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We investigate the dynamics of the phase variable of an ideal underdamped Josephson junction in switching
current experiments. These experiments have provided the first evidence for macroscopic quantum tunneling in
large Josephson junctions and are currently used for state readout of superconducting qubits. We calculate the
shape of the resulting macroscopic wave packet and predict that the propagation of the wave packet long
enough after a switching event leads to an average voltage increasing linearly with time.
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I. INTRODUCTION

The dynamics of a large underdamped Josephson junction
characterized by a capacitance C and Josephson energy EJ

=�̄0Ic0 can be described by the motion of a particle in a

washboard potential U���=EJ�1−cos ��+ I�̄0�. The particle
has C as the mass, the flux �̄0� as the coordinate, and the
charge on the capacitor Q as the canonically conjugate mo-
mentum. Here, � is the phase difference of the superconduct-
ing order parameter across the junction and �̄0=�0 /2�
=� /2e is the flux quanta divided by 2�. Much attention has
been given since the discovery of the Josephson effect to the
switching dynamics of the junction in the thermal activation
regime and in the macroscopic tunneling �MQT� regime.
Surprisingly, while the description of the state of the junction
before a switching event and calculations of the correspond-
ing probability have been topical issues for many decades,
what happens with the quantum state of the junction after
tunneling did not receive that much attention.

It is generally argued1,2 that the junction ends up in a
running-phase state, with the voltage Q /C increasing until it
eventually becomes sufficiently large for quasiparticle trans-
port to take over. This state is usually described classically:
In the mechanical analogy between a pendulum and a Jo-
sephson junction, it corresponds to the situation in which the
pendulum acquires enough energy to overcome the potential
energy and rotate either clockwise or counterclockwise with
a nonzero average angular momentum �a nonzero average
voltage across the junction�. The classical equations of mo-
tion for the phase can be solved numerically, and the results
provide estimates and a good qualitative understanding for
the physics of hysteresis and retrapping.1,3 At relatively large
temperatures, when switching occurs predominantly by ther-
mal activation, treating the phase as a classical variable is
surely justified; however, in the case of MQT, quantum me-
chanical effects play the essential role; therefore, a quantum-
mechanical description is necessary.

II. RUNNING-PHASE STATE

In this paper, we present a quantum-mechanical descrip-
tion of the switching and the resulting running wave state;
also, an application of the formalism is given to the case in

which the junction serves as a qubit readout system �Appen-
dix�. The main result is an explicit formula for the macro-
scopic wave function of an ideally �strongly� underdamped
junction after a MQT switching event. If the switching prob-
ability is exponential, which is the case for all the theoretical
models and also confirmed experimentally, one expects4 the
following expression for the dynamics of the wave function:

���t�� = e−�t/2e−i�0t��0� + ��out�t�� . �1�

In this equation, �0 is the initial state, coresponding to a
bound state inside one of the metastable wells, while �out�t�
is the wave function of the particle corresponding to states in
the continuum, outside the well �Fig. 1�. This expression
gives indeed an exponentially decreasing probability for the
particle to be inside the well, with lifetime �−1. In the fol-
lowing, we are interested in the structure of �out�t�.

To solve this problem, the standard approach is to start
with a wave packet localized initially in one of the meta-
stable wells, and then expand it and evolve it in the eigen-
functions of the full Hamiltonian. This procedure works for
simple potentials,5 but even in these cases, the solutions are
complicated. Fortunately, unlike problems in scattering
theory, in condensed matter, the frequent situation is that we
do not need an exact solution of the Schrödinger problem for
tunneling, but rather we are interested in the most generic
features of it. In most cases in solid state physics, tunneling
is simply treated as a process that annihilates a particle on

FIG. 1. Tunneling out of one of the metastable wells of the
washboard potential.
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some mode of a solid and creates one on another mode. We
will approach our problem in the same spirit.6 A good ap-
proximation in MQT is that no other state within the well is
involved with the exception of the state with energy �0 in
which the system is prepared, ��0�; therefore, one can write
a reduced Hamiltonian of the form

