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An atomistic approach allowing an accurate and efficient treatment of depolarizing energy and field in any
low-dimensional ferroelectric structure is developed. Application of this approach demonstrates the limits of
the widely used continuum model �even� for simple test cases. Moreover, implementation of this approach
within a first-principles-based model reveals an unusual phase transition—from a state exhibiting a spontane-
ous polarization to a phase associated with a toroid moment of polarization—in a ferroelectric nanodot for a
critical value of the depolarizing field.
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Ferroelectric nanostructures �FEN� are of increasing tech-
nological and fundamental interest because of the need in
miniaturization of devices, as well as, the appearance of new
phenomena �see, e.g., Refs. 1–6, and references therein�. Un-
screened polarization-induced charges at the surfaces of FEN
generate a depolarizing field that is responsible for striking
properties. Examples are the existence of a critical thickness
below in which no ferroelectricity can appear,3 and the ob-
servation and prediction of laminar stripe nanodomains2,4 as
well as the formation of polarization vortex.5,6 Interestingly,
and despite its huge importance, we are not aware of any
model being able to exactly calculate the depolarizing field
and energy in any low-dimensional ferroelectric. For in-
stance, the widely used continuum model �1� neglects the
atomistic nature of materials, �2� is technically applicable
only in the limit of large enough systems, and �3� cannot
predict the depolarizing energy and/or field in the realistic
cases of inhomogeneously polarized samples.

In this report we �i� demonstrate that it is possible to
derive a scheme allowing the exact atomistic computation of
the depolarizing energy and field in any low-dimensional
FEN; �ii� use this scheme to check the accuracy of the con-
tinuum model for some simple test cases; �iii� report an un-
usual phase transition between two different kinds of order
parameters in a ferroelectric nanodot that is driven by the
depolarizing field.

To calculate the depolarizing energy in low-dimensional
ferroelectrics, one first needs to realize that a system under
perfect open-circuit �OC� electrical boundary conditions ex-
hibits a maximum depolarizing field �if the polarization lies
along a nonperiodic direction�, while ideal short-circuit �SC�
electrical boundary conditions leads to a complete screening
of charges at the FEN surfaces that fully annihilates any
depolarizing field. As a result, the depolarizing energy and
field experienced by the FEN should involve a difference
between the dipole-dipole interactions associated with these
two extreme electrical boundary conditions. We shall write
the energy of the dipole-dipole interaction in any system in
the form

Edip
�D� =

1

2V
�

��,ij
Q��,ij

�S,D�p��ri�p��r j� , �1�

where D=3,2 ,1 stands for a system periodic in 3, 2, and 1
directions, respectively; D=0 corresponds to nonperiodic

systems, and the sum runs over the atomic sites i and j that
differ from each other and belong to a supercell �to be de-
noted by S� mimicking the system. Such a supercell is infi-
nitely repeated along the periodic directions, if any. For in-
stance, thin films are modeled by supercells that are repeated
in two dimensions while the direction associated with the
growth direction of the film is nonperiodic. For dots, the
supercell is not repeated. V is the volume of the supercell,
p�ri� the dipole moment at the site i, and �=x ,y ,z denotes
the Cartesian components. The quantity Q�S,D� depends on
both the chosen supercell �S� and the periodicity of the sys-
tem �D�.

The elements of the Q matrix for systems periodic in
three,7 two �x and y�, one �z� directions22 and nonperiodic
systems are given by
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where G are the reciprocal lattice vectors associated with the
S supercell, and � is the Ewald parameter.8 Practically, we
use ��2
Gmax
 with Gmax being the reciprocal vectors having
the highest magnitude in the summations appearing in Eq.
�2��. �ij is the Kronicker symbol, A is the supercell area, �ij
and zij are the projections of rij �vector connecting atomic
sites i and j� on the �x ,y� plane and z axis, respectively �i.e.,
rij =�ij +zij�, �ij = 
�ij
, and zij is the component of the zij vec-
tor along the z axis. � is the incomplete gamma function and
erfc is the complementary error function, a is the supercell
length in the z direction; Kn are the modified Bessel’s func-
tions. �Note that contributions from zij =0 in Q��,ij

�S,2� and con-
tributions from �ij =0 in Q��,ij

�S,1� should be excluded, and that
the prime in the right side of Q��,ij

�S,1� indicates that the term
n=0 has to be excluded when i= j�.

