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Decoherence in quantum bit circuits is presently a major limitation to their use for quantum computing
purposes. We present experiments, inspired from NMR, that characterize decoherence in a particular super-
conducting quantum bit circuit, the quantronium. We introduce a general framework for the analysis of deco-
herence, based on the spectral densities of the noise sources coupled to the qubit. Analysis of our measurements
within this framework indicates a simple model for the noise sources acting on the qubit. We discuss various
methods to fight decoherence.
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I. INTRODUCTION

It has been demonstrated that several types of supercon-
ducting circuits based on Josephson junctions are sufficiently
quantum that simple manipulations of their quantum state1–7

can be performed. These circuits are candidates for imple-
menting quantum bits �qubits�, which are the basic building
blocks of a quantum processor. The coherence time of the
quantum state is an important figure of merit, being related to
the number of qubit operations that can be performed with-
out error. Despite significant advances in coherence times
during recent years, with coherence times of order 0.5 �s
reached, decoherence due to the coupling between the quan-
tum circuit and the degrees of freedom of the environment
still severely hinders using these circuits for the development
of a quantum processor,8 even with a small number of qubits.
Thus the quantitative characterization and understanding of
decoherence processes is presently a central issue for the
development of qubit circuits. In this work, we present ex-
periments that characterize the sources of decoherence in a
particular qubit circuit, the quantronium. We also develop a
general framework for the theoretical analysis of such data, a
framework that can be adapted to other circuits. We address
the problem of decoherence both during the free evolution of
the qubit and during its driven evolution when coupled to a
small ac excitation. For these two situations, we also con-
sider particular control sequences that aim at maintaining
quantum coherence. The analysis of our data leads to a
simple model for the spectral densities of the noise sources
coupled to the qubit.

The paper is organized as follows. In Sec. II, the quant-
ronium device is introduced and manipulation and readout of
its quantum state are described; the experimental setup is
presented, and the principal noise sources responsible for
decoherence are discussed. In Sec. III, a general framework
is introduced for the description of decoherence processes in
the two situations of free and driven evolutions, for both
linear and quadratic coupling of the qubit to variations in the

control parameters. In Secs. IV and V, we report experimen-
tal results on the measurement of decoherence in all these
situations, and analyze them within the theoretical frame-
work of Sec. III. We introduce methods inspired from
nuclear magnetic resonance �NMR�, such as spin echoes and
spin locking, which probe the spectral density of the noise
sources responsible for decoherence. From this we invoke
constraints on the spectral density of the noise sources and
develop a simple model of environmental noise. We also
discuss how to improve the quantum coherence time of a
qubit. Then, Sec. VI summarizes what has been learnt with
the quantronium on decoherence processes in Josephson qu-
bits, and how to fight decoherence.

II. THE QUANTRONIUM CIRCUIT

A. Principles

The quantronium circuit,9 described in Fig. 1, combines a
split Cooper pair box10–12 �CPB� that plays the role of a
qubit, and a hysteretic current-biased Josephson junction for
readout. It consists of a superconducting loop interrupted by
two adjacent tunnel junctions with Josephson energies
EJ /2�1±d�, where d is an asymmetry coefficient made as
small as possible, and by the readout junction with a Joseph-
son energy EJ�EJ. The two small junctions define the super-
conducting island of the box, whose total capacitance to
ground is C� and Cooper pair Coulomb energy EC
= �2e�2 /2C�. The island is coupled to a voltage source U
through a gate capacitance Cg, and an external magnetic flux
� can be applied to the loop. The biasing parameters are thus
the reduced gate charge Ng=CgU /2e, and the reduced flux
�=2�� /�0 ��0=2��0=h /2e�. The latter determines, to-
gether with the bias current Ib, the phase difference 	 across

the small junctions. Quantum mechanically, the number N̂ of
excess Cooper pairs on the island and the superconducting
phase difference 
̂ across the readout junction form a set of
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degrees of freedom that fully characterize the system. Using

also their respective conjugate variables �̂ and q̂, together

with the phase relation 	̂= 
̂+�, the Hamiltonian Ĥ of the
CPB and readout parts reads

Ĥ = ĤCPB + Ĥr, �1�

ĤCPB = EC�N̂ − Ng�2 − EJ cos�	̂/2�cos �̂ + dEJ sin�	̂/2�sin �̂ ,

�2�

Ĥr = ECq̂2 − EJ cos 
̂ − �0Ib
̂ . �3�

Here EC= �2e�2 /2CJ and CJ are the Cooper pair Coulomb
energy and the capacitance of the readout junction, respec-
tively. The coupling between both subsystems results from

the phase constraint given above. Except at readout, when
the bias current Ib is extremely close to the critical current
I0=EJ /�0 of the readout junction, a full quantum calculation

using Ĥ shows that the quantum nature of 
̂ can be ignored
and that the approximation 
̂�
�arcsin�Ib /I0� that ne-

glects the contribution of the current �î� in the quantronium
loop to the current in the readout junction is excellent. The

CPB eigenstates are then determined only by Ng and 	̂�	
=
+�. For a large range of Ng and 	, the energy spectrum of

ĤCPB is anharmonic and its two lowest-energy eigenstates �0�
and �1� define a qubit with energy splitting �
01�	 ,Ng�. The

Hamiltonian Ĥqb of this qubit, i.e., the restriction of ĤCPB to
the manifold ��0�,�1��, is that of a fictitious spin-1 /2 particle

�̂� = �̂xx� + �̂yy� + �̂zz� in an effective magnetic field H� 0=�
01z�:

Ĥqb = −
1

2
H� 0�̂� �4�

in an eigenbasis that depends on the working point �	 ,Ng�.
At the point P0= �	=0,Ng=1/2�, 
01 is stationary with re-
spect to small variations of all the control parameters �see
Fig. 1�, which makes the quantronium almost immune to
decoherence, as previously demonstrated.2,3 P0 is therefore
an optimal point for manipulating the quantronium state in a
coherent way.

1. Manipulation of the quantum state

The manipulation of the quantronium state is achieved by
varying the control parameters Ng and/or Ib, either in a reso-
nant way at a microwave angular frequency 
�w close to the
transition frequency 
01, or adiabatically. In the resonant
scheme, a microwave pulse is applied to the gate and induces
the variation �Ng cos�
�wt+��, where � is the phase of the
microwave with respect to a reference carrier. The qubit dy-
namics is conveniently described using the Bloch sphere in a
frame rotating at 
�w �see Fig. 1�, where the effective mag-

netic field becomes H� 0=��
z�+�
R0	x� cos �+y� sin �
, with
�
=
01−
�w being the detuning and 
R0

=2EC�Ng��1�N̂�0�� /� the Rabi frequency. At �
=0, pure
Rabi precession takes place around an axis lying in the equa-
torial plane and making an angle � with respect to the X axis.
Then, any single-qubit operation can be performed by com-
bining three rotations around the X and Y axes.8,13 The se-
quences used to characterize decoherence in this work in-
volve principally two types of pulses, namely, � /2 and �
rotations around the X or Y axes. Between microwave pulses,
the free evolution of the spin corresponds to a rotation
around the Z axis at frequency −�
. Such Z rotations can
also be induced with the adiabatic method,13 that is, by adia-
batically varying the transition frequency. This can be
achieved by applying a pulse that satisfies the adiabaticity

criterion14 �d� /dt�1��Ĥqb /���0�� / ��
01��
01 to one of the
reduced parameters �=Ng or �=	 /2�.

2. Readout

For readout, the quantronium state is projected onto the
�0� and �1� states, which are then discriminated through the

FIG. 1. �a� Circuit diagram of the quantronium. The Hamil-
tonian of this circuit is controlled by the gate charge Ng�U on the
island between the two small Josephson junctions and by the phase
	 across their series combination. This phase is determined by the
flux � imposed through the loop by an external coil, and by the bias
current Ib. The two lowest-energy eigenstates form a quantum bit
whose state is read out by inducing the switching of the larger
readout junction to a finite voltage V with a bias-current pulse Ib�t�
approaching its critical current. �b� Qubit transition frequency �01 as
a function of 	 and Ng. The saddle point P0 indicated by the arrow
is optimal for a coherent manipulation of the qubit. �c� Bloch sphere
representation in the rotating frame. The quantum state is manipu-
lated by applying resonant microwave gate pulses Ng�t� with fre-
quency ��w and phase �, and/or adiabatic trapezoidal Ng or Ib�t�
pulses. Microwave pulses induce a rotation of the effective spin S
representing the qubit around an axis in the equatorial plane making
an angle � with X, whereas adiabatic pulses induce rotations around
Z.
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difference in their supercurrents �î� in the loop.2 The readout
junction is actually used to transfer adiabatically the infor-
mation about the quantum state of the qubit onto the phase 
,
in analogy with the Stern and Gerlach experiment, in which
the spin state of a silver atom is entangled with its transverse
position. For this transfer, a trapezoidal bias current pulse
Ib�t� with a maximum value IM slightly below I0 is applied
to the circuit. Starting from 	=0, the phases 
 and 	 grow
during the current pulse and the state-dependent supercurrent

�î� develops in the loop. This current adds algebraically to Ib

in the large junction and thus modifies its switching rate �.
By precisely adjusting IM and the duration of the pulse, the
large junction switches during the pulse to a finite voltage
state with a large probability p1 for state �1� and with a small
probability p0 for state �0�.9 A switching or non-switching
event is detected by measuring the voltage across the readout
junction with a room temperature amplifier, and the switch-
ing probability p is determined by repeating the experiment.
Note that at the temperature used in this work, and for the
readout junction parameters, switching occurs by macro-
scopic quantum tunneling of the phase 
.15,16 The theoretical
error rate in discriminating the two qubit states is expected to
be lower than 5% at temperature T�40 mK for the param-
eters of our experiment.9 Note than the present readout
scheme does not implement a quantum non-demolition
�QND� measurement since the quantronium quantum states
are fully destroyed when the readout junction switches. An
alternative quantronium readout designed to be QND has
been developed17 after the present work.

B. Experimental implementation

The quantronium sample used for this work was fabri-
cated using standard e-beam lithography and double-angle-
shadow evaporation of aluminum. Scanning electron micro-
graphs of its whole loop �with area �6 �m2� and of the
island region are shown in Fig. 2 with the schematic experi-
mental setup. The quantronium loop was deposited on top of
four gold pads designed to trap spurious quasiparticles in the
superconductor, including those generated by the switching
of the readout junction. This junction was also connected in
parallel to an on-chip interdigitated gold capacitor CJ
�0.6 pF, designed to lower its bare plasma frequency to
approximately 7 or 8 GHz. Separate gates with capacitances
40 and 80 aF were used for the dc and microwave Ng signals,
respectively. The sample was mounted in a copper shielding
box thermally anchored to the mixing chamber of a dilution
refrigerator with base temperature 15 mK. The impedance of
the microwave gate line as seen from the qubit was defined
by 50 � attenuators placed at 20 and 600 mK. That of the dc
gate line was defined below 100 MHz by a 1 k� resistor at
4 K, and its real part was measured to be close to 80 � in the
6–17 GHz range explored by the qubit frequency. The bias
resistor of the readout junction, Rb=4.1 k�, was placed at
the lowest temperature. Both the current biasing line and the
voltage measurement lines were shunted above a few
100 MHz by two surface-mounted 150 �–47 pF RC shunts
located a few millimeters away from the chip. These shunts
define the quality factor Q of the readout junction. The ex-

ternal magnetic flux � was produced by a superconducting
coil with a self-inductance L=0.12 H, placed 3 mm from the
chip, and whose mutual inductance with the quantronium
loop was M =0.14 pH. To filter current noise in this coil, a
50 � shunt resistor was placed at 1 K. The sample holder
and its coil were magnetically shielded by a 3-mm-thick su-
perconducting aluminum cylinder open at one end and sup-
ported by a screw from the sample holder. The whole assem-
bly is placed in a second copper box also attached to the
mixing chamber.

