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It is shown that interlayer spin-singlet Cooper pairing is induced by magnetic interactions in a metallic
antiferromagnet of stacked conductive layers in which each layer is ferromagnetically polarized and they order
antiferromagnetically in stacking direction. As a result, the antiferromagnetic long-range order and supercon-
ductivity coexist at low temperatures. It is shown that TAF�Tc except for in a very limited parameter region
unless TAF=0, where TAF and Tc denote the antiferromagnetic and superconducting transition temperatures,
respectively. It is found that the exchange field caused by the spontaneous staggered magnetization does not
affect superconductivity at all, even if it is very large. The resultant superconducting order parameter has a
horizontal line node and is isotropic in spin space in spite of the anisotropy of the background magnetic order.
We discuss the possible relevance of the present mechanism to the antiferromagnetic heavy fermion supercon-
ductors UPd2Al3 and CePt3Si.
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In this paper, we show that interlayer spin-singlet Cooper
pairing is induced by magnetic interactions in a certain kind
of metallic antiferromagnet. We consider a layered system of
itinerant electrons in which each layer is ferromagnetically
polarized but the majority-spin alternates in stacking direc-
tion. Therefore the magetic order is characterized by the
wave vector Q= �0,0 ,� /c�, where we have assumed the a
and b crystal axes to be parallel to the layers, and the c axis
in the stacking direction, and c denotes the c axis lattice
constant. It is also shown that the exchange field caused by
spontaneous staggered magnetization does not influence su-
perconductivity, however large it is.

The heavy fermion superconductors, such as UPd2Al3 and
CePt3Si, can be candidates of the present mechanism. The
antiferromagnetic long-range order is considered to be char-
acterized by the wave vector Q= �0,0 ,� /c�, both in UPd2Al3
�Ref. 1� and in CePt3Si.2 Superconducting transitions have
been observed at Tc=2.0 and 0.7 K, below the antiferromag-
netic transition temperatures TAF=14.3 and 2.2 K, in
UPd2Al3 �Ref. 3� and CePt3Si,4 respectively. It has been sug-
gested that the magnetic moment is large, i.e., 0.85�B /U, in
UPd2Al3,3 but small, i.e., 0.16�B /Ce, in CePt3Si.2

The order parameter of interlayer spin-singlet pairing has
a horizontal line node. This also agrees with the experimental
results in the compound UPd2Al3. The existence of the line
node is suggested by the nuclear magnetic resonance �NMR�
measurement,5 in which the Hebel-Slichter peak was absent,
and T1

−1�T3 was observed. The singlet state is supported by
the presence of NMR Knight shift5 and the Pauli limited
upper critical field.6,7 In recent angle resolved magnetother-
mal transport measurements,8 twofold oscillation in the rota-
tion perpendicular to the ab plane was observed, while no
oscillation was observed in rotation in the ab plane. These
experimental results are reproduced by the order parameter
of the form of ��k�=�0 cos�kzc�.

Coexistence of superconductivity and magnetism has
been studied in various models by many authors.9–11 In par-
ticular, spin singlet superconductivity in the presence of fer-

romagnetic layers has been studied by many authors.9 In the
models examined in those papers, superconductivity occurs
in a subsystem different from the magnetic layers. In con-
trast, we examine a model in which superconductivity occurs
in electrons on magnetic layers, although the present theory
can be extended to a two-fluid model. Kopaev also studied
superconductivity when only magnetic electrons are
present,10 although it exists only in the vicinity of the domain
wall.

The magnetic structure mentioned above can be modeled
most simply by the Hamiltonian