The dipolar interactions described by Eqs. �1� and �2�
correspond to ideal OC conditions since no charge screening
is taken into account in their derivation. The next question to
be addressed is what is the dipole-dipole energy in FEN un-
der perfect SC conditions? Such energy is simply the one
described by the D=3 Q matrix. One can justify such a fact
by �at least� the three following ways: The first justification
is that a ferroelectric nanostructure under short-circuit con-
ditions experiences no depolarizing field, exactly like the in-
finitely extended �i.e., bulk� systems. Secondly, one can first
schematically draw dipoles inside a ferroelectric nanostruc-
ture, and then use the so-called image method to impose
short-circuit conditions to that nanostructure. The resulting
dipole pattern fills all of the three-dimensional space and is
identical to the one in the infinite bulk. Finally, the third
proof is a practical one and will be seen later, namely that
our atomistic predictions using the D=3 Q matrix for short-
circuit conditions agree with the continuum approach for
computation of depolarizing fields in thick-enough nano-
structures.

The Edep
�D� �maximum� depolarizing energy per volume in

any FEN can now easily be calculated as the difference in
dipole-dipole energies between perfect OC and SC condi-
tions, that is

Edep
�D� = Edip

�D� − Edip
�3� =

1

2V
�

��,ij
Q��,ij

�S,D� − Q��,ij
�S,3� �p��ri�p��r j� �3�

where the sum over i and j run over the sites of the chosen
supercell of the FEN, and where Q��,ij

�S,D� are given by Eq. �2�.
Equation �3� is, to the best of our knowledge, the first pro-
posed form allowing an atomistic and exact computation of
depolarizing energy in any FEN with any dipole distribution.
�Note that such form can also be applied to calculate demag-
netization energy in low-dimensional magnetic systems.�

We first apply our approach to compute Edep
�D� in some test

cases. Here, we limit ourselves to systems adopting a simple
cubic structure in which each atomic site has a local and

equal-in-magnitude dipole moment. Note that all of the re-
sults to be reported here do not depend on the size used for
the periodic direction�s� of the S supercell.

Homogeneous dipole distribution. Let us first investigate
FEN exhibiting the same local dipole p at any atomic site.
We shall present our results in the form of Edep

�D� =	Edep
�D,cont�,

where Edep
�D� is obtained from Eq. �3�, while Edep

�D,cont� is the
depolarizing energy predicted by the continuum model. 	 is
thus a “correcting” coefficient that provides a measure of the
continuum approach accuracy.

For �001� ultrathin films homogeneously polarized along
the out-of-plane �z� direction, the continuum model predicts
that Edep

�2,cont�=2�P2, independently of the film thickness,
where P is the polarization. On the other hand, the use of Eq.
�3� results in 	=1.017, 1.010, 1.007, and 1.006 for ultrathin
films of 3, 5, 7, and 9 layers, respectively. In other words, our
atomistic approach reveals that the depolarizing energy is
slightly larger than the one predicted by the continuum
model and increases as the number of film layers decreases.
Such findings are consistent with those of Refs. 9–11. To
understand them, we rewrite Eq. �3� in the case of a homo-
geneous dipole pattern as follows:

Edep
�D� =

p�p�

2V
�
��,j

F��
�D��j�, with F��

�D��j� = �
i

Q��,ij
�S,D� − Q��,ij

�S,3� �

�4�

Figure 1�a� shows the “depolarizing” factors �Fzz
�D=2��l�� av-

eraged over all the j sites belonging to a given �00l� layer
�that is indexed by l� for our films, as a function of a layer
position inside the film. Comparison with its continuum pre-
dicted �and l-independent� value of 4� is also given. Figure
1�a� clearly reveals that the deviation of the continuum
model from our atomistic results is confined to the surface
layers—as also found in Ref. 11—and that this deviation is
an underestimation. �Note that such surface effects can be
qualitatively important, e.g., they can lead to asymmetric
temperature-versus-misfit-strain phase diagram.12� This ex-
plains why we numerically found that the Edep