The microwave gate pulses used to manipulate the qubit
were generated by mixing continuous microwaves with 1 ns
rise time trapezoidal pulses with variable duration �, defined
here as the width at half maximum. With the 60 dB attenu-
ation of the microwave gate line, the range of Rabi frequen-
cies 
R0 that was explored extends up to 250 MHz. The
switching probability p was averaged over 25 000–60 000
events, chosen to obtain good statistics, with a repetition rate

FIG. 2. �Color online� �a� Schematics of the experimental setup
used in this work with temperatures indicated on the left. Rect-
angles labeled in dB are 50 � attenuators whereas rectangle
labeled :10 is a high-impedance voltage divider by 10. Squares
labeled Fcp and F� are copper powder filters and microfabricated
distributed RC filters, respectively. Single lines, double lines, and
twisted pairs are 50 � coaxes, lossy coaxes made of a manganin
wire in a stainless steel tube, and shielded lossy manganin twisted
pairs, respectively. �b� Scanning electron microscope pictures of the
sample. The whole aluminum loop �right� of about 5.6 �m2 is de-
fined by 200-nm-wide lines and includes a 890�410 nm2 island
�left� delimited by two 160�160 nm2 junctions, and a
1.6 �m�500 nm readout junction. Note also the presence of gold
quasiparticle traps �bright pads�.

DECOHERENCE IN A SUPERCONDUCTING QUANTUM… PHYSICAL REVIEW B 72, 134519 �2005�

134519-3



in the 10–60 kHz range, slow enough to allow quasiparticle
retrapping. The electronic temperature during operation,
Te�40 mK, and the relevant parameters EJ=0.87kB K, EC
=0.66kB K, 
01�P0� /2�=16.41 GHz, d�3–4 %, I0

=427 nA, and Q�3 were measured as reported in a previous
work16 by fitting spectroscopic data, such as those shown in
Fig. 11 below. Figure 3 shows a typical gate pulse, Rabi
oscillations of the switching probability p, and a check of the
proportionality between the Rabi frequency 
R0 and �Ng.
The loop currents i0 and i1 of the two qubit states, calculated
using the values of EJ, EC, and d mentioned above, are
shown in Fig. 4.

The readout was performed with 100 ns wide pulses
�Fig. 4� giving a switching probability in the 10–90 % range
at 
M �72°. At the top of the readout pulse, the phase 	 was
close to 	M �0.37�2��130°, where the difference be-
tween the loop currents for the two qubit states is the largest,
and where the sensitivity was experimentally maximal. To
reach this 	M value starting from any value 	op where the
qubit was operated, we had to set Ib and � at the values Iop
and �op such that 	op=�op+
op and 	M =�op+
M. The cor-
responding bias current Ib pulse when the quantronium is
operated at the optimal point P0 is shown in the top panels of
Fig. 4: A negative “prebias” current Iop is used to compensate
a positive flux. The fidelity � of the measurement, i.e., the

largest value of p1− p0, was �
0.3–0.4 in the present series
of experiments, as shown in the bottom right panel of Fig. 4.
Although � is larger than in our previous work,2 this fidelity
is nevertheless much smaller than the 0.95 expected. This
loss, also observed in other Josephson qubits, e.g., Ref. 5, is
attributed to spurious relaxation during the adiabatic ramp
used to switch the readout on. Indeed, the signal loss after
three adjacent short microwave � pulses is approximately

FIG. 3. Top: oscillogram of a typical microwave gate pulse,
measured at the top of the cryostat. The arrow indicates the effec-
tive duration � of the pulse. Bottom: the Rabi precession of the
qubit state during a microwave pulse results in oscillations of the
switching probability p with the pulse length �, at a frequency
�R0=
R0 /2� proportional to the reduced microwave amplitude
�Ng �right�. The two arrows in the left panel correspond to the
so-called � and � /2 pulses used throughout this work. The arrow in
the right panel indicates the point that corresponds to the data
shown in the left panel.

FIG. 4. Readout of the quantronium. Top left: full Ib�t� variation
measured at the top of the cryostat, when the qubit is operated at the
optimal point �see text� and read out with maximum sensitivity. The
current is first kept at zero to avoid heating in the bias resistor, then
prebiased at a negative value that corresponds to 	=0, then in-
creased in about 50 ns to a value close to the critical current of the
readout junction, and maintained at this value during about 100 ns,
a time period over which the switching of the junction may occur. Ib

is then slightly lowered and maintained at this lower value to let the
voltage develop along the measuring line if the junction has
switched. Finally it is set back to zero. Top right: detail of readout
pulse �but without negative prebias�, measured at room temperature
at the bottom of the bias line, before cooling the cryostat. Bottom
left: persistent currents in the loop for the �0� �solid line� and �1�
�dashed line� states, computed at Ng=1/2 as a function of 	, using
the measured sample parameters. The vertical dot-dashed line indi-
cates the readout point 	M where the experimental difference i1

− i0 was found to be maximum. Bottom right: variation of the
switching probability p with respect to the peak current IM, mea-
sured without microwave �solid line�, measured after a � micro-
wave pulse �dotted line�, and calculated from the sample parameters
for state �1� �dashed line�. The vertical dot-dashed line indicates a
maximum fidelity of 0.4 �instead of the expected 0.95�, obtained
with the pulse shown in the top-left panel. The two arrows of the
upper and lower left panels indicate the adiabatic displacement in 	
between operation and readout of the qubit.
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the same as after one. Moreover, it was found in some Jo-
sephson qubit experiments5,18 that the fidelity is improved
when increasing the readout speed. The shape of the p�IM�
curve after a � pulse �see Fig. 4� also shows that the fidelity
loss increases with p, which leads to a slight asymmetry of p
oscillations in most of the experiments presented here �see,
for instance, the lack of signal at the top of the oscillations
on Figs. 8 and 16 below�. This asymmetry limits the accu-
racy of our decoherence rate measurements. In order to mini-
mize its effect, we have chosen to use the bottom of the
envelopes of the p oscillations to quantify decoherence.

C. Decoherence sources

Like any other quantum object, the quantronium qubit is
subject to decoherence due to its interaction with uncon-
trolled degrees of freedom in its environment, including
those in the device itself. These degrees of freedom appear as
noise induced in the parameters entering the qubit Hamil-
tonian �2�, i.e., the Josephson energy EJ, the gate charge Ng,
or the superconducting phase difference 	. Using dimension-
less parameters �=EJ /EJ0 �EJ0 being the nominal EJ�,
�=Ng, or �=	 / �2��, each noise source is conveniently
described by its quantum spectral density S��
�
�1/ �2���dt�	�̂�0�	�̂�t��e−i
t, where 	�̂ is regarded here as
an operator acting on environmental variables. This function
quantifies the ability of the source to absorb and to
emit an energy quantum ��
�, at positive and
negative 
, respectively. The symmetrized spectral density
Ss��
�=1/2	S��−
�+S��
�
 and its classical limit Sc��
� at
kBT��
 will also be used. Decoherence of the qubit will be
described here in terms of energy exchange with a noise
source on one hand, and in terms of random dephasing be-
tween states �0� and �1� due to adiabatic variations of the
transition frequency on the other hand. Taking into account
that kBT��
01 in our experiment, we distinguish relaxation
processes involving S��+
01� and dephasing processes in-
volving Sc���
��
01�. The main noise sources acting in the
quantronium are schematically depicted in Fig. 5, and their
spectral densities are discussed below. Since “pure” dephas-
ing �see Sec. III� dominates decoherence, special attention is
paid to the low-frequency part Sc��

0�.

1. Noise in EJ: Two-level fluctuators in the tunnel barriers

A first source of decoherence arises from the fluctuations
of the Josephson energy EJ of the two small junctions. The
associated critical current noise, which has not been mea-
sured in our sample, has been characterized, at frequencies f
up to 10 kHz and at temperatures T between 100 mK and
4 K, in various Josephson devices19,20 made of different ma-
terials and with different technologies, including those used
in this work. The Josephson energy noise is empirically de-
scribed, for a single junction with critical current I0, by a 1/ f
spectral density that scales with I0

2, T2, and the inverse of the
junction area. Extrapolating the results reported in Refs. 19
and 21 to the maximum electronic temperature Te of the
quantronium during its operation, i.e., 40 mK, leads to an
estimate for the spectral density of relative EJ fluctuations:

Sc	EJ/EJ
��
��2��10 kHz���0.5�10−6�2 / �
�. The critical

current noise is presently attributed to atomic defects located
in the oxide of the tunnel junctions. A simple model assumes
that these defects are two-level fluctuators �TLFs� switching
between two states that correspond to an open and a closed
tunneling channel through the junction. The distribution in
the energy splitting of these TLFs is thought to be very broad
and to extend above the transition energies of Josephson qu-
bits. This picture is supported by the observation of a coher-
ent coupling between a phase qubit and uncontrolled TLFs
randomly distributed in frequency.22 With the quantronium
sample used in this work, the authors have also observed in
one of the experimental runs an avoided level crossing in the
spectroscopic data, which demonstrated a strong coupling
between the qubit and an unknown TLF that was later elimi-
nated by annealing the sample at room temperature. These
observations suggest that TLFs located in the tunnel barriers
not only generate low-frequency EJ noise, but can also play
an important role in the relaxation of Josephson qubits.

2. Noise in Ng: Background charged two-level fluctuators and
gate line impedance

A second source of decoherence is the noise on the gate
charge Ng. Like any Coulomb blockade device, the quantro-
nium is subject to background charge noise due to micro-
scopic charged TLFs acting as uncontrolled additional Ng
sources. Although the whole collection of TLFs produces a
noise whose spectral density approximately follows a 1/ f
law,23–25 telegraph noise due to some well-coupled TLFs can
be observed as well.10 These well-coupled TLFs are, for in-
stance, responsible for the substructure of the quantronium
resonance line recorded at Ng�1/2 �see Fig. 11�. Comple-
mentary works26 have shown that the charged TLFs are
partly located in the substrate, partly in the oxide layer cov-
ering all the electrodes, and partly in the oxide barriers of the
tunnel junctions themselves. It has been suggested that some

FIG. 5. Equivalent schematic drawing of the noise sources re-
sponsible for decoherence in the quantronium. These sources are
coupled to EJ, Ng, or 	. In part they are of microscopic nature like
the two-level fluctuators inside the junction that induce Ej varia-
tions, like a charged TLF �represented as a minus sign in a small
double arrow� coupled to Ng, or like moving vortices ��micro� in the
vicinity of the loop. The macroscopic part of the decoherence
sources is the circuitry, which is represented here as an equivalent
circuit as seen from the qubit. The relevant resistances and tempera-
tures of the dissipative elements are indicated. Capacitance with no
label represent a shunt at the qubit frequency and an open circuit at
frequencies below 200 MHz.
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TLFs contribute both to the critical current noise and to the
charge noise.27 The typical amplitude A of the spectral den-
sity ScNg

BCN��
��2��100 kHz�=A / �
� depends on tempera-
ture, on junction size, and on the screening of the island by
the other electrodes. Its value is commonly found in the
range 	10−6 ,10−7
 for the parameters of our experiment. The
amount and the energy splitting distribution of charged TLFs
in Josephson devices is still unknown at frequencies of the
order of 
01, and their role in the relaxation of a Josephson
qubit has not been clearly established. Note that a recent
work on a CPB qubit28 suggests that they might contribute
significantly to relaxation.

Another cause of charge noise is the finite impedance Zg
�see Fig. 5� of the gate line, which can be treated as a set of

harmonic oscillators coupled to N̂. As seen from the pure
Josephson element of the CPB �junction capacitance not in-
cluded�, the gate circuit is equivalent3 to an effective imped-
ance Zeq in series with a voltage source �g Vg, with �g
=Cg /C�. In the weak-coupling limit �g�1 and for all rel-
evant frequencies, one has Re�Zeq���g

2Re�Zg�. At thermal
equilibrium, the contribution of the gate line to Ng fluctua-
tions is characterized by the spectral density

SNg

GL�
� � �g
2�2


EC
2

Re	Zg�
�

Rk

�1 + coth� �


2kBT
�� , �5�

where Rk=h /e2�26 k�. Using the parameters
previously mentioned, we find ScNg

GL��
��2��10 MHz�
��20�10−9�2 / �rad/s� at low frequency, and SNg

GL�
�
��1−4�10−9�2 / �rad/s� in the 6–17 GHz frequency range.
Finally, the out-of-equilibrium noise generated by the dc gate
voltage source is fully filtered by the line and does not con-
tribute to decoherence. The conclusion of this analysis is that
the background charge noise dominates SNg

GL�
� at low fre-
quency.