H = ��0��0���0� +� ���	���	�� +� d��k��0,����0��	��

+ k��,�0��	����0�� , �2�

where by 		�
 we denote the continuum of eigenvectors out-
side the barrier. We then write the wave function in the form

���t�� = a�t�e−i�0t��0� +� d�b��,t�e−i�t�	�� �3�

with a�0�=1, b�0�=0. Inserting this expression in the
Schrödinger equation, we get an integro-differential equation
for a�t�. The Laplace transform of this equation reads

L�a��s� =
1

s + L�
��s�
, �4�

where


�t� =
1

�2 � d��k��,�0��2ei��0−��t. �5�

In general, the tunneling matrix element k��0 ,�� depends on
the energies �, and they are determined by the overlap of the
left and right wave functions under the barrier.6 We notice
that since typically the lifetime of the metastable states is
much larger than the oscillation period in the well �in other
words, the last term in the Hamiltonian is a perturbation�, the
states 	���
 which contribute effectively to tunneling are lo-
cated in a relatively small energy interval compared to the
plasma oscillation frequency; therefore, the shape of these
states under the barrier is approximately identical. We can
then take the tunneling matrix element as being a complex
constant; since we will be interested exclusively in the out-
going component, the relative phase between the wave func-
tion inside the well and that outside will not play any role.
We have confirmed this assumption also by expanding the
initial wave function in terms of the WKB solution of the
washboard potential calculated in Ref. 7. Therefore, we take
k=��� /2� to be real; we obtain L�
��s�=� /2=constant,
which turns out to be the decay probability of the system.
Indeed, the inverse Laplace transform of Eq. �4� gives pre-
cisely the classical exponential decay law

a�t� = e−�t/2. �6�

The outgoing wave packet becomes

��out�t�� = − i� �

2�
� d�

e�−�/2+i�0�t − e−i�t

�/2 + i��0 − ��
�	�

±� . �7�

To conclude this derivation, we find that with the identifica-
tion k=��� /2�, the Hamiltonian �Eq. �2�� becomes a model
Hamiltonian for decay in the continuum which can be solved
exactly with the solution given by Eqs. �1� and �7�. A similar

type of model Hamiltonian has been obtained in Refs. 8 and
9. One can show, using the properties of the Lorentz distri-
bution, that these wave functions are correctly normalized, as
explained above.

Let us now single out one component of the wave �out�t�,
namely

�out
→ = i� �

2�
� d�

e−i�t

�/2 + i��0 − ��
�	�

+� . �8�

We first notice that the normalization of the total function
��out� is such that ��out ��out�=1−exp�−�t�, which reflects
correctly the fact that the probability of finding the particle
outside comes from an exponential decay law, while that of
��out

→ � is such that ��out
→ ��out

→ �=1. In the following we will
see that ��out

→ �, indeed, plays a special role. To move on, we
notice that part of the expression for the outgoing phase con-
tains a term which decays exponentially on a time scale �−1.
These terms are associated with the fast components of the
localized wave function which would escape first. Although
a calculation that includes these terms is no doubt interest-
ing, especially for the problem of nonexponential decay
rates,5 in what follows we will regard them as transient os-
cillatory effects whose presence will be difficult to assess
experimentally anyway, and we will neglect their contribu-
tion. In the WKB approximation, far enough from the clas-
sical turning point, the eigenvalues 	�	��
 have the form �up
to a normalization factor and constant phase factors due to
matching to the region left of the classical turning point� of
incoming and outgoing scattering states

	�
±��� �� e

C�̄0V����
exp±i

C

e
�

�0

�

V����d�� , �9�

where

V���� =
��p

�2e
�2e� + I�

Ic0
+ 1 − cos � . �10�

The physical meaning of this voltage is that it corresponds to
the �classical� energy accumulated on the capacitor when the
phase difference across the junction is � and the initial en-
ergy of the system is �; indeed, CV�

2��� /2=��−U���. We
now use the fact that for values of � outside the well and far
enough from the classical turning point, the inequality ���
−��0 � ���0−U��� holds. Therefore, we can take V����

=V�0
��� =

not

V0��� in the denominator of Eq. �9� and approxi-
mate the exponent as

V���� � V0���1 +
� − �0

2��0 − �−1U����� . �11�

With these approximations, using Eqs. �7� and �9�, we can
perform the integral over the angular frequencies �; as a
result, the contribution of the ingoing scattering states is
zero, while the outgoing scattering states build up a wave
packet of the form
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�out
→ ��,t� =

N
�V0���

exp i

�
�

�0

�

CṼ����̄0d� − �i�0 +
�

2
�

�t − �
�0

� �̄0d�

V0������t − �
�0

� �̄0d�

V0���� . �12�

Here N is a normalization factor which can be obtained

through �−�
� d��̄0����out

→ �� , t��2=1 with the mention that we
make a negligible error by extending the integral to −�, i.e.,
before the well region �where the actual values are exponen-

tially small�. The voltage Ṽ��� is defined as Ṽ���=V0���
−��0 /CV0����V0���. It is interesting to see also what hap-
pens with the rest of the components of ��out�. Although they
do contribute to the normalization as discussed before, they
are decaying both in time and away from the barrier as

exp��−� /2���0

� V0
−1����̄0d�� which, as we will see below,

would give far from the barrier a factor of exp�−� /2�t
+�2� /�p��. It is clear that these terms can be neglected start-
ing roughly from a time �−1. The wave function, Eq. �12�,
contains all the information about the dynamical evolution of
the state of the circuit containing the Josephson junction and
is the main result of this paper.

III. PREDICTIONS OF THE MODEL

In a typical experiment, the voltage across the junction is
monitored by a voltmeter at room temperature. A fundamen-
tal issue is to find a microscopic mechanism for the junction-
voltmeter interaction and a suitable theory of quantum mea-
surement that would model the collapse of the wave
function; however, this is beyond the scope of this paper.
Still, Eq. �12� gives a quite clear qualitative picture of what
happens: The particle rolls down the washboard potential
with a quasiclassical speed given by energy conservation
CV0

2��� /2=��0−U���. Quantum mechanics enters in the
picture through the tunneling rate; we expect the results of
the measurements to have a spread determined by �. One can
assume that the measurement projects the outgoing state onto
eigenvalues of the voltage operator; therefore, the probability
of recording the value V at the moment t will be given by the
standard quantum mechanics recipe

P�V,t� =
1

2��
��

−�

�

d��̄0���out
* ��,t�exp�iVC�/2e��2

.

�13�

As an example, had the outside of the well potential U been
0, we would have gotten for the charge CV, by performing
the integration in Eq. �13�, a standard Cauchy-Breit-Wigner
distribution centered around CV0 and full width at half maxi-
mum �� /V0

P�CV� =
1

�

��

2V0
�CV − CV0�2 + � ��

2V0
�2�−1

. �14�

Considering again the case of a junction with a washboard
potential U���, we notice that a good approximation is
U����EJ�. This comes from the fact that switching is typi-

cally observed at values of the bias current close to the criti-
cal current of the junction, as well as from the observation
that for times larger than �−1 the wave packet is concentrated
at large values of ��1, in which case, the cos � term in the
potential is negligible. In other words, the particle gets fast
so soon that the “speed bumps” created by the Josephson
effect are not slowing it down significantly. This can be
checked a posteriori. A first observation is that the relevant
quantity for the dynamics of the center of the wave packet is
the argument of the � function; the condition that this argu-
ment vanishes sets the maximum value of ��out�2 and gives a
phase �pt /2�1 for t larger than �−1. A legitimate concern is
whether the wave function does not spread faster than it
moves downward. This is not the case, as we will see below:
The spread of the wave function increases linearly with time,
while the average coordinate �phase� is advancing as t2. With
these observations, the normalization constant can be calcu-
lated, and the outgoing wavepacket becomes