H = H0 + HU + HJ �1�

with the kinetic energy term

H0 = �
k�

��k�ck�
† ck�, �2�

the on-site Coulomb interactions

HU = U�
i

ni↑ni↓, �3�

and the exchange interactions

HJ =
1

2�
i,j

Jij�Si · S j −
1

4
ninj� . �4�

We have defined Si=
1
2����ci�

† ����ci��, ni=��ni�, and ni�

=ci�
† ci�, where � denotes the vector of Pauli matrices, and

ck� and ci� denote the electron operators. We define Jij
=J�0 for R j =Ri± ĉ, Jij =−J� �0 for nearest neighbor sites
�i , j� on the same layer, and Jij =0 otherwise. Here, Ri and ĉ
denote the lattice vector of the site i and the unit lattice
vector in the c direction. The interlayer antiferromagnetic
exchange interaction J originates from the interlayer super-
exchange or kinetic exchange processes of electrons. The
intralayer ferromagnetic exchange interaction J� expresses
the effect of the exchange Coulomb interaction, which is
usually smaller than U and J, but necessary to stabilize the
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present magnetic structure. The ferromagnetic correlation in
each layer is due to U and J�. However, two-dimensional
�2D� long-range order without order in the c direction cannot
occur due to the thermal fluctuations in the present isotropic
model, however, large U is. Transition to the long-range or-
der occurs only in the presence of interlayer exchange inter-
action J, and the transition to the three-dimensional antifer-
romagnetic long-range order at T=TAF is the only magnetic
transition.

Many examples of compounds which can be modeled by
a 2D Heisenberg ferromagnetic model with antiferromag-
netic interlayer exchange interactions are summarized by a
review article by Jough and Miedema.12 For example, it
was obtained from experimental data that J /J� �8	10−3,
3.4	10−3, and 0.21, TAF=13.8, 16.8, and 18 K, and J� /kB

=18.8, 5.25, and 3.0 K in the compounds Rb2CuCl4, CrCl3,
and NaCrS2, respectively. These compounds have the ferro-
magnetic short-range order in each layer at temperatures
higher than the transition temperature due to the intralayer
ferromagnetic exchange interaction J�, and undergo the long-
range order by the weak interlayer exchange interaction J at
the transition temperature TAF. In many examples, the inter-
layer exchange interactions are antiferromagnetic and much
weaker than the intralayer interaction in most cases. In our
model, we also take into account the on-site Coulomb repul-
sion U in addition to the intralayer exchange interaction J� to
stabilize the ferromagnetic structure in each layer. Later, we
consider a situation in which U
J� as an example, but it is
straightforward to apply the theory to the opposite case
U�J�.

It is well-known due to the Mermin-Wagner’s theorem13

that the purely 2D isotropic Heisenberg model cannot exhibit
any long-range order at any finite temperature. For the long-
range order to be stabilized, an additional Ising type intra-
layer interaction or a three-dimensional �interlayer� interac-
tion is necessary. However, the former does not stabilize the
present antiferromagnetic configuration in the stacking direc-
tion, as observed in UPd2Al3 �Ref. 1� and CePt3Si.2 There-
fore, more or less, interlayer antiferromagnetic interaction
must exist in the present compounds. The physical origin of
the antiferromagnetic interlayer interaction is interlayer ki-
netic exchange or superexchange process. In the former pro-
cess, the interlayer exchange interaction J is written as
J�4t�

2 /U, where t� denotes interlayer electron hopping en-
ergy. Since t� is expected to be small from the crystal struc-
ture, the perturbation theory to derive the above experssion
of J would be justified.

When we apply the Hamiltonian Eq. �1� to the compound
UPd2Al3, we should note that it has been suggested14,15 by
thermodynamic measurements that the magnetic and super-
conducting transitions occur in nearly disjunct subsystems in
this compound. However, even if this is true, the present
theory holds if the superconducting subsystem has a similar
interlayer exchange interaction, which is plausible because
both of the two subsystems have a 5f character and coexist
in the same crystal structure. We discuss an application of the
present theory taking into account the two-fluid model later.

The interaction terms can be rewritten as

HU + HJ =
1

N
�
kk�q

V�k,k�,q�ck+q↑
† ck↑ck�−q↓

† ck�↓ �5�

with

V�k,k�,q� = U − Ĵ�q� − Ĵ�k − k� + q� + Ĵ��q� + Ĵ��k − k� + q� ,

�6�

where Ĵ�q�	J cos�q · ĉ� and Ĵ��q� are the Fourier transforms
of the interlayer and intralayer exchange interactions, respec-
tively. Since we have not specified the lattice structure of the

layer, the expression of Ĵ��q� is not shown, but it does not
depend on qz and must have a peak around q� =0, where q�

= �qx ,qy�. Similarly, the form of ��k� also depends on the
lattice structure of the layer. We have simplified it as ��k�
=���k��+���kz� with ���k��=�2
k�
2 /2m*−� and ���kz�
	−2t� cos�kzc� for convenience, where k� = �kx ,ky�. This
simplification does not essentially change the qualitative re-
sults. In this paper, we examine the system in which t� and
J� are small. We take units with �=kB=1.