3. Noise in �: Magnetic flux noise and readout circuitry

The last source of decoherence encountered is the noise of
the superconducting phase 	. One of its contributions is the
noise in the macroscopic flux externally applied to the quant-
ronium loop. It is however negligible because the external
flux is shielded by a superconducting aluminum cylinder sur-
rounding the sample holder, and because the coupling to the
flux coil is weak �L=M EJ /�0

2�1.
A second phase noise source arises from the magnetic

vortices moving in the superconducting electrodes of the de-
vice. Taking the width � of the aluminum lines used in this
work, the depinning field of these vortices27,29 Bm��0 /�2 is
of order 50 mT, a value two orders of magnitude larger than
the maximum field we apply, which suggests that vortices
should be pinned. Nevertheless, many experiments on super-
conducting quantum interference devices �SQUIDs� have
shown that an extra flux noise whose origin is unknown, and
which does not depend on the temperature below a few
100 mK,30 is always present with a spectral density
Sc	/2�

micro��
��2��1 kHz���10�10−6�2 / �
�.
Finally, the readout circuitry also induces phase fluctua-

tions, due to the admittance YR �see Fig. 5� in parallel with

the pure Josephson element of the readout junction, and due
to the out-of-equilibrium noise of the arbitrary waveform
generator �AWG� used. More precisely, when a bias current
Ib�I0 is applied to the quantronium, the effective induc-
tance LJ���0 /I0� /�1− �Ib /I0�2 of the readout junction con-
verts the current noise produced by YR into phase fluctua-
tions characterized by the spectral density

S	/2�
YR �
� =

1

64�4�J
2�2


EJ
2 Re	Y	�
�
Rk�1 + coth� �


2kBT
�� ,

�6�

where Y	�
�=YR�
� / �1+ jLJ
YR�
��2 and �J=EJ /EJ. Using
the parameters mentioned in the previous section, we find
Sc	/2�

YR ��
��2��10 MHz���2�10−9�2 / �rad/s� and
S	/2�

YR �
��	�20–80��10−9
2 / �rad/s� in the 6–17 GHz fre-
quency range. Then, the noise spectrum of our AWG is flat
up to 200 MHz, and corresponds to a spectral density
Sc	/2�

AWG��
����15�10−9 /cos 
�2 / �rad/s� that depends on the
average phase 
 across the readout junction. The conclusion
of this analysis is that the phase noise is dominated at low
frequency by local sources close to the junction loop, and at
the qubit frequency by the contribution of the biasing cir-
cuitry.

III. THEORETICAL DESCRIPTION OF DECOHERENCE

We now consider the dynamics of a qubit from a general
point of view in two situations: free evolution and evolution
driven by a sinusoidal excitation.

In the first case, after initial preparation in a coherent
superposition of the two qubit states, the effective spin pre-

cesses freely under the influence of the static field H� 0, set by
the control parameters �0, and of its classical and quantum
fluctuations, set by the fluctuations 	�. One distinguishes
two time scales, the depolarization time T1 �dominated at low
temperatures by the relaxation to the ground state� for the
decay of the diagonal Z component of the spin density ma-
trix, and the decay time T2 of the off-diagonal part, which is
the qubit coherence time. As described in the experimental
Section IV, the time T2 is inferred from the decay of Ramsey
oscillations in a two-� /2-pulse experiment. These Ramsey
oscillations are the equivalent of the free induction decay in
NMR.31 Note that this decay can be nonexponential, the time
T2 being then defined by a decay by the factor exp�−1�. In a
modified version of the Ramsey experiment, an extra � pulse
is applied in the middle of the sequence in order to perform
a Hahn echo experiment.31 The decay time TE of this echo is
longer than T2, and the enhancement factor provides impor-
tant information on the spectral density of the noise mecha-
nisms.

In the second case of driven evolution, the decay of the
spin density matrix is investigated in the rotating frame. Ex-
perimentally, this decay is obtained from spin-locking
signals31 and from Rabi oscillations. It is shown that time

scales T̃1 and T̃2, similar to T1 and T2, describe the dynamics
in the rotating frame.31

We first start by expanding the Hamiltonian Ĥqb of Eq. �4�
to second order in the perturbation 	�:
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Ĥqb = −
1

2
�H� 0��0� +

�H� 0

��
	� +

�2H� 0

��2

	�2

2
+ ¯ ��̂� . �7�

Introducing the notations D� ���1/���H� 0 /�� and D� �2

��1/���2H� 0 /��2, one finds in the eigenbasis of H� 0��0��̂�

Ĥqb = −
1

2
��
01�̂z + 	
z�̂z + 	
��̂�� �8�

where �
01��H� 0��0��, 	
z�D�,z	�+D�2,z	�2 /2+¯, and
	
��D�,�	�+¯. Here �� denotes the transverse spin
components 	i.e., the last term in Eq. �8� may include both �x
and �y
. We write explicitly only the terms in the expansion
that dominate decoherence �as will become clear below�.
These coefficients D are related to the derivatives of 
01���:

�
01

��
= D�,z �9�

and

D�2,z =
�2
01

��2 −
D�,�

2


01
. �10�

As discussed below, �
01/�� and �2
01/��2 are sufficient to
treat the low-frequency noise whereas the calculation of the
depolarization rates involves D�,�.

The Bloch-Redfield theory32,33 describes the dynamics of
two-level systems �spins� in terms of two rates �times�: the

longitudinal relaxation �depolarization� rate �1=T1
−1

and the

transverse relaxation �dephasing� rate �2=T2
−1

. The dephas-
ing process is a combination of effects of the depolarization
��1� and of the so-called pure dephasing. The pure dephasing
is usually associated with the inhomogeneous broadening in
ensembles of spins, but occurs also for a single spin due to
the longitudinal low-frequency noise. It is characterized by
the rate ��. These two processes combine to a rate

�2 =
1

2
�1 + ��. �11�

The Bloch-Redfield approach applies only if the noise is
short correlated �e.g., white noise� and weak.31 In more gen-
eral situations the decay is nonexponential. In particular,
when the pure dephasing is dominated by a noise singular
near 

0, the decay law exp�−��t� is replaced by other
decay functions which we denote as fz,. . .�t� �additional indi-
ces … describe the particular experiment�. It can be shown34

that the decays due to the depolarization and the pure
dephasing processes factorize, provided the high-frequency
noise responsible for the depolarization is regular. That is
instead of the exponential decay e−�2t with �2 from Eq. �11�,
one obtains the decay law fz,. . .�t�exp�−�1t /2�.

A. Depolarization „T1…

The depolarization rate �1=T1
−1 is given by the sum

�1 = �rel + �ex �12�

of the relaxation rate �rel and the excitation rate �ex. The
golden rule gives

�rel =
�

2
S	
�

�
01� =
�

2
D�,�

2 S��
01� , �13�

�ex =
�

2
S	
�

�− 
01� =
�

2
D�,�

2 S��− 
01� . �14�

Thus

�1 = �Ss	
�
�
01� = �D�,�

2 Ss��
01� . �15�

This result holds irrespective of the statistics of the fluctua-
tions; in lowest order of the perturbation theory in D�,� the
rates are expressed through the correlator S�. This approxi-
mation is sufficient when the noise is weak enough with a
smooth spectrum at the transition frequency 
01 on the scale
of the relaxation rate �1. At low temperatures kBT��
01 the
excitation rate �E is exponentially suppressed and �1
�R.

B. Pure dephasing

1. Linear coupling

First, we analyze a noise source coupled linearly �and
longitudinally� to the qubit, i.e., �
01/��=D�,z�0. The
Bloch-Redfield theory gives for the pure dephasing rate

�� = �S	
z
�
 = 0� = �D�,z

2 S��
 = 0� = �D�,z
2 Sc��
 = 0� .

�16�

This result is of the golden rule type 	similar to Eq. �15�
 and
is meaningful if the noise power Sc� is regular near 

0 up
to frequencies of order ��.

A more elaborate analysis is needed when the noise spec-
tral density is singular at low frequencies. In this subsection
we consider Gaussian noise. The random phase accumulated
at time t,

�� = D�,z�
0

t

dt�	��t�� ,

is then Gaussian distributed, and one can calculate the decay
law of the free induction �Ramsey signal� as fz,R�t�
= �exp�i����=exp�−�1/2����2��. This gives

fz,R�t� = exp�−
t2

2
D�,z

2 �
−�

+�

d
 S��
�sinc2
t

2 � , �17�

where sinc x�sin x /x.
In an echo experiment, the phase acquired is the differ-

ence between the two free evolution periods,

��E = − ��1 + ��2 = − D�,z�
0

t/2

dt�	��t��

+ D�,z�
t/2

t

dt�	��t�� , �18�

so that

fz,E�t� = exp�−
t2

2
D�,z

2 �
−�

+�

d
 S��
�sin2 
t

4
sinc2
t

4 � .

�19�
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1/ f spectrum. Here and below in the analysis of noise
with a 1/ f spectrum we assume that the 1/ f law extends in a
wide range of frequencies limited by an infrared cutoff 
ir
and an ultraviolet cutoff 
c:

S��
� = A/�
�, 
ir � �
� � 
c. �20�

The infrared cutoff 
ir is usually determined by the measure-
ment protocol, as discussed further below. The decay rates
typically depend only logarithmically on 
ir, and the details
of the behavior of the noise power below 
ir are irrelevant to
logarithmic accuracy. For most of our analysis, the same re-
mark applies to the ultraviolet cutoff 
c. However, for some
specific questions considered below, frequency integrals may
be dominated by 
�
c, and thus the detailed behavior near
and above 
c �“shape” of the cutoff� is relevant. We will
refer to an abrupt suppression above 
c 	S�
����
c− �
��

as a “sharp cutoff,” and to a crossover at 
�
c to a faster
decay 1/
→1/
2 �motivated by modeling of the noise via a
set of bistable fluctuators; see below� as a “soft cutoff.”

For 1/ f noise, at times t�1/
ir, the free induction �Ram-
sey� decay is dominated by the frequencies 
�1/ t, i.e., by
the quasistatic contribution,3 and Eq. �17� reduces to:

fz,R�t� = exp�− t2D�,z
2 A�ln

1


irt
+ O�1��� . �21�

The infrared cutoff 
ir ensures the convergence of the inte-
gral.

For the echo decay we obtain

fz,E�t� = exp�− t2D�,z
2 A ln 2� . �22�

The echo method thus only increases the decay time by a
logarithmic factor. This limited echo efficiency is due to the
high-frequency tail of the 1/ f noise.

Static case. In many cases, the contribution of low fre-
quencies 
�1/ t dominates the pure dephasing. This hap-
pens when the noise spectrum is strongly peaked at low fre-
quencies 	cf. Eq. �21�
, in particular when it has a sufficiently
low ultraviolet cutoff frequency 
c. This simple regime per-
tains to the quantronium.

To fix the terminology we use here: under certain condi-
tions we use the “static approximation” characterized by an
effective distribution P�	��, for which the noisy control pa-
rameter � is considered as constant during each pulse se-
quence. This approach allows for a direct evaluation of the
Ramsey decay function fz,R�t�. In the relevant cases of linear
or quadratic coupling to the fluctuations, the decay function
fz,R�t� is the Fourier- or Fresnel-type transform of the distri-
bution P�	��, respectively. Since the static approximation
would yield no decay for the echoes, the calculation of the
echo decay function fz,E�t� requires a “quasistatic approxima-
tion” that takes into account variations within each pulse
sequence. A noise with an ultraviolet cutoff frequency 
c can
be considered as quasistatic on time scales shorter than 
c

−1.
The relevant results obtained in Refs. 35–37 are given below.