	out
→ ��,t� =� �

�2��̄0�p

expi
��p�3/2

6�2Ec

− �i
�0

�p
+

�

2�p
�

�t�p − �2�����t�p − �2�� . �15�

A plot of the wave function is given in Fig. 2.
The average phase �flux� corresponding to this wave

packet can be obtained

����t� = �p
2�t2/2 − �−1t + �−2� , �16�

and we notice that the dominant term is quadratic in t. The
spread of the flux variable is given by �we keep only the
dominant term here�

FIG. 2. �Color online� Contour plot �� , t� of the modulus of the
running-phase wave function Eq. �15� for �p=60�=30 GHz. Black
regions correspond to a zero wave function, gray-to-white shadings
show larger, nonzero values for the modulus.
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���2��t� − ���2�t� = �p
2�−1t . �17�

To get the average voltage we can use Ehrenfest theorem; we
obtain

�V�t�� = �̄0�p
2�t − �−1� . �18�

The dominant term for the voltage is linear in time and sat-
isfies the classical energy conservation C�V�2�t� /2=��0

−U�����t��� Ic0�̄0����t�.
We now analyze what happens in typical switching cur-

rent experiments, as they are done now in the context of
superconducting qubits:10,11 the bias current of the junction is
increased fast to a value that allows tunneling; it is kept there
for a time 0����−1, then it is lowered to a value that
suppresses tunneling. This value has to be large enough so
that the experimentalist can get a reliable reading of voltage
on the quasiparticle branch if the junction has switched; in
practice, it satisfies I� Ic0. Although the change of the bias
current has a major effect with respect to tunneling through
the barrier, where the the tunneling rate decreases exponen-
tially with the height of the barrier, from the point of view of
the structure of the running-phase state, it amounts only to a
modification of the parameter �. Finally, the current is put to
zero and, after waiting long enough for retrapping to occur,
the whole cycle can be repeated. In our model, the essential
physics is that after the time �, the tunneling matrix element
t is zero; therefore, the system evolves only under the action
of H0. The wave function is “cut” into two separate pieces,
one which is �almost� the bound state �0 inside the well, the
other being the wave packet in the continuum which evolves
as

��out�t�� = − i� �

2�
� d�

e�−�/2+i�0��e−i��t−�� − e−i�t

�/2 + i��0 − ��
�	�

±� ,

�19�

with normalization ��out�t� ��out�t��=1−e−��. Now, for t−�
��−1, we can see that the outgoing function consists of two
consecutive �separated by the time �� and dephased �with
�0�� outgoing wave packets with the structure of ��out

→ �t��
which propagate at the same speed across the phase coordi-
nate �. The second wave packet, which has a probability
amplitude smaller by a factor of e−��/2, results from the
waves localized near the barrier during the time � when tun-
neling was in progress. After integration over energy, we get

��out�t�� = e−��/2+i�0����out
→ �t − ��� − ��out

→ �t�� , �20�

where ��out
→ �t�� is given by Eqs. �12� and �15�. To check that

the normalization ��out�t� ��out�t��=1−e−�� remains valid,
we notice that in the region of overlap of the two wave
packets, which coincides with the domain where ��out

→ �t
−��� is finite t−����0

� �̄0V0
−1���d�, there exists a very

simple relation between them: ��out
→ �t��=exp�−i�0�

−�� /2���out
→ �t−���. Using this property and the previous ex-

pressions, Eqs. �16� and �18�, we can calculate the average
phase and voltage on the state Eq. �20�

����t� =
1

2
�p

2�1 − e−���t2 − e−���p
2�t −

1

2
e−���p

2, �21�

and

�V��t� = �̄0�p
2t�1 − e−��� − �̄0�p

2e−��� . �22�

In Fig. 3, we present a plot of the average voltage as a func-
tion of the time �. We see that for values of � of the same
order or larger than the lifetime �−1, the average voltage at t
becomes flat, reflecting the fact that the junction has
switched, as in the case of Eq. �18�.