First, we describe the magnetic transition. Let us examine
the spin propagator

�Ri − R j,�� = − �T� Si
z���Sj

z�0�� �7�

in the random phase approximation �RPA�. We define the
Fourier transform �q , i�m� by

�q,i�m� 	 �
i


0

�

d� e−i�q·Ri−�m���Ri,�� , �8�

where �m	2�mT denotes the Matsubara frequency, and �
=1/T. If �Q ,0� diverges, it indicates the phase transition to
the magnetic long-range order with Q. If we omit t� and J�,
we obtain

�q,i�m� =
1

2

0�q,i�m�

1 − �U − Ĵ�q��0�q,i�m�
, �9�

where

0�q,i�m� = −
1

N
�

k
T�

n

G�
�0��k,i�n�G�

�0��k + q,i�n + i�m�

�10�

with the bare electron Green’s function G�
�0�. When t�=0, the

free susceptibility 0 is expressed as

0�q,0� = �0�1 − Re��1 − �2kF�

q�
�2�� �11�

at T=0, where �0=m*ab /2��2 denotes the density of states
of the 2D system. We have defined the effective mass m*, the
in-plane Fermi momentum kF�, and the lattice constants a
and b. The maximum �q , i�m� occurs at arbitrary q
= �q� ,� /c� with 
q�
�2kF� and �m=0. This degeneracy is re-
moved by J��0, which is small but exists in practice. Hence
�q , i�m� reaches its maximum at q= �0,0 ,� /c�	Q. It is

easily verified by replacing U− Ĵ with U− Ĵ+ Ĵ� in Eq. �9�.
Furthermore, when we take into account t��0, 0 has a
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peak around q= �q� ,� /c�=Q� with 
q�
�2kF�, but the differ-
ence 0�Q� ,0�−0�0 ,0�� t�

2 is small. Therefore, when
t��0, we must assume J��0 which is small but sufficiently
large for the maximum of  to occur at q=Q, so that the
magnetic order of Q is stabilized.

When these conditions are satisfied, antiferromagnetic
transition occurs at a temperature which satisfies

1 = �U + J�0�Q,0� �12�

from Eq. �9�, where 0�Q ,0�=0�0 ,0�=�0 / �e−��+1�. The
chemical potential � is determined by the equation for the
electron number per site n=2�−1�0 ln�1+e���. Thus we ob-
tain 0�Q ,0�=�0�1−e−�n/2�0�. Therefore we obtain the anti-
ferromagnetic transition temperature

TAF =
n

2�0 ln
�U + J��0

�U + J��0 − 1

�13�

to an ordered state with the wave vector Q= �0,0 ,� /c� when
�U+J��0�1, while TAF=0 otherwise.

In the antiferromagnetic phase, the electron states are af-
fected by spontaneous staggered magnetization. We define A
and B sublattices �sublayers� whose majority spins are up
and down, respectively. We write the electron operators as
ai� and bj� for i�A and j�B. Therefore we have

ni�
A = �ai�

† ai�� =
n

2
+ �m ,

nj�
B = �bj�

† bj�� =
n

2
− �m , �14�

where �Si
z�=−�Sj

z�=m for i�A and j�B. We have defined
�= +1 and −1 in equations, which correspond to �=↑ and ↓
in suffixes, respectively. Corrections to the kinetic energy
due to HU+HJ are taken into account by the mean field ap-
proximation as

HMF = − �
k�

��hMF�ak�
† ak� − bk�

† bk�� �15�

with hMF= �U+J+z�J� /2�m, where z� denotes the number of
nearest neighbor sites in the layer, and the summation �k� is
carried out over the half Brillouin zone. Therefore the total

kinetic energy term H̃0	H0+HMF is written as

H̃0 = �
k�

�����
A ak�

† ak� + ���
B bk�

† bk� + ���ak�
† bk� + bk�

† ak��� ,

�16�

where ���
A =�� −�hMF and ���

B =�� +�hMF. The mean field ap-
proximation is consistent with the RPA, which we have used
to derive TAF, although we have neglected J� in Eq. �13�.