In the static approximation, the contribution of low fre-
quencies 
�1/ t to the integral in Eq. �17� is evaluated using
the asymptotic value sinc�
t /2�
1:

fz,R
stat�t� = exp�−

t2

2
D�,z

2 ��
2� , �23�

where ��
2 =�−�

+�d
 S��
� is the dispersion of 	�.
For 1 / f noise, S�= �A / �
����
c− �
��, we obtain ��

2

=2A ln�
c /
ir�. The result is only logarithmically sensitive
to the value of the ultraviolet cutoff 
c and to the specific
functional form of the suppression of noise at high 
�
c.
The static approximation is sufficient for the evaluation of
the dephasing rate if, e.g., the latter indeed exceeds the ul-
traviolet cutoff 
c, i.e., D�,z

2 A ln�
c /
ir��
c
2.

In the opposite limit, for wideband 1/ f noise at t�1/
c,
the contribution of frequencies 
�1/ t is also given by Eq.
�23� 	cf. Eqs. �17� and �21�
. In this case, however, ��

2 in Eq.
�23� depends logarithmically on time: ��

2 =A ln�1/
irt�. This
contribution dominates the decay of fz,R�t�.

In general, for �quasi�static noise with distribution func-
tion P�	�� the static approximation yields the Ramsey decay,

fz,R
stat�t� =� d�	��P�	��eiD�,z	�t, �24�

which is the Fourier transform of P�	��.
Let us now analyze the echo decay. For 1/ f noise with a

low 
c the integral in Eq. �19� over the interval 
 
c is
dominated by the upper limit. This indicates that the specific
behavior at 
�
c is crucial. For instance, in the case of a
sharp cutoff 	S= �A / �
����
c−
�
 we obtain

fz,E�t� = exp�−
1

32
D�,z

2 A
c
2t4� . �25�

However, if the 1/ f behavior for 
�
c crosses over to a
faster decay �1/
2 at 
�
c �as one would expect when the
noise is produced by a collection of bistable fluctuators with
Lorentzian spectra; cf. Refs. 38, 39, and 41� then the integral
in Eq. �19� is dominated by frequencies 
c�
�1/ t, and we
find ln fz,E�t��D�,z

2 A
ct
3. In either case, one finds that the

decay is slower than for 1 / f noise with a high cutoff

c�D�,zA

1/2: the exponent involved in the decay function is
indeed reduced by a factor ��
ct�2 or 
ct, respectively.

2. Quadratic coupling

At the optimal working point, the first-order longitudinal
coupling D�,z vanishes. Thus, to first order, the decay of the
coherent oscillations is determined by the relaxation pro-
cesses and one expects �2=�1 /2 from Eq. �11�. However, it
turns out that due to a singularity at low frequencies the
second-order contribution of the longitudinal noise can be
comparable, or even dominate over �1 /2. To evaluate this
contribution, one has to calculate

fz�t� =�exp�i
1

2

�2
01

��2 �
0

t

����	�2���d��� . �26�

Equation �26� can be used for the analysis of the free induc-
tion decay �Ramsey signal� if one sets ����=1, and for the
investigation of the echo-signal decay using ���� t /2�=−1
and ���� t /2�=1.

1 / f noise. The free induction decay for the 1/ f noise with
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a high cutoff 
c �the highest energy scale in the problem� has
been analyzed in Ref. 35. The decay law can be
approximated40 by the product of the low-frequency
�
�1/ t, quasistatic� and the high-frequency �
�1/ t� con-
tributions: fz,R�t�= fz,R

lf �t�fz,R
hf �t�. The contribution of low fre-

quencies is given by �cf. Refs. 35–37�

fz,R
lf �t� =

1

�1 − i��2
01/��2���
2t

. �27�

For 1/ f noise with variance of the low-frequency fluctua-
tions ��

2 =2A ln�1/
irt�, this contribution is

fz,R
lf �t� =

1
�1 − 2i��2
01/��2�tA ln�1/
irt�

. �28�

It dominates at short times t� 	��2
01/��2�A /2
−1. At longer
times, the high-frequency contribution

ln fz,R
hf �t� 
 − t�

�1/t

� d


2�
ln�1 − 2�i

�2
01

��2 S��
�� �29�

takes over: when t� 	��2
01/��2�A /2
−1 we obtain
asymptotically ln fz,R

hf �t�
−�� /2���2
01/��2�At 	provided

c����2
01/��2�A
. Otherwise the quasistatic result �27� is
valid at all relevant times. One can also evaluate the preex-
ponential factor in the long-time decay. This preexponent
decays very slowly �algebraically� but differs from 1 and
thus shifts the level of fz,R�t�.42

Note that the experimentally monitored quantity is a spin
component, say ��x�, in the rotating frame which evolves
according to ��x�=Re	fz,R�t�ei�
t
, where �
 is the detuning
frequency. In a typical situation of interest fz,R�t� changes
more slowly than the period of oscillations, and thus the
envelope of the decaying oscillations is given by �fz,R�t��, the
phase of fz,R�t� shifting the phase of the oscillations. In the
opposite limit �
=0, the measured decay curve reproduces
the real part of fz,R�t� �the imaginary part corresponds to �y

and can also be measured�.
Static case. In the quasistatic case, i.e., when the cutoff 
c

is lower than 1/ t for all relevant times, the Ramsey decay is
simply given by the static contribution �27�. At all relevant
times the decay is algebraic and the crossover to the expo-
nential law is not observed. More generally, in the static
approximation with a distribution P�	��, the dephasing law
is given by the Fresnel-type integral transform

fz,R
st �t� =� d�	��P�	��ei��2
01/2��2�	�2t, �30�

which reduces to Eq. �27� for a Gaussian
P�	���exp�−	�2 /2��

2�. In general, any distribution P�	��,
finite at 	�=0, yields a t−1/2 decay for fz,R

st at long times.
For the echo decay and Gaussian quasistatic noise in � we

obtain

fz,E�t� =
1

�1 + ��2
01/��2�2��
2�

−�

+�

d
�
t/4�2S��
�t2

,

�31�

where we assumed that the frequency integral converges at
�
��1/ t. This is the case, e.g., if S��
� has a sharp cutoff at

c�1/ t. For 1 / f noise, S�= �A / �
����
c− �
�� with

c�1/ t, Eq. �31� yields

fz,E�t� =
1

�1 + �1/16���2
01/��2�2��
2A
c

2t4
. �32�

Note that this result is sensitive to the precise form of the
cutoff.

C. 1/ f noise, one fluctuator versus many

The background charge fluctuations are induced by ran-
dom redistributions of charge near, e.g., trapping and release
of electrons or by random rearrangements of charged impu-
rities. Many groups have observed this noise with a smooth
1/ f spectrum in the frequency range from 1 Hz to 1 MHz.
Occasionally, single fluctuators have been observed, with a
significant fraction of the total charge noise.10 If individual
fluctuators play an important part the noise statistics is
non-Gaussian.39,43 We summarize here some of the obtained
results relevant to our work.

The noise 	��t� contains contributions from all TLFs:

	��t� = �
n

vn�n,z�t� . �33�

Every fluctuator switches randomly between two positions,
denoted by �n,z= ±1 with rate 
n �for simplicity, we assume
equal rates in both directions for relevant TLFs� and thus
contributes to the noise power S�=�nSn:

Sn =
1

�


nvn
2


2 + 
n
2 . �34�

For a single fluctuator �longitudinally coupled to the qubit�
the free induction �Ramsey� and the echo decays are given
by

fz,R,n�t� = e−
nt�cos �nt +

n

�n
sin �nt� , �35�

and

fz,E,n�t� = e−
nt�1 +

n

�n
sin �nt +


n
2

�n
2 �1 − cos �nt�� ,

�36�

where �n���D�,zvn�2−
n
2. Finally, the decay produced by

all the fluctuators is just the product of the individual contri-
butions, i.e., fz,R�t�=�nfz,R,n�t� and fz,E�t�=�nfz,E,n�t�. If the
noise is produced or dominated by a few fluctuators, the
distribution of 	��t� may be strongly non-Gaussian, and the
simple relation between decoherence and noise power does
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not hold. In this case the conditions of the central limit theo-
rem are not satisfied. In Ref. 43, a continuous distribution of
vn’s and 
n’s was considered, with a long tail of the distri-
bution of the coupling strengths vn such that rare configura-
tions with very large vn dominate the ensemble properties.
The distribution P�v ,
� considered in Ref. 43 is defined in
the domain 	vmin ,�
� 	
min ,
max
:

P�v,
� =
!


v2 . �37�

Let us introduce the parameter vmax
typ �Nvmin, which gives the

typical value of the strongest �closest� fluctuator. Normaliza-
tion to N fluctuators requires that !=vmax

typ / ln�
max /
min�. For
this distribution any quantity whose average value �that is
integrals over v’s and 
’s� is dominated by TLFs with43

v�vmax
typ is not self-averaging, i.e., has considerable sample-

to-sample fluctuations. The ensemble-averaged free induc-
tion decay described by43

ln�fz,R�t�� � − D�,z!t ln�
max/
min� = − D�,zvmax
typ t �38�

is dominated by the fluctuators with strength of order
v�vmax

typ and is thus not self-averaging. Consequently, it does
not apply quantitatively to a specific sample.

Similarly, the ensemble-averaged echo signal is given
by43

ln�fz,E�t�� � �− D�,z!
maxt
2 for t � 
max

−1 ,

− D�,z!t	ln�
maxt� + O�1�
 for t � 
max
−1 .

�
�39�

The situation depends on whether D�,z!�
max or D�,z!
�
max. In the former the dephasing is static �i.e., it happens
on a time scale shorter than the flip time of the fastest fluc-
tuators, 1 /
max� and the first line of Eq. �39� applies. The
decay is self-averaging because it is dominated by many
fluctuators with strength v
�!
max /D�,z�!�vmax

typ . In the
opposite regime D�,z!�
max the dephasing is due to multiple
flips of the fluctuators and the second line of Eq. �39� ap-
plies. In this case, the decay is dominated by a small number
of fluctuators with strength v
!, which is smaller than vmax

typ

only by a logarithmic factor, and sample-to-sample fluctua-
tions are strong.

D. Decoherence during driven evolution

In the presence of a harmonic drive 2
R0 cos�
t��̂x, the
Hamiltonian reads

Ĥ = −
1

2
�	
01�̂z + 	
z�̂z + 	
��̂� + 2
R0 cos�
t��̂x
 .

�40�

The qubit dynamics is conveniently described in the frame
rotating with the driving frequency 
, and a new eigenbasis

��0̃� , �1̃�� is defined by the total static fictitious field com-
posed of the vertical component given by the detuning
�
=
01−
 and the horizontal �x� component 
R0. That is,
the static part of the Hamiltonian in the rotating frame reads

Hst = −
1

2
���
�̂z + 
R0�̂x� . �41�

The length of the total field is 
R=�
R0
2 +�
2 and it makes

an angle � with the z axis: �
=
R cos �, 
R0=
R sin �.
The evolution of the spin is a rotation around the field at the
Rabi precession frequency 
R. As in the case of free evolu-
tion, decoherence during driven evolution involves the phe-
nomena of relaxation and dephasing: one defines a relaxation

time T̃1 and a coherence time T̃2 analogous to T1 and T2,
which correspond to the decay of the longitudinal and of the
transverse part of the density matrix31 in the new eigenbasis,
respectively. First, as a reference point, we present the
golden-rule-type results which are valid if all the noises are
smooth at frequencies near 
=0, 
R, and 
01. Analyzing
which parts of the fluctuating fields 	
z and 	
� are longi-
tudinal and transverse with respect to the total field 
R in the
rotating frame, and taking into account the frequency shifts
due to the transformation to the rotating frame we obtain

�̃1 = sin2 ��� +
1 + cos2 �

2
�1, �42�

where ����S	
z
�
R� is the spectral density at the Rabi fre-

quency. We have disregarded the difference in the noise
power S	
�

at frequencies 
01 and 
01±
R, which allows us
to use the depolarization rate �1 from Eq. �15�. We do, how-
ever, distinguish between �� and ��=�S	
z

�
=0� in order to
later analyze a noise spectrum singular at 

0.