�2� increases with
respect to the continuum prediction as the film becomes thin-
ner, since the ratio of surface layers over total layers in-
creases as the film thickness decreases. Figure 1�a� also
shows that for the surface layers �Fxx

�2��= �Fyy
�2�� are

negative—as discussed in Ref. 10—and that 1+ ��Fxx
�2��

− �Fzz
�2��� /4�=−0.0393, which is in perfect agreement with

the calculation of the so-called surface anisotropy in Ref. 11.
�Note that the surface anisotropy is null in the continuum
model framework.�

We next consider different wires of square cross sections,
that are periodic along the z direction and homogeneously
polarized along the x axis. According to the continuum ap-
proach, such wires should have a depolarizing energy
Edep

�1,cont�=�P2, independently of the wire thickness. We nu-
merically found via Eq. �3� that 	=1.017, 1.010, 1.007, and
1.006 for wires of 3, 5, 7, and 9 shells, respectively see inset
of Fig. 1�b� for definition of shells�. Like in the films, the
continuum model underestimates the depolarizing energy
and this underestimation becomes larger in magnitude as the
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nanostructure shrinks in size. Figure 1�b� shows that the con-
tinuum model fails to reproduce the averaged depolarizing
factor for the surface shell but exactly agrees with our ato-
mistic results for all the inner shells.

We now turn our attention to a cubic dot homogeneously
polarized along the z direction. Unlike the previous two
cases, our atomistic approach gives a depolarizing energy
that is not only independent on the dot size but also exactly
agrees with the continuum approach �that is, Edep

�0� =Edep
�0,cont�

=2�P2 /3�. Such a surprising result is caused by the sum
rule10 for depolarization factors �that is, Fxx+Fyy +Fzz is the
constant given by the continuum model� that we numerically
found to be valid in every layer �shell� of any system inves-
tigated so far �i.e., films, wires and dots�. Moreover, cubic
dots exhibit x, y, and z directions that are symmetrically
equivalent �which is not the case in wires and thin films�. As
a result, �Fxx

�D��l��= �Fyy
�D��l��= �Fzz

�D��l�� in dots. Because of the
sum rule, each of these factors is equal to the continuum
prediction of 4� /3 for any shell and for any size, and the
continuum model predicts the right depolarizing energy.

Inhomogeneous dipole distribution. Let us now investi-
gate 2D, 1D, and 0D FEN exhibiting stripe domains with the
dipoles assumed to be homogeneous inside each domain
�with a p magnitude� and perpendicular to a periodic direc-
tion, if any �see the inset of Fig. 2�. The period of stripe
domains is denoted as d. The Edep

�D� energy calculated from Eq.
�3� for a film having a thickness L=10 atomic layers is

shown as a function of d /L in Fig. 2, along with depolariza-
tion energies calculated in the continuum approach for the
two limiting cases13–15 d
L �i.e., Edep

�2,cont�=1.7P2d /L� and d
�L. One can see that these two limiting cases can reproduce
rather well the energy derived from Eq. �3� for d /L�1 and
d /L2, respectively. Furthermore we numerically found
that our depolarization energy can be parametrized as follow-
ing:

Edep
�D� = c0�1 − c1e−d/c2L� + �n� − c0��1 − e−d/c3L��P2, �5�

where c0=2.568, c1=1.024, c2=14.118, c3=1.831, n=2.
Figure 2 also reports our results for two cases in which we

are not aware of any continuum predictions, namely stripe
domains in infinite wires and cubic dots. Note that the stripe
direction is along the wire y periodic direction and that the
finite size of 0D systems implies that d /L has a maximum
value of 0.5 in cubic dots. We present here results for a wire
of 10 shells �10�10 atomic sites for cross section� and for a
cubic dot of 10 shells �10�10�10 atomic sites� with d
ranging from 1 to 5 atomic layers. Two features seen in Fig.
2 are particularly striking. First of all, the stripe domains
have less depolarizing energy in a wire than in a thin film for
the same d /L, with this difference becoming more pro-
nounced as d /L increases. The parameters of Eq. �5� for the
wire are c0=2.208, c1=1.000, c2=1.196, c3=7.398, and n
=1. Secondly, for the case of a cubic dot, the dependence of
depolarizing energy on d /L is linear and given by Edep