Now, let us examine superconductivity. We will show its
formulation in the antiferromagnetic phase, but it is immedi-
ately reduced to that in the paramagnetic phase by putting
m=0. The exchange interaction HJ contributes to pairing in-
teraction, while it causes the antiferromagnetic transition and
creates the exchange field. We rewrite HJ as

HJ = − �
i�A,j�B

Jij�ij
�s�†�ij

�s�, �17�

where �ij
�s�=2−1/2�ai↑bj↓−ai↓bj↑�. The statistical average

��ij
�s�� is the order parameter of interlayer spin-singlet pair-

ing. Here, we have neglected J�, since it does not have an
important effect on superconductivity if it is small. In Eq.
�17�, it is found that J contributes only to spin-singlet pairing
as an attractive interaction in its first order. In the BCS ap-
proximation, Eq. �17� is written as

HJ � �
k�

����k�ak�b−k−� + H.c.� �18�

with the order parameter

��k� = −
1

2N
�
k���

���Ĵ�k − k���b−k�−��
† ak���

† � . �19�

Therefore we obtain

��k� = �0 cos�kzc� �20�

with

�0 = −
J

2N
�
k���

��� cos�kz�c��b−k�−��
† ak���

† � . �21�

In the same approximation, the on-site Coulomb interaction
HU is ineffective for anisotropic superconductivity.

It has been proposed that in the higher order of J, the
pairing interaction is enhanced by the exchange of
magnons.16 This mechanism has also been examined in the
compound UPd2Al3.17–20 However, since the spin fluctua-
tions are weak at temperatures much lower than the antifer-
romagnetic transition temperature �T�TAF /7�, the pairing
interaction mediated by the magnons is weak.16 Hence, in
this paper, we neglect them in comparison to the direct pair-
ing interaction described in Eqs. �17� and �18�. The present
direct pairing interaction is not mediated by the magnons. In
a broader sense, however, one may regard the present pairing
interaction as mediated by the spin fluctuations because the
superexchange interactions are derived from the virtual pro-
cess of electrons, with which their spins correlate.

When J=0, the present model is reduced to the quasi-2D
Hubbard model. In the perturbation theory based on it, it was
shown that antiferromagnetic fluctuations induce intralayer
singlet pairing near the antiferromagnetic phase.21 However,
the present system is ferromagnetic in each layer. In the ab-
sence of J, the propagator of the fluctuations �q� has a
broad peak around q� �0 as we can see in Eq. �9�, in contrast
to the sharp peak in the antiferromagnetic case, where the
Fermi-surface nesting occurs. Therefore the pairing interac-
tion is not strongly enhanced by the spin fluctuation unless U
is large. Nisikawa and Yamada22 examined the UPd2Al3 on
the basis of a 2D Hubbard model taking into account the
lattice structure, although they did not examine interlayer
pairing. In the presence of interlayer interactions, t� and J,
the spin fluctuations will enhance the interlayer singlet pair-
ing interaction.

From Eqs. �16� and �18�, we obtain
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H = �
k

�k
†M̂�k, �22�

where we have defined �k
†	�ak↑

† bk↑
† a−k↓b−k↓� and

M̂�k� 	 �
��↑

A �� 0 − �*

�� ��↑
B − �* 0

0 − � − ��↓
A − ��

− � 0 − �� − ��↓
B
� . �23�

The Green’s function is defined in matrix form by

Ĝ�k,�� = − �T��k����k
†� . �24�

From the equation of motion, we obtain

Ĝ�k,i�n� = �i�nÎ − M̂�k��−1, �25�

where Î denotes the 2	2 unit matrix. We obtain the quasi-
particle energies, ±EA�k� and ±EB�k�, where EA