For the dephasing rate we again have the relation

�̃2 =
1

2
�̃1 + �̃�, �43�

where

�̃� = �� cos2 � +
1

2
�1 sin2 � . �44�

As a result we obtain

�̃2 =
3 − cos2 �

4
�1 + �� cos2 � +

1

2
�� sin2 � . �45�

The derivation of these expressions is simplified if one notes
that due to the fast rotation the high-frequency transverse
noise S	
�

�


01� is effectively mixed to low frequencies
 
R. In the rotating frame it effectively reduces to
“independent” white noises in both the x and y directions
with amplitudes 	
� /�2 and corresponding noise powers
S	
�

�


01� /2. Only the noise along the x axis �its longi-

tudinal component with factor sin2 �� contributes to �̃� �the
noise along the y axis is purely transverse�.

Note the limiting behavior of the rates: at zero detuning,

one has cos �=0 and �̃2= 3
4�1+ 1

2��, whereas at large
detuning compared to the Rabi frequency, cos �=1, and

�̃2= 1
2�1+��: one recovers thus the decoherence rate �2 of

the free evolution.
For a noise spectrum which is singular at 
=0 �1/ f noise�

we no longer find the exponential decay. The simplest case is
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when the Rabi frequency is high enough so that one still can
use the rate �� and the associated exponential decay. We
consider here only this regime. Then one should combine the
exponential decay associated with the rates �1 and �� with
the nonexponential one substituting the rate ��. For the de-
cay of the Rabi oscillations we obtain

fRabi�t� = fz,cos ��t�exp�−
3 − cos2 �

4
�1t −

sin2 �

2
�� t� ,

�46�

where fz,cos ��t� is given by one of the decay laws derived in
the preceding sections �depending on whether the coupling is
linear or quadratic, and whether the statistics is Gaussian or
not� with the noise 	
z substituted by cos �	
z. That is, in
the linear case, we have to substitute D�,z→cos �D�,z, while
in the quadratic case ��2
01/��2�→cos ���2
01/��2�.

E. Application to the quantronium sample used in this work

As already mentioned in Sec. II B, the parameters of the
qubit EJ=0.87kB K, EC=0.66kB K were measured by fitting
the spectroscopic data 
01�Ng ,	� �see Fig. 11� with a numeri-

cal diagonalization of the Hamiltonian ĤCPB. This fit gives
an upper limit for the asymmetry of the qubit junctions,
d�13%. By using another property16 this value was esti-
mated as d�4%. From EJ, EC, and d, the numerical values
of the D�’s introduced above were calculable exactly, as a
function of the working point �	 ,Ng�. Nevertheless, since we
have characterized decoherence only along the two
segments 	 / �2��� 	−0.3, +0.3
, Ng=1/2 and 	=0,
Ng−1/2� 	−0.1, +0.1
 in the �	 ,Ng� plane, we only give
below simple expressions that approximate 
01, D�, and
�2
01/��2 with a ±3% accuracy in the range of parameters
explored experimentally. We have thus for the transition fre-
quency


01�	,Ng = 1/2� � 	103 − 425�	/2��2
 � 109 rad/s,

�47�


01�	 = 0,Ng� � 	103 + 145�Ng − 1/2�2
 � 109 rad/s,

�48�

which lead for the longitudinal coefficients to

D	/2�,z�	 = 0 or Ng = 1/2� =
�

e
�i1 − i0�

� − 850
	

2�
� 109 rad/s, �49�

�2
01

��	/2��2 � − 850 � 109 rad/s, �50�

DNg,z�	 = 0 or Ng = 1/2� = −
2EC

�
��1�N̂�1� − �0�N̂�0��

� + 290�Ng −
1

2
� � 109 rad/s, �51�

�2
01

�Ng
2 � + 290 � 109 rad/s, �52�

where i0 and i1 are the average currents �î� in the two states.
Note that DNg,z vanishes at Ng=1/2 for all 	 so that a gate
microwave pulse corresponds to a purely transverse pertur-
bation of the Hamiltonian. Consequently, the perturbed
Hamiltonian of Eq. �40� does apply exactly to the quantro-
nium at Ng=1/2, where the measurements were performed.
At other values of Ng, Eq. �40� would nevertheless be a good
approximation. For critical current noise, the coupling coef-
ficient

D	EJ/EJ,z�	 = 0� = cot�	 " 2��i1 − i0� " e � + 85 � 109 rad/s,

�53�

D	EJ/EJ,z�Ng = 1/2� � �+ 85 − 240� 	

2�
�2� � 109 rad/s

�54�

is maximal at the optimal working point P0. Expressed in the
same way, the transverse coefficients D�,� are

D	/2�,��	 = 0 or Ng = 1/2� =
2�

e
��0�î�1��

� 380d�1 + 6.0� 	

2�
�2� � 109 rad/s, �55�

DNg,��	 = 0 or Ng = 1/2� =
4EC

�
��0�N̂�1�� = 193 � 109 rad/s,

�56�

and

D	EJ/EJ,��	 = 0 or Ng = 1/2�

=
2EJ cos�	/2�

�
��0�cos �̂�1�� = 108�Ng −

1

2
� � 109 rad/s.

�57�

Finally, note that the cross derivative �2
01/�	�Ng was found
to be equal to zero along the two segments mentioned above.

IV. EXPERIMENTAL CHARACTERIZATION OF
DECOHERENCE DURING FREE EVOLUTION

In order to characterize decoherence in our quantronium
sample and to compare with the theoretical predictions, we
have measured the characteristic decay times of the diagonal
�T1� and nondiagonal �T2 ,TE� parts of the density matrix of
the qubit during its free evolution. These measurements were
repeated at different working points P located along the lines
	=0 and Ng=1/2, as mentioned above. We describe the dif-
ferent experimental protocols that were used, the results, and
their interpretation.

A. Longitudinal relaxation time T1

Relaxation of the longitudinal polarization is inferred
from the decay of the switching probability p after a � pulse
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has prepared the qubit in state �1�. More precisely, a sequence
that consists of a � pulse, a variable delay t, and a readout
pulse is repeated to determine p�t�. An example of the relax-
ation curve, measured at the working point P0, is shown in
the inset of Fig. 6. As predicted, the relaxation is exponen-
tial, with an absolute discrepancy between p�t� and the fit
being always smaller than 2%. The relaxation time T1, varies
with the working point as shown in Fig. 6: T1 is about 0.5 �s
in the vicinity of P0 �which is three times shorter than in a
previous experiment2� and shows rapid variations away from
P0 in the phase direction. Now, it is interesting to note that in
the parameter range explored, the matrix element DNg,� of
Eq. �56� is approximately constant and that the matrix ele-
ment D	/2�,� of Eq. �55� varies smoothly by a factor of only
2 with 	. Consequently, the measured variation of T1 reflects
quite directly the variation with frequency of the density of
environmental modes available for absorbing one photon
�
01 from the qubit through the 	 and Ng channels. Noting
from Eq. �57� that the noise on EJ cannot induce relaxation
of the qubit along the line Ng=1/2, a natural question arises:
can the measured relaxation rates be fully accounted for by
the circuit alone, i.e., by Zg and YR �see Fig. 5�? We have
calculated from Eq. �15� and from the noise spectra �5� and
�6� of Zg and YR, values of T1 at P0 of about 1–2 �s and
5–10 �s, respectively. The combined effect of the two sub-
circuits gives thus T1�0.8–1.6 �s, which is close to the
measured value. We conclude that a large part of the relax-
ation has to be attributed to the gate circuit. Note, however,
that estimating the impedances as seen from the qubit above
14 GHz with an accuracy better than a factor of 2 is difficult,
so that we cannot exclude also a large contribution of micro-
scopic degrees of freedom.

B. Transversal relaxation time or coherence time T2

1. T2 measurement from Ramsey fringes

Characterizing decoherence during the free evolution of a
qubit can be done directly by measuring the temporal decay

of the average transverse polarization of its effective spin.
With a projective readout, this information can only be ob-
tained by repeating a sequence which consists in preparing
first a particular state with a nonzero transverse polarization,
letting the spin evolve freely during a time �t, and then
reading one of its transverse components. Starting from state
�0�, the simplest experiment would consist in applying a � /2
pulse to align the spin along the X axis of the Bloch sphere,
and for measurement projecting it onto X after the desired
free evolution. Such an experiment is not possible with the
quantronium, which is projected onto the Z axis at readout.
The phase � accumulated during the free precession has thus
to be converted into a polarization along Z, which can be
done by applying a second � /2 pulse. The two � /2 pulses
form the so-called Ramsey sequence,2 which gives an
oscillation of the Z polarization with �t at the detuning
frequency �
 /2�. Although choosing �
=0 gives a
simple non oscillatory signal that decays in principle as
�1+e−�1�t/2Re	fz,R��t�
� /2 �see Sec. III�, this choice is in-
convenient since any residual detuning would induce a very
slow oscillation that could be misinterpreted as an intrinsic
decay. For that reason, we use here a �
 of several tens of
MHz, which is chosen because it is much larger than the
decoherence rate. The rotation axis of the spin during the
� /2 pulses makes an angle #=arctan��
 /
R0� with the
equatorial plane of the Bloch sphere. The rotation angle of
the so-called � /2 pulses is more exactly � /2�1+$�, where $
is a small positive or negative correction due to two effects.
First, the pulse duration is optimized at zero detuning, by
maximizing the switching probability of the readout junction
immediately after two adjacent � /2 pulses. This duration is
then kept constant for a Ramsey experiment at finite detun-
ing, so that ideally, 0�$=�1+tan�#�2−1 10−2. Second,
the optimization procedure is done with a finite accuracy and
$ can be different from this ideal value. The Ramsey oscil-
lation pR is given by

pR =
1 − a

2
	1 + ae−�t/T1 + �1 + a�e−�t/2T1�fz,R��t��

�cos��
�t + %�
 , �58�

where a=sin2 #−sin $�1−sin2 #� and %=arctan	sin #�1
+sin &� / cos $
 are geometrical corrections. Note that, at large
�t, the envelope of the oscillations has an amplitude and a
saturation value that depends on �
.

Figure 7 shows two typical Ramsey signals measured at
the optimal working point P0 with 
R0 /2�=106 MHz and
��=50 MHz. These two signals differ significantly although
they were recorded the same day with the same experimental
protocol: Ng is first tuned so that the central frequency of the
spectroscopic line is minimum and the Ramsey fringes are
then recorded at a speed of 1 point per second, the longest
record �middle frame of Fig. 7� taking thus 17 minutes. The
relative nonreproducibility between the two records is typical
of what we have observed during several months of experi-
mentation. It is attributed to the frequency drift induced by
the 1/ f charge noise. This drift is partly continuous and
partly due to sudden jumps attributed to a few strongly
coupled charged TLFs, as mentioned in Secs. II and III.

FIG. 6. Experimental T1 values measured at Ng=1/2 as a func-
tion of 	 �left panel�, and at 	=0 as a function of Ng �right panel�.
The vertical line separating the two panels corresponds to the opti-
mal point P0= �Ng=1/2 ,	=0�. The dashed line joining the points is
a guide for the eye. The correspondence between 	, Ng, and �01 is
given by the upper horizontal axis. Inset: Example of T1 measure-
ment. The switching probability p �dots� is measured as a a function
of the delay t between a � pulse and the readout pulse. The fit by an
exponential �full line� leads to T1 �0.5 �s at P0 in this example�.
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These sudden jumps are reversible and induce correlated
phase and amplitude jumps of the Ramsey fringes, as shown
by the arrows in the bottom panels of Fig. 7. The figure also
shows a fit of the external envelope of the fringes to Eqs.
�58� and �27�, valid for a quadratic coupling to a static charge
noise �this choice will be explained in Sec. IV D�. The values
of T1 and of the sensitivity to noise Eq. �52� being known,
the fitting parameters are the amplitude and saturation value
of the fringes, and the variance ��

2 of the noise. The corre-
sponding effective T2 time is 300±50 ns for this record, but
it is found to vary in the range 200–300 ns �see, for instance,
top panel of Fig. 10� depending on our ability to set the
working point precisely at P0 and on the probability that the
system stays at that point during a full record.

