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We present numerical evidences for the logarithmic scaling of the entanglement entropy in critical random
spin chains. Very large scale exact diagonalizations performed at the critical XX point up to L=2000 spins 1

2
lead to a perfect agreement with recent real-space renormalization-group predictions of �Refael and Moore
Phys. Rev. Lett. 93, 260602 �2004�� for the logarithmic scaling of the entanglement entropy in the random
singlet phase with an effective central charge c̃=c� ln 2. Moreover, we provide the first visual proof of the
existence of the random singlet phase with the help of quantum entanglement concept.
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The study of quantum phase transitions through quantum
entanglement concepts provides a new way to understand
strongly correlated systems near criticality. In one-
dimensional systems, such as quantum spin chains, entangle-
ment estimators exhibit universal features close to a critical
point.1,2 One of this estimator is the entanglement entropy of
a subsystem A with respect to a subsystem B. Defined as the
von Neumann entropy of the reduced density matrix for ei-
ther subsystem

S = − Tr �̂A ln �̂A = − Tr �̂B ln �̂B, �1�

this quantity displays very interesting scaling behavior for
conformally invariant critical theories in one dimension
�1D�. Indeed, as shown first by Holzey, Larsen, and Wilczek3

in the context of geometric entropy related to black hole
physics, the entanglement entropy of a subsystem of length x
embedded in an infinite system is expected to scale like

S�x� �
c

3
ln x . �2�

The number c is the so-called central charge which is,
for instance, for the critical XXZ spin-1

2 chain cXXZ=1 or for
the spin-1

2 Ising chain in transverse field at criticality
cIsing=1/2. This result �Eq. �2�� has been verified numeri-
cally2,4 as well as analytically in Ref. 5 where some simple
connections have been established between thermodynamic
entropy and entanglement entropy. An important extension to
critical and noncritical systems with finite size, finite tem-
perature, and different boundary conditions has been
achieved by Calabrese and Cardy.6 They showed, for in-
stance, that for critical systems of finite size L with periodic
boundary conditions, Eq. �2� should be replaced by

S�L,x� =
c

3
ln� L

�
sin��x

L
�	 + s1, �3�

where s1 is a constant related to the UV cutoff.
Although such a logarithmic scaling of the entanglement

entropy seems closely related to the conformal invari-
ance of the critical system, it has been shown recently by
Refael and Moore7 that such a critical scaling is also ex-
pected for some random critical points. Indeed, using an ana-
lytic real-space renormalization-group �RSRG� approach,

they have shown that random critical spin chains display
similar features to that of clean ones with an effective central
charge c̃=c� ln 2 so that

S�x� =
c̃

3
ln x + const. �4�

This surprising result can be derived using the RSRG method
introduced by Ma, Dasgupta, and Hu8 several years ago to
study random spin chains. As a result, any amount of ran-
domness introduced as a perturbation in a clean XXZ critical
spin-1 /2 chain is relevant10 and drives the system to the
so-called random singlet phase9 �RSP�, associated with an
infinite randomness fixed point �IRFP� for the RSRG
transformation.9 The RSP can be depicted as a collection of
singlet bonds of arbitrary length �see Fig. 1�. Then, utilizing
the very simple result that the entanglement entropy of a spin
1
2 involved in a singlet with its partner is ln 2, in the RSP the
entanglement of a segment with the rest of the system is just
given by ln 2 times the number of singlets which cross the
boundary of the segment, as depicted in Fig. 1. Using this
fact as well as an accurate RSRG calculation, Refael and
Moore have then been able to determine precisely that the
number of singlets connecting a segment of size x with the
rest of the system is �1/3�ln x, leading to the formula �4�.
The purpose of this Rapid Communication is to investigate
numerically the entanglement of the RSP and compare the
RSRG prediction �Eq. �4�� with exact computations.

Exact computation of the entanglement entropy. In order
to compute the entanglement entropy of a subsystem, one
needs to calculate the corresponding reduced density matrix.
For general XXZ spin chains governed by

FIG. 1. �Color online� Schematic picture for the entanglement
entropy of a subsystem of length x in the random singlet phase. The
entanglement is just due to the singlets connecting the subsystem
with the rest of the chain. In this picture, S�x�=5� ln 2.
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HXXZ = J

j
�1

2
�Sj

+Sj+1
− + Sj

−Sj+1
+ � + �Sj

zSj+1
z 	 , �5�

the noncritical regime �achieved if ����1� can be investi-
gated using the corner transfer matrices of the corresponding
two-dimensional �2D� classical problem.11,12 On the other
hand, along the critical line �−1���1�, an analytical com-
putation of S�x� is more difficult and conformal field theory
�CFT� tools are then required.6 Another alternative consists
in performing numerical exact diagonalizations �ED� of finite
lengths spin chains, but it is limited to Lmax�40 spins 1