2 =E2+F, EB
2

=E2−F, E2=��
2+��

2 +hMF
2 + 
�
2, and F=2���

2���
2 +hMF

2 �
+ 
�
2��

2 /2�1/2. If we define Gij as the �i , j� component of the

matrix Ĝ, we have

�bk�↑
† a−k�↓

† � = G32�k�,� = − 0� ,

�b−k�↓
† ak�↑

† � = − G41�k�,� = − 0� . �26�

Therefore we obtain the gap equation

��k� =
1

4N
�
k�

�Ĵ�k − k�� �
X=A,B

tanh
EX�k��

2T

2EX�k��
��k�� . �27�

In the limit of �0→0, we have EX= 
�X
, where �A=�� +��,
�B=�� −��, and ��=�hMF

2 +��
2 . Therefore we obtain the

equation for Tc

1 =
J

4N
�
k�

� cos2�kz�c� �
X=A,B

tanh��X�k��/2Tc�
2�X�k��

. �28�

It is easily verified that the right-hand side of Eq. �28� ex-
hibits a logarithmic divergence in the limit of T→0, irre-
spective of the value of the exchange field hMF. Logarithmic
divergence, which results from the Fermi-surface instability,
is crucial for the occurrence of superconductivity. Since the
divergence occurs even if hMF is very large, the existence of
a large local magnetic moment as observed in UPd2Al3 �Ref.
3� does not deny the occurrence of superconductivity in the
electrons which have the present magnetic structure. It is
interesting that superconductivity is not influenced by large
spin polarization in each layer, although such polarization
creates the strong exchange field on the electrons responsible
to superconductivity. It is well-known that in ferromagnets,
strong exchange field suppresses superconductivity by Pauli
paramagnetic pair-breaking effect.

This result can easily be verified as follows. The present
superconductivity is due to singlet pairing of ak� and b−k−�

electrons, i.e., spin � electrons on A sublattice and spin −�
electrons on B sublattice. When we define the Fermi surface

of each sublattice, the magnitudes of the Fermi momenta of
those electrons are equal, irrespective of the magnitude of the
Zeeman splitting due to the exchange field in each layer, as
schematically shown in Fig. 1. Therefore the present pair
states are not influenced by the magnetic moments.

Needless to say, interlayer pairing does not mean that the
coherence length in the c-direction �0� is on the order of the
layer spacing. In the present system, �0� is on the order of
vF� /�0, where vF� and �0 denote Fermi velocity in the c
direction and the scale of magnitude of the order parameter
at T=0, respectively. We obtain �0�
c, if t�
�0.

When t� is negligible, the transition temperature Tc is
obtained as follows. Since ��= 
hMF
, we can integrate
cos2�kz�c� with respect to kz� first in Eq. �28�. Unless ����,
the density of states is constant when t��0. The k� integral
is approximated by the �� ±hMF integrals with an effective
cutoff energy Wc, which is on the order of the bandwidth.
More explicitly, it is expressed as Wc= ��W−�−hMF��W−�
+hMF���+hMF���−hMF��1/4, where W and � denote the
bandwidth and the chemical potential measured from the
bottom of the band, respectively. Carrying out the integral,
we obtain

Tc = 1.13Wce
−2/J�0. �29�

Here, it is found that Tc is not influenced by the spontaneous
staggered magnetization g�Bm, as expected from the above
argument.

Figure 2 depicts the antiferromagnetic transiton tempera-
ture TAF and the superconducting transition temperature Tc
scaled by n /�0 and Wc, respectively. These scales have the
same orders of magnitude, i.e., �0�1/Wc. It is found that, as
the order of the magnitudes, the experimental results in
UPd2Al3, TAF=14.3 K and Tc=2.0 K could be explained
within the present mechanism, if the effective bandwidth is
on the order of W=10–100 K, which is realistic for heavy
fermion systems.

Figure 3 shows the values of J�0 and U�0 for a given ratio
of �	�TAF�0 /n� / �Tc /Wc�=TAF /Tc	Wc�0 /n. If we consider
Wc�0 /n�1, the experimental data TAF=14.3 K and Tc

FIG. 1. Schematic figure of the Fermi surfaces of ↑ and ↓ elec-
trons in the A and B layers, and interlayer spin-singlet pairing. The
abbreviation FS�X denotes the Fermi surface of the spin � elec-
trons on the X sublattice, where �= ↑ ,↓, and X=A ,B. The splits of
the Fermi surfaces of the ↑ and ↓ spin electrons do not affect inter-
layer spin-singlet pairing.
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=2.0 K give ��7. Therefore the experimental value of ratio
� can be reasonably reproduced for moderate values of the
coupling constants J and U. We will compare the theoretical
and experimental results more closely below. We obtain
TAF�Tc or TAF=0, except in a very small region of the phase
diagram.