A series of Ramsey oscillations measured at different
working points P is shown in Fig. 8. Since 
01 and therefore

R0 �at constant microwave amplitude� vary with P, the mi-
crowave frequency was varied in order to keep �
 between
40 and 100 MHz and the pulse duration was varied to main-
tain the rotation angle close to � /2. Note that the mean level
and the amplitude of the oscillations vary due to these �

changes. A direct comparison between the Ramsey patterns
shows that T2 decreases dramatically when P is moved away
from P0. More precisely, each curve gives a value T2�P� with

an uncertainty of about 30%, which is plotted on Fig. 15.

2. T2 measurement with the “detuning pulse” method

Probing decoherence at different working points P with
the Ramsey method presented above requires recalibrating
for each P the frequency and duration of the two � /2 pulses.
Now, the � /2 pulses and the free evolution period probing
decoherence do not have to be performed at the same work-
ing point. It is thus experimentally more efficient to perform
the � /2 rotations always at the optimal point P0 with fixed
optimized microwave pulses, and to move adiabatically to
any point P where decoherence is to be measured, between
these pulses. This scheme, which leads also to the coherence
time T2�P�, is referred in the following as the “detuning
pulse” method. It has been demonstrated by moving back
and forth the working point from P0 to P with a trapezoidal
Ng or 	 pulse of duration �t2 inserted in the middle of a
Ramsey sequence. Since the qubit frequency is not the same
at P, the switching probability oscillates with �t2 at a new
detuning frequency �
2�P� different from �
. These oscil-
lations decay with the characteristic time T2�P�. The adiaba-
ticity criterion mentioned in Sec. II A 1 is easily satisfied
even with a rate of change �� /�t as fast as 0.1/ns. In our
experiment the shortest rise and fall times tr were 10 and
60 ns for Ng and 	, respectively. This method, which is of
course limited to working points P where T2�P�� tr, has

FIG. 7. Ramsey signals at the optimal point P0 for 
R0 /2�
=106 MHz and ��
50 MHz, as a function of the delay �t be-
tween the two � /2 pulses. Top and middle panels: solid lines are
two successive records showing the partial irreproducibility of the
experiment. Dashed lines are a fit of the envelope of the oscillations
in the middle panel �see text� leading to T2=300 ns. The dotted line
shows for comparison an exponential decay with the same T2. Bot-
tom panels: zoom windows of the middle panel. The dots represent
now the experimental points whereas the solid line is a fit of the
whole oscillation with �
 /2�=50.8 MHz. Arrows point out a few
sudden jumps of the phase and amplitude of the oscillation, attrib-
uted to strongly coupled charged TLFs.

FIG. 8. Ramsey oscillations as a function of the delay �t be-
tween the two � /2 pulses, for different working points located on
the lines Ng=1/2 �left column� and 	=0 �right column�. The Rabi
frequency is 
R0 /2�=162 MHz for all curves. The nominal detun-
ings �� are 50, 53, 50, 50, 40, 100, and 80 MHz �left, top to
bottom� and 35–39 MHz �right�. Dots are experimental points
whereas full lines are exponentially damped sinusoids fitting the
experimental results and leading to the T2 values reported on
Fig. 15.
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been used in the ranges �	��0.1 and �Ng−1/2��0.05. Ex-
amples of experimental curves are shown on Figs. 9 and 10.
Each curve leads to a T2�P� value with a 50% total uncer-
tainty; these are also shown on Fig. 15.

3. T2 measurement from resonance line shape

When the decoherence rate becomes comparable to the
Rabi frequency, time domain experiments using resonant
pulses can no longer be performed and one has to operate in
the frequency domain. In the linear response regime, i.e., at
low microwave power, the shape of the resonance line re-
corded during continuous microwave excitation is simply the
Fourier transform of the envelope of the free evolution decay
�i.e. the Ramsey signal�. One has T2=k / ��W� with W the
resonance full width at half maximum and k a numerical
coefficient that depends on the line shape: k=1 for a Lorent-
zian, k=1.6 for a Gaussian, etc. In order to reach the linear
regime, the line shape is recorded at different decreasing
microwave powers until its width saturates at the lower
value. At that stage, the signal to noise ratio is usually small
and the line shape has to be averaged over a few minutes. A
series of resonance lines is shown on Fig. 11, together with
their positions as a function of the working point �which
leads to EJ and EC as previously mentioned�. The rapid
broadening of the line when departing from P0 is clearly
visible. Line shapes at Ng�1/2 are structured with several
subpeaks that are stable only on time scales of a few minutes.
We take this again to be due to the presence of large indi-
vidual charged TLF’s. At 	�0, the lines are smoother but
the low signal to noise ratio in the linear regime does not
really allow a discrimination between a Lorentzian or a
Gaussian shape. We thus calculated a T2�P� using an inter-

mediate value k=1.3 and with an extra 30% uncertainty.
These T2’s with typical uncertainty 50% are also added to
Fig. 15. Finally, the line shape at P0 is averaged over 10 min
and is shown on Fig. 11. Its exact shape is discussed in Sec.
IV D.

C. Coherence time of spin echoes TE

In NMR,31 the spin-echo technique is a standard way to
cancel the line shape broadening of an ensemble of spins due
to the spatial inhomogeneity of the magnetic field. In our
case, there is a single spin �i.e., the quantronium� measured
repetitively and the echo technique can compensate for a
drift of the transition frequency during the time needed
�about 1 s� for the repeated measurement to obtain a prob-
ability p. The method thus cancels a low-frequency temporal
inhomogeneity and leads to a more intrinsic coherence time
TE�T2 independent of the measurement time of p. In prac-
tice, the spin-echo sequence is a modified Ramsey sequence
with an extra � pulse placed symmetrically between the two
� /2 pulses. This � rotation around the same axis as that of
the � /2 pulses makes the spin trajectory along the equator
longer or shorter depending on whether �01 increases or de-
creases. Consequently, the random phases accumulated be-
fore and after the � pulse compensate exactly if the fre-
quency does not change on the time scale of a sequence.

In Fig. 12, we show a series of echo signals recorded at P0
by sweeping the delay �t between the two � /2 pulses while
keeping constant the delay �t3 between the � and second
� /2 pulses. This protocol results in an oscillation p��t�
whose amplitude first decays as the usual Ramsey signal, and
has then a second maximum at �t=2�t3. Note that at this
precise echo time, the value of p is an oscillation minimum.
By taking advantage of the time stability of our pulse se-

FIG. 9. Phase detuning pulse technique for measuring T2. Top:
Ramsey signal at the optimal point P0, with ���50 MHz, when no
detuning dc pulse is applied. The dashed line corresponds to an
exponential decay with T2�P0�=200 ns. Bottom: signal obtained
with a delay �t=275 ns between the two � /2 pulses �corresponding
to the dashed vertical line of the upper panel� and with an adiabatic
current pulse maintaining 	 /2�=0.063 during a time �t2. The os-
cillation of the signal with �t2 decays with a characteristic time of
about 70 ns �note the different horizontal scales on the two graphs�.
The pictograms on the right illustrate the two � /2 microwave
pulses and the Ib�t� signal.

FIG. 10. Charge detuning pulse technique used for measuring T2

at four points P= �0,1 /2+�Ng�. Dots are experimental points
whereas full lines are fits using Gaussian damped sinusoids at fre-
quencies �
��Ng�. The extracted T2 are indicated on each panel.
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quencer, it was possible to map directly this minimum pE by
sweeping �t while keeping the � pulse precisely in the
middle of the sequence, as shown in Fig. 13. Ideally, at zero
detuning, this mapping of pE is expected to increase as
	1−e−�1�t/2fz,E��t�
 /2 �see Sec. III�. In practice, one has
once again to take into account geometric corrections due to
the finite detuning, to the finite duration of the � /2 and �
pulses, and to the inaccuracy of their rotation angles. Using a
generalized Bloch-Redfield approach, we find

2pE = 	1 − �a1 + a2e−�1�t/2 + a3e−�1�t�


− e−�1�t/2��1 − a4�fz,E��t�

+ a5 Re	e−i��
�t+!1�/2fz,R��t�
 + �a6e−�1�t/4

+ a7e+�1�t/4�Re�e−��
�t+!2�/2fz,R��t

2
��� , �59�

where the ai’s are small geometrical coefficients that depend
only on the angle # and on the errors in the microwave pulse
durations. The latter terms of Eq. �59� show that on top of the
expected increase of pE mentioned above, pulse imperfec-

tions induce small oscillations of pE whose damping is given
by the Ramsey function fz,R rather than by the echo function
fz,E.

Experimental pE��t� curves recorded at P0 and at differ-
ent working points are shown on Figs. 13 and 14, respec-
tively. A fit using Eq. �59� is shown on Fig. 13 and leads to
TE�P0��550 ns�T2, which shows that part of the noise oc-
curs at low frequency and is efficiently removed by the echo
technique. Note that a naive exponential fit of the bottom
envelope of pE��t� would have given about the same TE.
Then, TE�P� values with a 30% uncertainty are extracted
from each curve of Fig. 14 and reported on Fig. 15. A quan-
titative analysis of TE�P� is given below.

D. Discussion of coherence times

A summary of all the coherence times �T2 ,TE� measured
during free evolution using the various methods described
above is given on Fig. 15. These results are in good agree-
ment with each other and are comparable with those of our
previous work.3 As expected, T2 is maximum at P0 and de-
cays by more than two orders of magnitude for Ng or 	
variations of 0.1 Cooper pairs or 0.3 phase turns, respec-
tively. This result clearly validates the concept of the optimal
working point. Moreover, while T2 decreases rapidly when
departing from P0, the estimated sensitivity to EJ noise given
by Eq. �54� either decreases or stays constant. We thus con-
clude that EJ noise has a negligible contribution to decoher-

FIG. 11. Top panels: line shape �thin lines� and central position
�dots� of the resonance lines as a function of 	 at Ng=1/2 �left� and
as a function of Ng at 	=0 �right�. The optimal point P0 corresponds
to the double arrow in the center of the graph. Note the two differ-
ent vertical scales and the occasional substructure of resonance
lines pointed out by small arrows. Bold lines are fits of the peak
positions leading to EJ=0.87kB K, EC=0.66kB K, and d�13%.
Bottom panel: asymmetric line shape recorded �dots� at P0 with a
microwave power small enough to desaturate the line. The dashed
line is the theory, with a T� that corresponds to that of Fig. 7. The
solid line is the convolution of this theoretical line and of a Lorent-
zian corresponding to a decay time of 600 ns �see text�.

FIG. 12. Spin echoes �bold lines� obtained at the optimal point
P0 with a detuning ���50 MHz. Pictograms illustrate the experi-
mental protocol: the delay �t3 between the � pulse and the last � /2
pulse is kept constant while altering the timing of the first � /2
pulse. Each panel corresponds to a different �t3. Vertical arrows
indicate the sequence duration �t=2�t3 for which the echo ampli-
tude is expected to be maximal and where p= pE is minimum. For
the sake of comparison, the corresponding Ramsey signal �thin
lines� is shown in all panels.
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ence in this device at all working points except possibly at
P0. Figure 15 also shows that the improvement TE /T2 pro-
vided by the echo technique decreases from a factor of about
2 to about 1 when moving away from P0 in the phase direc-
tion, and increases from about 2 to about 50 when moving in
the charge direction. We try below to provide a quantitative
understanding of these T2�P� and TE�P� variations, using
simple model S��
� noise spectra for �=	 /2� ,Ng. Then, we
discuss the decay of Ramsey fringes, pR��t�, and of echo
signals, pE��t�, away from P0. Finally, we discuss what lim-
its coherence at P0.