2
when ��0.13 Nevertheless, the XX point �=0 is special
because the spin Hamiltonian can be rewritten using the
Jordan-Wigner transformation as a free-fermions model

HXX =
J

2

j

�cj
†cj+1 + cj+1

† cj� �6�

for which the density matrix can be expressed as the expo-
nential of a free-fermion operator.14 It turns out that the re-
duced density matrix is completely determined by the x�x
correlation matrix C�x�, defined by

C�x� =
�c1

†c1� �c1
†c2� ¯ �c1

†cx�
�c2

†c1� �c2
†c2� � ]

] �

�cx
†cx�
� . �7�

The matrix elements Cij = �ci
†cj� can be calculated either nu-

merically by diagonalizing the free-fermion Hamiltonian in
momentum space or analytically in some special cases.15 The
entanglement entropy of a subsystem of size x embedded in
a larger system is then given by

S�x� = − 

k

��k ln �k + �1 − �k�ln�1 − �k�� , �8�

where the �k are the eigenvalues of C�x�.
Let us now concentrate on the disordered XX spin-1

2
chain, governed by the random hopping Hamiltonian on a
periodic ring of length L

HXX = 

j=1

L−1

Jj�cj
†cj+1 + cj+1

† cj� + JL exp�i�N��cL
†c1 + c1

†cL� ,

�9�

where Jj are positive random numbers chosen in a flat uni-
form distribution within the interval �0,1�,16,17 and the second
term in the right-hand side ensures that periodic boundary
conditions are imposed in the spin problem. The total num-
ber of fermions is N=L /2 in the ground-state �GS�. The way
to diagonalize HXX is straightforward and has already been
explained by several authors.18,19 As a check, we have first
computed the entanglement entropy �8� for clean systems
�i.e., Ji is a constant� of total sizes L=500 and L=2000.
Technically, this only involves computing the elements �ci

†cj�
by diagonalizing the free-fermions Hamiltonian �6�, and then
one needs to diagonalize C �Eq. �7�� using standard linear
algebra routines.20 The results are shown in Fig. 2 where we
can see that S�L ,x� is perfectly described by the CFT pre-
diction Eq. �3�. Note also that the constant term is found to
be s1�0.726, in excellent agreement with the recent analyti-
cal prediction of Jin and Korepin.21

For the random case, the same technique has been used
but a bigger computational effort was necessary to average
over a large number of independent random samples. Practi-
cally the number of samples used was 2�104 for L=100,
200, 300, 400, and 104 for L=500,1000,2000 which re-
quired 2000 h of CPU computational time. The results for

FIG. 2. �Color online� Entanglement entropy of a subsystem of size x embedded in a closed ring of size L, shown vs x in a log-linear plot.
Numerical results obtained by exact diagonalizations performed at the XX point. For clean nonrandom systems with L=500 and L=2000
�open circles�, S�x� is perfectly described by Eq. �3� �red and blue curves�. The data for random systems have been averaged over 104

samples for L=500, 1000, 2000, and 2�104 samples for 100�L�400. The expression 0.8595+ �ln 2 /3�ln x �dashed line� fits the data in the
regime where finite size effects are absent.
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the disorder averaged entanglement entropy are shown in
Fig. 2 When the subsystem size x is large enough �typically
x�20�, the expression �4� derived by Refael and Moore de-
scribes perfectly the behavior of the disorder average en-
tanglement entropy, i.e., a logarithmic scaling with an effec-
tive central charge c̃=ln 2. One can notice that when the
subsystem size approaches L /2 some finite size effects are
visible, as it is the case in clean systems.

Signature of the random singlet phase. The very good
agreement found between exact numerical diagonalizations
and RSRG calculations for the entanglement properties in
the RSP is a proof in favor of the random singlet nature of
the GS, also supported by recent neutron scattering experi-
ments performed on the disordered spin chain compound
BaCu2�Si0.5Ge0.5�2O7.22 Another way to get more insight on
these long distance effective singlets in the GS consists in
looking at the probability distribution of the entanglement
entropy. Indeed, since each singlet is expected to contribute
as a ln 2 in the entanglement entropy, we can focus on the
probability distribution of S / ln 2 for a given subsystem em-
bedded in a larger system. In order to get a correct statistical
picture for the typical behavior of this random singlets for-
mation, one needs a huge number of disordered samples. We
chose to study 105 independent realizations. The price to pay
is that not too large systems can then be diagonalized. Nev-
ertheless, only focusing on L=100 spins is enough to get
good insights on the RSP. Indeed, instead of increasing the
system size to achieve the physics of the RSP, according to
the disorder induced crossover phenomena observed for the
RSRG flow17 one can rather keep L fixed and increase the
disorder strength to get closer to the IRFP and therefore
deeper in the RSP. Let us thus consider strong disorder dis-
tributions for the couplings Ji, such as