We note that the resultant singlet order parameter is in-
variant under rotation in spin space. The rotational transfor-
mation is made by

R��� = exp�i
�

2
�y� = cos

�

2
+ i�y sin

�

2
. �30�

The electron operators in the rotated space are defined by

�c̃k↑
†

c̃k↓
† � = R����ck↑

†

ck↓
† � , �31�

where ck�=ak� or bk�. It is easily verified that

�
�

��b−k−�
† ak�

† � = �
�

��b̃−k−�
† ãk�

† � . �32�

In addition, the present pairing interaction is rotationally in-

variant, i.e., Ĵ�k ,k�� does not have spin suffixes. Therefore
��k� given by Eq. �19� is isotropic in spin space, irrespective
of the direction of the magnetic order. In fact, the resultant
gap equations �27� and �28� are invariant under spin rotation.

These results may explain the experimental data of the
muon spin rotation measurements in UPd2Al3,23 in which it
was observed that the London penetration depth and the
magnetic susceptibility reduction below Tc are essentially
isotropic, while the total susceptibility remains strongly an-
isotropic. In the present mechanism, not only the singlet na-
ture but also the rotational invariance of the pairing interac-
tion play essential roles in the spin isotropy of ��k�. In
contrast, in the “magnetic exciton” mechanism, the pairing
interaction and the order parameter are anisotropic if the
magnetic system is anisotropic.

The compound CePt3Si is another candidate for the
present pairing mechanism, although the ratio of the transi-
tion temperatures TAF /Tc is much smaller than that in
UPd2Al3. In contrast to UPd2Al3, the critical field largely
exceeds the Pauli paramagnetic limit HP estimated by the
simplified formula HP�1.86�T/K�	Tc�K��1.4 T in
CePt3Si.4 If the present mechanism of singlet pairing is real-
ized in CePt3Si, the large critical field cannot be attributed to
equal spin pairing. It can be explained by an effect of ex-
change field created by coexisting antiferromagnetic long-
range order, which reduces the Pauli paramagnetic pair-
breaking effect.24 It is still controversial whether dominant
pairing in CePt3Si is of singlet or triplet. Recent NMR data
suggests that the gap function may have some novel
structure.25 Thermal transport measurements have suggested
that the order parameter has line nodes,26 which is consistent
with the present theory. It is known that the compound
CePt3Si does not have inversion symmetry. The Rashba
interaction27 has been examined to include it. Yip predicted
that the Knight shift vanishes in the superconductors with
strong Rashba interaction.28

For more close comparison with the experimental data of
UPd2Al3, we consider a two-fluid model.14,15 In order to take
into account the model, we assume two different renormal-
ization factors Zs and Zm for electrons responsible for super-
conductivity and antiferromagnetic order, respectively. We
should note that in actuality there are strong renormalization
effects in the heavy fermion system, not only in the density
of states, but also in the vertex corrections. It is easily veri-
fied by diagrammatical consideration that in terms of Zs and
Zm, the electron mass m0, the density of states �0, the band
width W, and the coupling constants J and U are modified as

m̃a=Zam0, �̃a=Za�0, W̃a=W /Za, J̃a=J /Za
2, and Ũa=J /Za

2, re-
spectively, where a=s ,m. The experimental value �1
=115 mJ/K2 mol �Ref. 14� gives �̃s=1/476 K−1. Equation

FIG. 2. The transition temperatures as functions of J�0. The
solid curves �a�–�d� show the results of �0TAF /n for U�0=0.2, 0.5,
1.0, and 1.5, respectively. The dashed curve shows the results of
Tc /Wc.