1. Noise spectral densities and T2,E„P… dependences

The fit to theory of the experimental T2�P� and TE�P�
curves of Fig. 15 is performed in the following way. The
dephasing factors fz are computed numerically according to
the theoretical expressions of Sec. III and multiplied by the
relaxation term exp	−�t /2T1�P�
, which is known from the
independent measurements of Fig. 6; the coherence
times correspond to a decay of these products by a factor
exp�−1�. First, we compute only the first order contribution
of � noises �considered here as Gaussian� by numerical inte-
gration of Eqs. �17� and �19�, using Eqs. �49� and �51� for the
D�,z’s. Microscopic charge and phase noises being character-
ized by 1/ f spectra at low frequency and noises due to the
driving and readout subcircuits being characterized by white
spectra below 10 MHz �see Sec. II C�, we start the fit using
for ScNg

�
� and Sc	/2��
� linear combinations of 1 / f and

FIG. 13. Echo signal pE �linked big dots� measured at the opti-
mal point P0 by keeping a � pulse precisely in the middle of the
sequence while sweeping the sequence duration �t �pictogram�.
The Rabi frequency is 
R0 /2�=130 MHz and the detuning
��=20 MHz. For comparison, the Ramsey signal �oscillating line�
and its envelope �dashed line leading to T�=450 ns� are also
shown. The dotted line is a fit of pE that leads to the characteristic
decay time of fz,E, T�,E=1.3 �s, and that shows that the � /2 pulses
were actually 15% too short whereas the � pulse was correct. The
resulting echo time is TE�600 ns. Inset: comparison between pE

�linked dots� and the echo signal recorded with a fixed � pulse
�solid line�, as presented in Fig. 12.

FIG. 14. Echo signals pE��t� measured �dots� at different work-
ing points indicated in each panel, with a Rabi frequency 
R0 /2�
=140 MHz and ��
50 MHz. Full lines are exponential fits lead-
ing to TE values reported on Fig. 15. Note that the amplitude of the
signal depends on the working point.

FIG. 15. Echo times TE �open circles� and coherence times T2

measured from the resonance linewidth �solid dots�, from the decay
of Ramsey signals �triangles�, and from the detuning pulse method
�squares�, at Ng=1/2 as a function of 	 �left panel� and at 	=0 as a
function of Ng �right panel�. The full and dashed lines are best fits
�see text� of TE and T2 times, respectively, leading to the phase and
charge noise spectral densities depicted at the bottom. The spectra
are even functions of 
.
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white spectral densities. Due to the divergence of the 1/ f
contributions as 
→0, we introduce an infrared cutoff in the
integration, 
ir=1/ tmeas, where tmeas=1 s is the measurement
time of a single data point in a Ramsey or echo signal. Note
that although this cutoff could be defined more rigorously by
taking into account the exact measuring protocols,3 this com-
plication is of no benefit here because the computed coher-
ence times depend only logarithmically on 
ir. At this stage,
the fit �not shown� captures the T2�P� dependencies but does
not capture the large gain g=TE /T2 observed far from
Ng=1/2. This problem was expected since the echo tech-
nique is inefficient in the presence of high-frequency noise
and because the gain deduced from Eqs. �21� and �22� in the
case of a 1/ f noise is g��ln�tmeas /T�� / ln�2��5 over the
explored range of T2. Consequently, SNg

�
� has to decrease
faster than 1/ f above a certain frequency. We thus introduce
a high-frequency sharp cutoff 
c in the spectrum ScNg

�
� as
a new fitting parameter. The new fit �not shown� is then in
fair agreement with the data except in the vicinity of P0
where computed coherence times diverge due to the cancel-
lation of the D�,z’s. Therefore, second order contributions
have now to be included at this point using the �2
01/��2’s
given by Eqs. �50� and �52�. For the sake of simplicity, �2

noises are first treated as Gaussian noises characterized only
by their spectral densities S�2 estimated from the autoconvo-
lution of S�. This rough approximation leads to dephasing
times at P0 correct within a factor better than 2. We show in
this way that the contribution of 	2 is completely negligible
with respect to that of Ng

2. The calculation is then redone
properly using Eqs. �27� and �31�. Finally, the dephasing
factors associated with Ng, 	, and Ng

2 are multiplied together.
This procedure neglects the effect of correlations between �
and �2, which are relevant only when both contributions are
of same order, namely, in a very narrow range in the vicinity
of P0. Moreover, our results are not affected by correlations
between Ng and 	, which would exist if both noises were to
be due to the same underlying mechanism, since the cou-
pling coefficient �2
01/�Ng�	 for the cross noise ScNg−	�
� is
zero along �	 ,Ng=1/2� and �	=0,Ng� lines. The final fit
shown on Fig. 15 leads to ScNg

�
�=1.6 10−6 / �
� for
�
��
c=2��0.4 MHz and to Sc	/2��
�=0.9�10−8 / �
�
+6�10−16/ �rad/s�.

First we discuss the charge noise. The amplitude coeffi-
cient for the 1/ f charge noise is in the range expected for a
background charge noise ScNg

BCN of microscopic origin �see
Sec. II C�. The high-frequency cutoff 
c, necessary to pro-
vide even a qualitative fit, is an important result that had not
been anticipated and that calls for a direct measurement of
charge noise in the megahertz range, perhaps using a rf
single-electron-transistor electrometer.44 The white noise
contribution to charge noise due to the gate impedance Zg,
deduced from Eqs. �5� and �16�, provides a very large T�

�1 ms; this is compatible with our assumption of a high-
frequency cutoff. Note that this cutoff is only related to the
classical part of the charge noise and does not preclude the
possibility that charge TLFs might absorb energy at high
frequencies, and thus relax the qubit.28

We now turn to the phase noise. The presence of 1 / f
phase noise is similar to the unexplained flux noise found in

SQUIDS �see Sec. II C�, although its amplitude corresponds
here to a standard deviation ��/�0

about ten times larger
�spectral density 100 times larger� than that usually
reported.30 The value of the white phase noise of
�6�10−16/ �rad/s� is about twice the estimated out-of-
equilibrium noise expected from the AWG, whereas the im-
pedance YR is expected to contribute by less than one percent
more to this white spectrum. This white phase noise contri-
bution is responsible for the low efficiency of echoes at
	�0, Ng=1/2.

2. Temporal decays of Ramsey and echo signals

The phase and charge noise spectra mentioned above im-
ply precise shapes for the temporal variations of Ramsey and
echo signals. For 	�0, the dominant contribution to deco-
herence arises from the first order contribution of the phase
noise Sc	/2�. The numerical integration of Eqs. �17� and �19�
predicts that the Ramsey function fz,R��t� involved in pR

should be close to a Gaussian at small �	� and should evolve
towards an exponential at larger �	�, whereas the echo decay
function fz,E��t� is expected to be almost exponential at all
points. However, the contribution of the relaxation and of the
second order noise at small 	 on the first hand, and the con-
tribution of the geometrical corrections included in Eqs. �58�
and �59� on the second hand, favor exponential variations at
short times �t�T2,E. Consequently, we find that the Ramsey
signals are expected to decay more or less exponentially, as
we observe on the left panels of Fig. 8, where the data were
phenomenologically fitted by exponentially damped sinuso-
ids. The echo variations shown on the left panels of Fig. 14
are exponential as expected, and are fitted accordingly. For
Ng�1/2, the dominant contribution to decoherence has been
found to be a first order 1 / f charge noise truncated at
0.4 MHz, which is actually quasistatic according to Sec.
II C, since 
cT2,E�1. Consequently, if this noise is really
Gaussian, fz,R should be given by Eq. �23�, i.e., purely
Gaussian. The decay should fit to Eq. �58�, which includes
the relaxation contribution and geometrical errors. Now, it
was found that this equation does not fit the data well, even
with unreasonably large geometrical errors, because oscilla-
tions survive much too strongly at large time �t�T2. Con-
sequently, Fig. 8 shows an empirical fit with exponentials.
This mismatch between the simple theory and the experi-
ment might be attributed to the non Gaussian character of the
1/ f charge noise, which is known to contain large discrete
TLF’s as already mentioned and as observed in the line
shapes. Depending on the distribution of these large fluctua-
tors, Eq. �38� might be applicable. But such a formula gives
an exponential decay for the ensemble average over all pos-
sible distributions of TLFs and is not supposed to describe
quantitatively the non-self-averaging decay of single Ramsey
samples �like those we have measured�, for which a few
TLFs are expected to dominate. Our experimental pR’s could
be compatible with a model which includes a dominant TLF
inducing an initial Gaussian-like decay at small times �t
�T2, and a large collection of further TLF’s responsible for
the exponential-like tail of the decay. In the same way, fz,E is
expected to decay as exp	−��t /TE�n
 with n'3 if the quasi-
static 1 / f noise is Gaussian. The rather exponential character
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of the measured pE’s �see the right hand panels of Fig. 14�
also suggest that the non-Gaussian character of the noise
lowers the exponent n, as predicted by Eq. �39�. On the other
hand, the higher sensitivity of pE to geometrical errors �com-
pared to pR� also favors an exponential decay. To summarize,
the decay times T2,E are well explained, but the temporal
dependence of the functions fz,E�t� is not fully accounted for,
possibly due to the non-Gaussian character of the charge
noise.

3. Decoherence at the optimal point P0

Figure 15 shows that the best fit away from P0 automati-
cally leads to correct T2,E values at P0. Knowing from the
fitting procedure that the phase noise gives a negligible
contribution to decoherence at this point, the following
question arises: Can the quasistatic 1 / f charge noise
explain quantitatively the Ramsey decay shape at P0? To
answer this question, we plot on Fig. 7 the theoretical decay
exp	−�t /2T1
�1+ 	7.3��t /T��
2�−1/4 where the second term
is a simple rewriting of Eq. �27�, with T�=620 ns calculated
from the fitted noise spectrum ScNg

�
�. This curve is seen to
be in good agreement with the envelope of the best experi-
mental pR��t� records. Whereas it is close to exponential at
�t T2, it predicts a significantly larger signal at long times,
as we always observe. These results suggest that coherence
at the optimal working point P0 is limited by second order
microscopic static charge noise. Do the data in the frequency
domain also support this conclusion? First, we observe on
Fig. 11 that the resonance line at P0 is asymmetric, which is
a key feature of decoherence due to a second order noise at
an optimal point. The line has indeed a tail on its higher-
frequency side because Ng noise can only increase �01, which
is minimum at P0. More precisely, the intrinsic theoretical
line shape, i.e., the Fourier transform of Eq. �27�, is nonzero
only at ��=�−�01'0, is proportional to ��−1/2 exp�
−2���T� /7.3� and is to be convolved with the Lorentzian
line shape due to relaxation. A subtle point already men-
tioned for 1 / f noise is that decoherence data are actually
dependent on the exact experimental protocol used to aver-
age them. In particular, T� depends on the averaging time
through the infrared cutoff introduced in the calculation of
�Ng

	see Eq. �27�
. The 1 Hz cutoff used for interpreting pR

is no longer relevant for interpreting the line shape, which
was averaged over several records of 10 min each, with a
precise tuning of Ng before each record. The corresponding
cutoff is of order of 1 / �600 s� and the new T� value analo-
gous to the 620 ns used in the time domain is now 415 ns.
Figure 11 shows the corresponding theoretical line shape,
which takes into account this T� and T1. This line is signifi-
cantly narrower than the experimental one. This mismatch
cannot be reduced by changing T� �i.e., the infrared cutoff or
the noise amplitude� since the line would be broadened only
on its right side. Once more, this discrepancy might be at-
tributed to the non Gaussian character of charge noise. To
quantify the mismatch, we empirically fit the experimental
line to the theoretical one convoluted with an additional
Lorentzian. The width of this Lorentzian leading to the best
fit corresponds to a characteristic decay time of 600 ns. This

characteristic time can be used to place an upper bound for
the EJ noise. Indeed, attributing part of the additional contri-
bution to this noise, assuming Sc	EJ/EJ

=A / �
�, and applying
Eq. �17� with the same infrared cutoff as above, leads to
A� �3�10−6�2, a value to be compared to the �0.5�10−6�2

mentioned in Sec. II C. In conclusion, decoherence at P0 is
dominated by microscopic charge noise at second order, the
EJ noise contributing at most for 40% and probably much
less. Finally, we point out that pure dephasing is efficiently
suppressed at P0 with the echo technique, due to the ultra-
violet cutoff of ScNg

�
�. Indeed, the measured TE=550 ns
corresponds to a dephasing time T�,E=1.3 �s, partially hid-
den here by the short T1 of the sample. A summary of these
results is provided in Table I.

V. DECOHERENCE DURING DRIVEN EVOLUTION

In the presence of a microwave driving voltage, the quant-
ronium dynamics is best described in the rotating frame, as
already mentioned in Sec. III D. Due to decoherence, the
precession of the effective spin is progressively dephased

after a characteristic coherence time T̃2 and, after some time

T̃1, the spin is almost depolarized because �
R�kT in our
experiment. In this section, we will describe the measure-

ments of T̃2 and T̃1 at the optimal point P0. We will compare
them to the results of Sec. III D and see if they can be un-
derstood from the noise spectra introduced in the preceding
section.