P�J� =
1

	
J−1+	−1

, �10�

parametrized by a disorder strength 	
1. This distribution is
quite natural to mimic strong disorder effects since at the
IRFP, the fixed point distribution for the random couplings is
achieved for 	→�.

In order to minimize the finite size effects, we consider
half of the chain as a subsystem and compute S�L ,L /2� for
each sample. Nevertheless, in order to get a good under-
standing, it is important to notice that the parity of L /2 is
crucial. Indeed if L /2 is odd, only an odd number of random
singlets can connect both subsystems whereas if L /2 is
even, the number of cut singlets will be even, a none
singlet being also a possibility. This fact is actually
clearly visible in Fig. 3 where we have plotted the prob-
ability distributions Peven= P�S�100,50� / ln 2� as well as
Podd= P�S�100,49� / ln 2�, for 	=1,2.5,5 ,10. Whereas for
	=1 �Fig. 3�a�� Peven �Podd� displays an integer-peaks struc-
ture, signature of the RSP, only for S / ln 2=2 �S / ln 2=3�
and that a non-negligible statistical weight lies between for
noninteger values, when the disorder strength increases, the
integer-peaks structure becomes more and more pronounced
as visible in Figs. 3�b�–3�d�. The combined distributions
Peven+ Podd are also plotted in the insets of Fig. 3. Thanks to
the entanglement entropy, we provide a clear visual proof for
the RSP.

Discussion and conclusion. Nondisordered critical spin
chains can be described by a conformally invariant field
theory from which a universal number c, the central charge,
emerges. This central charge, also called conformal anomaly
number, appears in the leading finite size �or finite tempera-

FIG. 3. �Color online� Prob-
ability distribution for the en-
tanglement entropy in the ran-
dom singlet phase for the disor-
dered XX spin-1

2 chain obtained
by exact diagonalizations on
L=100 spin chains. The light his-
tograms correspond to an even
subsystem size with 50 sites
(Peven= P�S�100,50� / ln 2�) and
the dark histograms corresponds
to an odd subsystem with 49 sites
(Podd= P�S�100,49� / ln 2�). For
each disorder strength, 	=1 �a�,
	=2.5 �b�, 	=5 �c�, 	=10 �d�, 105

different random samples have
been diagonalized. The insets
show the combined distributions
Peven+ Podd. Note that all the dis-
tribution functions have been nor-
malized to unity.
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ture� correction to the free energy23 as well as in the en-
tanglement entropy �3�. The power-law behavior for the spin-
spin correlations functions is also universal with well-defined
critical exponents24 as well as exact amplitudes.25

In the case of random critical chains, while the RSRG
framework provides universal critical exponents, the ampli-
tudes of correlations functions are nonuniversal numbers.26

On the other hand, the RSRG treatment for the entanglement
entropy provides the exact prefactor equal to ln 2/3. This
prediction has been checked numerically using exact numeri-
cal diagonalizations on large scale random critical spin
chains. The perfect agreement between exact simulations and
the perturbative RSRG provides, to the best of our knowl-
edge, the first example of an exact critical amplitude com-
puted within this technique. It is also interesting to notice
that this finding of c̃=ln 2�1 would be consistent with a
generalized c̃ theorem built on entanglement concepts for
nonconformal random critical points.7 Nevertheless, the
identificaton of other physical quantities besides entangle-
ment that are controlled by this number c̃ turns out to be very
challenging and more subtle than using a simple analogy

with the clean case. Indeed, since in conformally invariant
clean systems a nonuniversal velocity factor appears tied to c
in the usual thermodynamic quantities, such as the specific
heat23 or the aforementioned correction to the free energy,
the analogy here breaks down because the velocity of exci-
tations is not defined anymore in the RSP.

To conclude, we believe that the results presented in this
Rapid Communication provide an insight on the random sin-
glet phase as well as a first visual proof of the large scale
effective singlets formation. The fact that even at the infinite
randomness fixed point the entanglement entropy still scales
logarithmically with the subsystem size provides a nontrivial
extension of the quantum entanglement concepts to random
quantum critical points.
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