Let us now note that an approximate form of the result
Eq. �22� can be, to a large extent, inferred using classical
arguments. In a deterministic picture of the running-wave
state,1,3 the phase � is treated as the classical angle of a
rotating Josephson pendulum: for strongly underdamped
junctions, the equation of motion for the phase is

C�̄0�d2 /dt2��+ Ic0 sin �= I. With the usual approximation I
� Ic0 and for times t��, t��−1, the solution of this equation

gives a classical time-dependent voltage ��̄0�p
2t. Now, as-

suming a switching rate �, we observe that during the inter-
val � there is a �classical� probability of obtaining a nonzero
voltage only in a 1−exp�−��� fraction of cases. Therefore,
the statistical average of the voltage on a large enough num-

ber of switching events will be �̄0�p
2t�1−e−���, the same

result as Eq. �22�, with the last term neglected �this last term
represents the quantum correction due to the spatial spread of
the wave function�. This quantitative agreement is somewhat
surprising, because the outgoing wave packet has a relatively
complicated shape and tunneling is a genuine quantum-
mechanical process. The explanation is related to the fact
that most of the “weight” of the wave packet is still concen-
trated close to the coordinates satisfying t�p=�2� �see Eq.
�15��; the “tail” �whose size is determined by �� is indeed a
reminder of the quantum-mechanical tunneling event in the
past, and, in the first approximation, can be neglected.

IV. EXPERIMENTAL ISSUES

For designing an experiment to test these predictions, sev-
eral remarks should be made. In the case of real junctions,
the Josephson energy and the plasma frequency can be re-

FIG. 3. The average voltage as a function of the time � for �p

=30 GHz, �=1 ns, and t=10 ns.
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duced by using a superconducting quantum interference de-
vice �SQUID� configuration and by adding capacitors in par-
allel with the junctions. This makes the time evolution of the
switching state slower and, therefore, easier to detect. An
important limitation on time comes from the fact that as soon
as the voltage reaches the quasiparticle branch �at twice the
value of the gap�, our analysis is not valid. The other limita-
tion is technological: Even with a good dilution refrigerator,
thermalizing the junction is very difficult at low tempera-
tures. With a good high-power refrigerator with base tem-
perature of about 5 mK, we assume an optimistic value of
10 mK for the effective temperature of the electrons. This
temperature corresponds to a crossover angular frequency of
8.66 GHz between the MQT and the thermal activation tran-
sition. A plasma frequency of �p=30 GHz �zero bias cur-
rent� will thus keep us safely in the MQT regime when the
current is raised up to about half a percent close to the criti-
cal current, according to the formula that gives the plasma
oscillation frequency at a finite bias current.1,2 For Nb, with
gap of 1.4 meV, this corresponds to a time of approximately
10 ns, as given by Eq. �18�. A voltage increase on this time
scale can be detected with standard experimental techniques.
Suppose now that we choose to work at currents about 5%
less than the critical current. We still have to satisfy the con-
dition t��−1; an inspection of the formula that gives the
tunneling rate for underdamped junctions �e.g., see Ref. 2�
shows that switching rates of about 500 MHz and more �with
the restriction ���p� can be achieved for EJ /�p of the order
of 30, values which can be obtained easily with large junc-
tions.

