic Gaussian integral using the shift

ũ� = u� + D̃��
−1Dj�

�uj , �A17�

we find

Zpot = C�2


�
	3�N/2 ���3Nnode/2

�det D̃�1/2
e− 1/2 �ujKjkuk, �A18�

where �N=Natom−Nnode. We find the important result that the
CG stiffness matrix is given by

Kjk = Nj�D��Nk� − Dj�
� D̃��

−1Dk�
� , �A19�

and each matrix in this expression is well defined. In prin-
ciple, this expression holds for any nonzero �; in practice, it
is advantageous to choose � to be at the upper end of the

eigenspectrum of D�� so that D̃�� is well conditioned.
The same analysis can be carried out for the mass matrix.

The result is

Mjk = Nj�m�Nk� − Mj�
� M̃��

−1Mk�
� �A20�

=mNj�Nk� �A21�

for monatomic systems. In this case, � is chosen to be the
average mass.

APPENDIX B: EFFECTIVE POTENTIAL

The CGMD formalism we have developed is an effective
theory in the sense that the short-wavelength modes are in-
tegrated out to determine the effective interaction of the
long-wavelength modes. In field theory, an effective poten-
tial is computed that is somewhat different in character. The
typical approach would be to define the coarse-grained fields
as an expectation value of the corresponding combination of
microscopic degrees of freedom. Note that this differs from
the approach we have taken in that we constrain the coarse-
grained fields to equal that combination of microscopic de-
grees of freedom: they are identical and not an ensemble
average. It is only the degrees of freedom that are integrated
out that are treated as an ensemble average. We have taken
this approach because at least in principle there can be bifur-
cation points in the trajectories of the coarse-grained degrees
of freedom that would be eliminated by defining them as
ensemble averages. Nevertheless, the conventional effective
potential approach has a certain theoretical elegance, and it
could be useful in some contexts. Therefore, we will give a
brief discussion of the CGMD effective potential and inves-
tigate its usefulness. Hopefully, in the process we will elimi-
nate any confusion that might arise between the two ap-
proaches.

Again we start with the Helmholtz free energy in the pres-
ence of a source F�Jk� as follows:

Z�Jk� = e−�F�Jk� =� dudp exp�− �HMD − Jk · Nk�u�� . �B1�

Just as in spin systems, the magnetization is the derivative of
the Helmholtz free energy with respect to the external field,
the expectation value of the coarse-grained displacement is
the derivative of this CGMD Helmholtz free energy with
respect to the conjugate source,

−� �F

�Jk
�

�

= �Nk�u�� = uk. �B2�

One could then go further and take the Legendre transform
to find the Gibbs free energy G�uk�,

G = F + uk · Jk �B3�

for which

� �G

�uk
�

�

= Jk �B4�

and so is a minimum with respect to uk at equilibrium when
Jk=0.

The challenge is to derive an expression for G�uk� given
that it is expressed in terms of F�Jk�. A calculation of Jk�u j�
is needed. Fortunately, the formalism is well developed in
field theory,52 and the result is that G�uk� is the generating
function for one-point irreducible �1PI� Feynman diagrams.
The 1PI graphs are those that cannot be divided into two
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disconnected diagrams by breaking a single internal line.
This is a subset of the connected diagrams we have consid-
ered for CGMD �cf. Fig. 2�, so the effective potential ap-
proach does lead to a simplified formalism. We have not

explored this model in depth. It might be interesting to do so,
but we believe that the approach presented in the body of the
text is more meaningful for coarse-grained solid mechanics
problems.
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