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The first-order superconducting fluctuation corrections to the thermal conductivity of a granular metal are
calculated. A suppression of thermal conductivity proportional to Tc / �T−Tc� is observed in a region not too
close to the critical temperature Tc. As T�Tc, a saturation of the correction is found, and its sign depends on
the ratio between the barrier transparency and the critical temperature. In both regimes, the Wiedemann-Franz
law is violated.
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I. INTRODUCTION

In normal metals, in the presence of BCS interaction,
electrons can form Cooper pairs even for temperatures T
larger than the critical temperature Tc. As T�Tc, the pairs
have a finite lifetime, the Ginzburg-Landau �GL� time, in-
versely proportional to the distance from the critical tem-
perature �GL��T−Tc�−1. These superconducting fluctuations
strongly affect both the thermodynamic and transport prop-
erties and for many years have been widely studied both
theoretically and experimentally.1

The first analysis of fluctuation corrections was performed
on electrical conductivity where the pairing leads to three
distinct contributions named the Aslamazov-Larkin �AL�, the
Maki-Thompson �MT�, and density of states �DOS� terms. In
the first one, the formation of Cooper pair leads to a parallel
superconducting channel in the normal phase; the second
takes into account the coherent scattering of impurities of the
�interacting� electrons; finally, the third one is due to the
rearrangement of the states close to the Fermi energy since
electrons involved in pair transport are no longer available
for single particle transport. Both the AL and MT terms lead
to an enhancement of the conductivity above Tc; on the con-
trary, the DOS correction is of opposite sign.

The analysis of superconducting fluctuation corrections to
thermal conductivity dates back to the early 1960s, when
Schmid2 and Caroli and Maki3 found an expression for the
heat current in the framework of the phenomenological time-
dependent GL theory, �TDGL�. More recently, a complete
analysis was performed, in the same framework of the

TDGL, by Ussishkin.4 Abrahams et al.5 first pointed out the
divergence of the thermal conductivity in the vicinity of the
critical temperature due to the opening of the fluctuation
pseudogap in the density of states �DOS� energy dependence
in the homogeneous case. Niven and Smith have shown6 that
Abrahams’s DOS correction ���Gi ln�1/��, �= �T−Tc� /Tc,
Gi being the so-called Ginzburg-Levanyuk parameter� is ex-
actly compensated by the regular Maki-Thompson �MT� one;
hence, all singular first-order fluctuation corrections are can-
celed out. The only surviving contribution to heat conductiv-
ity, the Aslamazov-Larkin �AL� one, is nonsingular in tem-
perature. Therefore, in bulk metals, no singular behavior of
the heat current is expected at the metal-superconductor
phase transition.

In this paper we are interested in the superconducting
fluctuation corrections to the thermal conductivity in a
granular superconductor, an ensemble of metallic grains em-
bedded in an insulating amorphous matrix and undergoing a
metal-superconductor phase transition due to the existence of
pairing interaction inside each grain. The electrons can dif-
fuse in the system due to tunneling between the grains. Ex-
perimentally, these kinds of systems have been investigated,
for example, in Ref. 7. Each Al grain has an average dimen-
sion of 120 Å, while the sample has a linear dimension of the
order of mm, that is, much larger than the superconducting
coherence length. The reason for studying thermal transport
in granular metals is that, depending on the temperature re-
gime, a radically different behavior, as compared with the
homogeneous case, may emerge. In fact, in granular material
�a similar situation occurs in layered superconductors� the
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AL and MT contributions are of higher order in the tunneling
amplitude as compared to the DOS. This effect has been
observed, for example, in the electrical8 and the optical
conductivity9 of layered superconductors and the electrical
conductivity10 of granular systems. Indeed, in granular super-
conductors there is a temperature region in which a singular
correction due to superconducting fluctuations for a quasi-
zero-dimensional system dominates the behavior of the ther-
mal conductivity; such a correction can be either negative or
positive, depending on the ratio between the barrier transpar-
ency and the critical temperature Tc. When the temperature
approaches Tc, the behavior observed in homogeneous sys-
tems is recovered, and the divergence will be cut off to cross
over to the regular behavior. Moreover, a significant differ-
ence with the homogeneous systems is present, the constant
correction at T=Tc being either negative or positive depend-
ing on the above-mentioned ratio. For some choices of the
parameter, a nonmonotonic temperature dependent behavior
of the correction is possible.