A. Coherence time T̃2 determined from Rabi oscillations

The coherence time during driven evolution is directly
obtained from the decay of Rabi oscillations since the ground

state �0�= ��0̃�+ �1̃�� /�2 is a coherent superposition of the
eigenstates under driven evolution. A series of Rabi experi-
ments performed at the optimal point P0 on resonance
��
=0� is shown in Fig. 16. These decays can be fitted with
exponentially damped sinusoids oscillating at 
R0, whose

corresponding decay times T̃2 are reported in Fig. 17 as a
function of the Rabi frequency 
R0 /2�, in the range

1–100 MHz. The decay time T̃2 is found to be almost con-
stant at 480 ns under these conditions. This value being sig-
nificantly shorter than 4T1 /3, it gives access to T�=��

−1

=1.5±0.5 �s using Eq. �45�, �̃2=3�1 /4+�� /2. Then, one
deduces from ����Sc	
z

�
R0� that Sc	
z
�
� is, at P0, con-

stant at about �1.5–3��105 rad/s in the whole 1–100 MHz
range. Being obtained at the optimal point, the latter value
should be explained either by the first order noise of EJ or by
second order noises Ng

2 and 	2. The EJ noise, being of the 1/ f
type, cannot explain the constant Sc	
z

�
�. Then, assuming
that the classical noise on Ng is negligible at all frequencies
above the low-frequency cutoff of 0.4 MHz found in the pre-
vious section, the autoconvolution of ScNg

�
� has a negli-
gible weight in the frequency range considered here and
Sc	
z

�
� can only be due to the 	2 noise, whose spectral
density is essentially given by the autoconvolution of the
white 	 noise introduced previously. Using a high-frequency
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cutoff much higher than 100 MHz indeed leads to a constant
Sc	
z

�
� as observed. Nevertheless, we have not found a
plausible phase noise spectrum Sc�	/2���
� that could account
for the measured value of Sc	
z

�
� using Eq. �50�.
In order to test the �̃2��� dependence predicted by Eq.

�45�, a series of Rabi precession experiments was also per-

formed at P0 as a function of the detuning �
, using a fixed
microwave power corresponding to a Rabi frequency of

R0 /2�=15.4 MHz on resonance. The data are also pre-

sented on Fig. 17 together with the �̃2 expression given by
Eq. �45�, plotted using the T1, T�, and T� values determined
previously.

B. Relaxation time T̃1 determined from
spin-locking experiments

The relaxation time T̃1 can be obtained using the spin-
locking technique developed in NMR. After having prepared

TABLE I. Summary of the relevant spectral densities, of the sensitivity coefficients to noise, and of the characteristic times characterizing
decoherence at the optimal point P0. Angular frequencies in the formula have to be expressed in rad/s. Note that these evaluations take into
account experimental errors of 2�10−3 in 	 /2� and of 3�10−3 in Ng, made when tuning the working point.

Noise �=Ng �=	 /2� �=	EJ /EJ Total Measured

Gate Micro. Readout Micro. Micro.

S��
01�
�s/rad�

�3–4�10−9�2 ? �20�10−9�2 ? ?

D�,�

�1011 rad/s�
1.93 3.8d�0.12 �0.003

T1 1–2 �s ? 5–10 �s ? ? 0.8−1.6 �s 0.5−1 �s

Sc� �
01�
�s/rad�

�2�10−9�2 �1.3�10−3�2 /

�
 /2���0.4 MHz

AWG: 
�30�10−9�2

YR : 
�2�10−9�2
�10−4�2 /
 ��3�10−6�2 /


D�,z

�2
01/��2

�1011 rad/s�

�0.01
2.9

�0.02
−8.5

0.85

T� 1 ms-1 s 0.6 �s 0.1-1 ms �50 �s �0.7 �s 0.6 �s 0.6 �s T2=0.3
�s

T�,E - 1.3 �s 0.1-1 ms - ? 1.3 �s 1.3 �s TE=0.55
�s

FIG. 16. Decay of the Rabi signals at the optimal point P0 for
different Rabi frequencies �R0=
R0 /2�. The experimental data �os-
cillating solid lines� are fitted by exponentially damped sinusoids
�dotted lines in the top panels�, while their lower envelopes are

fitted by exponentials �monotonous solid lines� leading to the T̃2

values reported in Fig. 17.

FIG. 17. Characteristic decay times T̃2 of the Rabi oscillations at
the optimal point P0, as a function of the Rabi frequency �R0 �left
panel� at zero detuning ��, and as a function of �� �right panel� at

�R0=15.4 MHz �dotted vertical line�. T̃2��R0 ,��=0� turns out to be
a constant of order 0.48 �s �left solid line�. The difference with
4/3T1 leads to an estimate for T�=1/��. The right solid line corre-
sponds to Eq. �45� plotted using the experimentally determined val-
ues of T�, T1, and T�.
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the fictitious spin along an axis in the equatorial plane of the
Bloch sphere, the effective field is immediately oriented par-
allel or antiparallel to the spin. Experimentally, the spin is
prepared along the Y axis using a resonant ��
=0� � /2
pulse around the X axis. A microwave gate voltage with a
phase shifted by ±� /2 is then applied so that the driving
field is parallel �or antiparallel� to the prepared spin state,

which becomes either �0̃� or �1̃�, respectively. The polariza-
tion along the prepared direction then decays exponentially

with a decay time T̃1 called in NMR the relaxation time in
the rotating frame.31 A second � /2 or a 3� /2 pulse is then
applied around the X axis after a variable delay in order to
measure the remaining polarization in the rotating frame.
This decay measured with a locking microwave field of

R0 /2�=24 MHz is shown in Fig. 18, together with the en-
velope of a Ramsey signal measured at �
 /2�=8 MHz and
a relaxation signal recorded during free evolution. The evo-
lution of the spin-locking signals toward equilibrium follows

an exponential law with T̃1=550±50 ns, irrespective of
whether the spin is parallel or antiparallel to the locking
field. This is because the energy splitting �
R0 of the levels

�0̃� and �1̃� in the rotating frame is small, �
R0�kBT. Using

Eq. �42� �̃1=��+ 1
2�1, one obtains again T�=1.5±0.5 �s, in

agreement with the analysis of Rabi oscillations.

VI. DECOHERENCE MECHANISMS IN THE
QUANTRONIUM, PERSPECTIVES, AND CONCLUSIONS

A. Summary of decoherence mechanisms
in the quantronium

We have characterized decoherence in a superconducting
qubit circuit, the quantronium, using techniques adapted
from NMR. We have presented a general framework that
describes these experiments. As expected, we have found
that quantum coherence of the quantronium is maximum at
the so-called optimal point P0, where the decay laws of the
transverse polarization can be significantly non-exponential,

particularly in the presence of 1 / f noise. Similar and
complementary analyses of decoherence have now been per-
formed in other Josephson qubits.28,45–47 We have also de-
rived the noise spectra that characterize the sources leading
to decoherence of the quantronium, at and away from P0. We
have shown that coherence is mainly limited by dephasing
due to charge and phase noises of microscopic origin, and
that relaxation also contributes. An important feature of our
analysis is the introduction of a high-frequency cutoff at
about 0.5 MHz for the classical part of the charge noise
spectrum. Finally, it was shown that in our qubit with
EJ�EC, second order charge noise is dominant at P0.

Although our semiempirical approach obviously did not
aim at providing any definite clues about the exact nature of
the microscopic defects responsible for the noise spectra in-
voked to explain decoherence, the subject is very important
and deserves further studies. To improve our understanding,
more refined models could be built including a finite set of
strongly coupled slow TLFs, with a close-to-continuous
background of weakly coupled ones, including the non-
Gaussian nature of their noise �see Refs. 39 and 43�.

Finally, we point out that some of the NMR methods that
we have used to characterize decoherence in our circuit pro-
vide tools for improving coherence in a qubit. We now dis-
cuss the interest of maintaining quantum coherence with
these methods, and how far we are from meeting the require-
ments for elementary quantum computing.

B. Does driving the qubit enhance its coherence?

The observation that T̃2�T2 suggests that the coherence
is improved by driving the qubit. But what are the reason and
the meaning of this observation? The gain is actually due to
the divergence of the noise spectral density Sc	
�
� at low
frequency. Indeed, when the Rabi frequency is large enough,
the low-frequency fluctuations 	
 are not effective because

the eigenstates �0̃� and �1̃� follow adiabatically the fluctua-
tions of the effective driving field, as predicted by Eq. �42�.
Consider now that a coherent superposition of the two eigen-

states in the rotating frame, #�0̃�+(�1̃�, has been prepared
and that a Rabi field is applied. The superposition then
evolves at the Rabi frequency, and the initial state is re-

trieved periodically with a coherence time T̃2�T2. By en-

coding the qubit in the basis ��0̃� , �1̃��, quantum coherence is
thus maintained during a longer time than for free evolution.
Rabi precession provides a direct test of this result because

the ground state is an equal weight superposition �0�= �0̃�
+ �1̃�. When a coherent superposition of these eigenstates is
prepared, and a locking field applied afterward, the initial

state is frozen with coherence time T̃2�T2 and mixing time

T̃1�T1. Although these two examples show that a qubit state
can indeed be stored during a longer time by driving it, it is
clear that the qubit cannot be used at will during its driven
evolution.

The echo technique can also be regarded as a soft driving
of the qubit aiming at reducing decoherence. As shown in
Sec. IV C, it indeed removes the effect of the low-frequency

FIG. 18. Spin-locking signals �oscillatory lines� obtained at the
optimal point P0, using a detuning ��=8 MHz, a locking micro-
wave power corresponding to 24 MHz, and a final microwave pulse
of � /2 �top� or 3� /2 �bottom�. The bold solid lines are exponential

fits corresponding to T̃1�580 ns. For comparison, the Ramsey en-
velope �dotted line with T2�250 ns� and the longitudinal relaxation
�dashed line with T1�450 ns� are shown.
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fluctuations of 	
. It can be figured as a time-reversal opera-
tion that compensates frequency changes that are almost
static over the duration of the pulse sequence. This method is
in fact more general, and the repeated application of � pulses
can compensate for frequency fluctuations over longer dura-
tions. This so-called bang-bang technique in NMR could be
used for qubits provided that the coherence loss due to the
pulses is small enough.37

C. Coherence and quantum computing

Although the simple methods mentioned above could help
in reducing qubit decoherence, real quantum error correcting
codes are mandatory for quantum computing. These codes
are known to require error rates smaller than about 10−4 de-
pending on the nature of the errors for each logic gate. Pres-
ently, the gate error rate can be estimated at a few percent for
single qubit gates �e.g., the quantronium�, and significantly
more for two qubit gates such as coupled Cooper pair
boxes.48 The coherence time is about a few hundred times
longer than the duration of a single qubit gate operation in
the quantronium, and would be at best a few ten times the
duration of a two qubit gate. Since decoherence is equivalent
to making errors, the quantronium requires an improvement
of coherence time by two or three orders of magnitude. The
operation of a quantum processor based on this qubit circuit,
or on any other one presently developed, thus appears to be a
significant challenge.

This is, however, not a reason to give up because concep-
tual and technical breakthroughs are to be expected in the
rather new field of quantum circuits. Progress in junction
fabrication might in particular lead to a significant increase
of coherence times in Josephson qubit circuits. Furthermore,
it is already close to possible to run simple algorithms such
as Grover’s search algorithm, and to address important ques-
tions in quantum mechanics. The extension of quantum en-
tanglement from the microscopic to the macroscopic world,
and the location and nature of the frontier between the quan-
tum and classical worlds, are two essential issues. For in-
stance, the accurate measurement of the correlations between
two coupled qubits in order to test the violation of Bell’s
inequalities could indeed probe whether or not the collective
variables of qubit circuits follow quantum mechanics. Such
an experiment will become possible as soon as a high fidelity
readout is available, which is clearly an important step to
pass.
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