V. CONCLUSION

We have investigated the quantum mechanics of the phase
of an underdamped Josephson junction after a MQT event.
We derived an analytical form of the macroscopic wave
function which has the shape of a wave front followed by an
exponentially decaying tail. We calculate the resulting volt-
age across the junction and find that, in the first order of
approximation, it should increase linearly in time. The results
also confirm that classical considerations can be regarded as
a good approximation in characterizing the running-phase
state.
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APPENDIX: CASE STUDY

As a simple application of the formalism presented above,
let us consider the problem of the measurement of a super-

conducting quantum bit using the switching characteristic of
a readout junction. The idea, both in the case of a flux qubit
measured by a SQUID and in the case of a charge qubit
coupled to a large junction, is that the two states of the qubit
are distinguishable by a small extra magnetic field or current
that either increases or decreases the effective critical cur-
rent. It has not been so clear though what type of measure-
ment this procedure leads to and what information about the
state of the qubit can be obtained in the case of an initial
superposition. Let us consider the case of the Quantronium,10

in which a charge qubit is coupled to a large current-biased
junction through two smaller junctions of Josephson energy
EJ

q each. During the measurement, to minimize the noise, the
qubit is kept at the “sweet spot” in which the charging energy
of the states �n=0� and �n=1� is degenerate �n counts the
excess number of Cooper pairs on the island�. The qubit
states are of the spin-1 /2 type, �↑ �=1/�2��0�+ �1�� and �↓ �
=1/�2��0�− �1��; in this basis, the Hamiltonian is

HQ = − EJ
q�z cos

�

2
− EJ cos � + I�̄0� +

Q2

2C
. �A1�

The macroscopic wave function is then spin dependent

���,t� = �↑��,t��↑� + �↓��,t��↓� , �A2�

where each component evolves according to

i�
�

�t
	���,t� = −

�2�2

��2 + U�����	���,t� , �A3�

with �= 	↑ , ↓ 
 being the spin index and U����=−EJ cos �

+ I�̄0��EJ cos � /2, with minus/plus corresponding to ↑/↓,
respectively. The Hamiltonian is then of the form Eq. �2�,
with �0

� and tunneling matrix now spin dependent, leading to
two tunneling rates �� which can be calculated from U����
by standard methods. Consider now the situation in which
the qubit has been prepared in a superposition of the form
��↑ �+��↓ �, and then the current is increased close to the
critical value. The evolution will be then

���,t� = ��e−�↑t/2e−i�0
↑t�0

↑��� + �out
↑ ��,t���↑�

+ ��e−�↓t/2e−i�0
↓t�0

↓��� + �out
↓ ��,t���↓� . �A4�

The switching probability within a time interval � is then
determined by the condition that a voltage has been re-
corded; according to the standard rules of quantum mechan-
ics, from Eq. �A4�, this is

Pout��� = 1 − ���2e−�↑� − ���2e−�↓�. �A5�

The coefficients � and � can be controlled experimentally by
adjusting the duration of the microwave radiation pulses.
Therefore, Eq. �A5� can be readily tested experimentally
with the present experimental setups.

It should be mentioned that the description above of the
measurement process offers a perfect illustration of the well-
known paradox of Schrödinger: to find the state of the qubit,
one entangles it with the measuring apparatus, which has two
classically distinguishable states �corresponding to the volt-
meter across the large measuring junction indicating zero or
some finite value�. It is difficult then to ascribe any “element
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of reality” to the superposition Eq. �A4� as well as to the
notion of collapse of the wave function. One cannot seri-
ously believe that during this experiment, the macroscopic
needle of the voltmeter �and together with it the experimen-
talist� has been in a such a superposition and also it is im-
possible to say at what stage only one of the possible out-
comes has been selected. Surely, this is not a consequence of

an incomplete or approximate description of the interaction
between the qubit and the measurement system or of a lack
of understanding of the functioning of the latter. No matter
how long and how detailed we want to make the description
of the chain qubit-to-experimentalist registering the result,
this fundamental paradox of quantum mechanics is here to
stay.
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