�0�

=2.5P2d /L.
We finally take advantage of our formalism to reveal,

from realistic first-principles-based calculations, properties
of a free-standing Pb�Zr0.4Ti0.6�O3 �PZT� cubic dot of 48 Å
lateral size for different electrical boundary conditions. The
total energy of the system used in Monte Carlo simulations
is:

EHef fp�ri�,vi,�,�i� + ��
i

�Edep� · p�ri� , �6�

where EHef f is the �first-principles-derived effective Hamil-
tonian� energy for PZT �Ref. 16� which is dependent on the

FIG. 1. Depolarizing factors �Fxx
�D��l��, �Fyy

�D��l��, and �Fzz
�D��l��

obtained with our atomistic approach and normalized to 4� �that is
the prediction of Fzz in the continuum model� in the case of �001�
films �a�� and 2� �prediction of Fxx in the continuum model� in the
case of wires periodic along the z axis �b�� as a function of the
layer or shell index l. The different shells of a wire are shown in the
inset of part �b�. The most inner layer or shell is indexed by 0. The
different symbols correspond to different thicknesses.

FIG. 2. Normalized depolarization energy as a function of d /L
for quasi 0D, 1D, and 2D systems with stripe domains along with
continuum model prediction �Refs. 13 and 15� for d
L and d�L
for D=2 systems. The inset shows the schematic representation of
the chosen polarization pattern in �001� films, or wires periodic
along y or cubic dots.
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p�ri� local dipoles at site i of the dot, the vi inhomogeneous
strain related variables, the � homogeneous strain tensor, and
on the �i atomic configuration.16 The dipole-dipole interac-
tions in this Hef f are given by the Q matrix with D=0 of Eq.
�2�. The second term of Eq. �6� mimics a screening of the
�maximum� depolarizing field, with the magnitude of this
screening being controlled by the � coefficient. �=1 and �
=0 corresponds to ideal SC and OC electrical boundary con-
ditions, respectively, while a value of � in-between corre-
sponds to more realistic electrical situation.3 �Edep�
=−�1/N���� j�Edep

�D=0� /�p�rj�� is the maximum depolarizing
field inside the dot, while N and �� are the total number of
sites of the dot and the dielectric constant of PZT, respec-
tively. Edep

�D=0� is practically calculated from Eq. �3�.
Figures 3�a� and 3�b� show the resulting macroscopic di-

pole moment and the macroscopic toroid moment of polar-
ization �i.e., the supercell average of the cross product be-
tween position and dipole moment6�, respectively, as a
function of �. One can clearly see that for situations close to
SC, the dot exhibits a macroscopic polarization, with a cross
section of the local dipole pattern being given in the inset of
Fig. 3�a� and bearing resemblence with the so-called flower
state found in small magnetic dots.17 On the other hand a dot
with electrical boundary conditions close to OC has a non-
vanishing toroid moment,6 with a cross section of the corre-
sponding dipole pattern being displayed in the inset of Fig.
3�b� and looking like the so-called vortex or curling state
exhibited by magnetic dots above a certain size.17 Moreover,
Fig. 3 clearly reveals that, at a critical value of the depolar-
ization field, the system undergoes an unusual phase transi-
tion between a state characterized by one kind of order pa-
rameter �toroid moment of polarization� to a state associated
with another kind of order parameter �polarization�.23 In
other words, no coexistence between these two order param-
eters occurs—most likely to avoid a simultaneous cost in
electrostatic energy �via the depolarizing field that would ex-
ist if the dot exhibits a spontaneous polarization� and short-
range interactions �because of the large dipoles inhomogene-
ities associated with a spontaneous toroid moment�.

In summary, we have derived an atomistic, simple, gen-
eral, and efficient approach to calculate the depolarizing en-
ergy and field in any low-dimensional ferroelectric structure.
The application of this method reveals—and explains—the
limits of the continuum model, and also results in the discov-
ery of an unusual phase transition in a ferroelectric dot for
some critical value of the residual depolarizing field.
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FIG. 3. �a� Dipole moments and �b� toroid moments of polar-
ization G in a PZT nanodot as a function of the screening coeffi-
cient �. Insets of �a� and �b� show the polarization pattern for �
=1 �SC conditions� and �=0 �OC conditions�, respectively.
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