FIG. 3. Contour lines for various ratios TAF /Tc in the J-U plane.
The solid curves �a�–�f� are the countour lines for �=2, 3, 5, 10, 20,
and 100, respectively, where �	�TAF�0 /n� / �Tc /Wc�=TAF /Tc

	Wc�0 /n. The dotted curve is that of �=7, which corresponds to
the experimental result of UPd2Al3. The dashed curve shows the
phase boundary between the antiferromagnetic and paramagnetic
�PM� phases at T=0.
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�29� is rewritten as Tc=1.13 Wce
−1/�̃ with �̃= J̃s�̃s, �s

�1/W̃s, and Wc=W̃s /2. Hence Tc=2.2 K gives J̃s=173 K.
The antiferromagnetic transition temperature of Eq. �13� is
written as

TAF =
n

2�̃m ln
�Ũm + J̃m��̃m

�Ũm + J̃m��̃m − 1

. �33�

Here, we simply put n=2 for order estimations. From the

values of J̃s and �̃s estimated above, the values of J̃m and �̃m
can be obtained, if the ratio Zm /Zs is known. Therefore we

only need the values of Zm /Zs and Ũm for estimation of TAF.
However, since they are not known for UPd2Al3 at the
present, we need to assume them. In the assumption, we

require that W̃m is smaller than TAF consistently with the
observation of a large local magnetic moment in UPd2Al3.14

Physically, it is also plausible that Ũm is not much larger than

TAF but larger than W̃m. As an example, let us assume that

Zm /Zs=30, which gives W̃m�8 K�TAF and J̃m�0.19 K. In

this case, if we assume Ũm=20 and 30 K as examples, we
obtain TAF�10 and 21 K, respectively. As another example,

we assume Zm /Zs=20, which gives W̃m�12 K�TAF and

J̃m�0.43 K. In this case Ũm=30 K and 40 K give TAF�16

and 27 K, respectively. The values J̃m�0.19 and 0.43 K ob-
tained in these examples are not outrageous as energy param-
eters in real materials. In fact, J�0.15 and 0.63 K were ob-
tained from experimental data in Rb2CuCl4 and NaCrS2,
respectively.12 Here, J was not estimated as the bare param-
eter but estimated as the dressed �observed� parameter like

J̃m. Although our estimations are crude, the values of TAF
obtained above are on the same order of the experimental
result TAF=14.3 K. Therefore we find that the present
mechanism reproduces consistent orders of magnitudes of Tc

and TAF for appropriate values of Zm /Zs and Ũm.
The result that TAF�Tc except for in a very limited region

unless TAF�0 can be explained physically as follows. In the
present mechanism, both interlayer antiferromagnetic long-

range order and interlayer singlet superconductivity are in-
duced by interlayer antiferromagnetic exchange interaction.
However, strong on-site repulsion contributes to stabilization
of the ferromagnetic structure in each layer, while it does not
contribute to interlayer singlet pairing. Therefore the mag-
netic transition occurs at a higher temperature than the su-
perconducting transition temperature unless the on-site U is
negligibly small.

Interlayer pairing has been studied by many authors.29 In
this paper, we have examined the magnetic mechanism of the
pairing interactions for interlayer singlet pairing, when the
electrons are on the magnetic layers. However, irrespective
of the pairing mechanism, interlayer pairing of the present
type seems to be the most favorable, apart from equal spin
pairing, when the present type of antiferromagnetic long-
range order coexists. Other pairing states, such as intralayer
singlet pairing, are strongly suppressed by the splitting of the
Fermi surfaces of the electrons with up and down spins due
to the antiferromagnetic moment. Even in the two-fluid
model, the exchange field must be induced on the electrons
responsible to superconductivity.

In conclusion, in antiferromagnets with the magnetic or-
der of the wave vector Q= �0,0 ,� /c�, magnetic interactions
may induce the superconductivity of interlayer spin-singlet
pairing, the order parameter of which has a horizontal line
node. It was found that superconductivity and an antiferro-
magnetic long-range order with large localized magnetic mo-
ments m can coexist, and that Tc is not influenced by the
magnitude of m. It was also found that TAF�Tc in most
cases, unless TAF=0. The present model may describe an
essential aspect of antiferromagnetic heavy fermion super-
conductors, such as UPd2Al3 and CePt3Si. The orders of the
magnitude of TAF and Tc and their ratio TAF /Tc�3–7 can be
reproduced by assuming moderate parameter values. The re-
sultant order parameter is consistent with the observations
mentioned above.5–8,23,26
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