A phenomenological approach to granular superconduct-
ors was proposed long ago,11,12 while the microscopic theory
has only been formulated very recently.1,10 The difference
between bulk and granular microscopic theories is mainly
based on the renormalization of the superconducting fluctua-
tion propagator due to the presence of tunneling. This renor-
malization accounts for the possibility that each electron
forms the fluctuating Cooper pair tunnels between neighbor
grains during the Ginzburg-Landau time.

The paper is organized as follows. In Sec. II we describe
and formulate the model. Section III contains the main steps
and assumptions of the calculation of fluctuation propagator.
Its expression, calculated in Ref. 10, is given explicitly at
every order in tunneling in the ladder approximation. By
means of that, DOS, MT, and AL corrections are evaluated.
For each of those corrections, an explicit form for the re-
sponse function is presented. In the final section, we discuss
the overall behavior of the fluctuation corrections to thermal
conductivity as a function of temperature. For temperatures
sufficiently far from Tc, the system behaves as in the zero-
dimensional case. In this region, the correction to the heat
conductivity has a singular behavior: ������0 / �gT��, where
�0 is the classical Drude conductivity for a granular metal,
and it reads

�0 =
8�

3
gTa2−dT , �1�

a being the size of a single grain, d the dimensionality of the
system, and �= �T−Tc� /Tc, the reduced temperature. We de-
fined the dimensionless macroscopic tunneling conductance
gT= ��� /2�t�F�2, with �F the electronic density of states at
the Fermi level, and t the hopping energy. On the other hand,
when the correlation length increases until the distance be-
tween two nearest neighbor grains, the tunneling becomes
important and the correction, exactly at the critical tempera-
ture, reduces to a constant

�� =
1

zgT
	 9

2�

gT�

Tc
−

3

�2
�0.

Connections with the homogeneous metal results are dis-
cussed. In the appendix , we briefly review the evaluation of

the superconducting fluctuation propagator in a granular
metal. Throughout the paper, we set 	=kB=1.

II. THE MODEL

We consider a d-dimensional array of metallic grains em-
bedded in an insulating amorphous matrix, with impurities
on the surface and inside each grain. Even if the analytical
model we use is for a perfectly ordered d-dimensional ma-
trix, the results we found still hold for an amorphous one.
Indeed, one can imagine different possible configurations of
spatial position of grains in the lattice, that is, different dis-
ordered configurations. Consequently, the hopping matrix
shall vary for each sample. By performing the average over
disorder, one gets a model with the same value of coordina-
tion number and hopping energy, t, for different configura-
tions. In other words, our description is correct until the sys-
tem can be described by a dimensionless tunneling
conductance, gT, on a scale which is much bigger than the
typical linear dimension of the grains, a, but smaller than the
macroscopic dimension of the whole sample.

The Hamiltonian of the system reads

Ĥ = Ĥ0 + ĤP + ĤT. �2�

Ĥ0 and ĤP describe the free electron gas and the pairing
Hamiltonian inside each grain, respectively,

Ĥ0 = �
i,k


i,kâi,k
† âi,k + Ĥimp, �3�

ĤP = − � �
i,kk�

âi,k
† âi,−k

† âi,−k�âi,k�, �4�

where i is the grain index, and âi,k
† �âi,k� stands for creation

�annihilation� operator of an electron in the state k= �k , ↑ � or

−k= �−k , ↓ �. The term Ĥimp describes the electron elastic
scattering with impurities. The interaction term in Eq. �2�
contains only diagonal terms.13 Such a description is correct
in the limit

� �  � ET, �5�

where ���F
−1 is the mean level spacing and the smallest

energy scale in the problem, and  the �BCS� superconduct-
ing gap of a single grain, supposed equal for each of them.
ET=D /a2 is the Thouless energy, D being the intragrain dif-
fusion constant. Under the previous assumption, Eq. �5�, one
can safely neglect off-diagonal 1 /g corrections, where g is
the dimensionless conductance of a grain, g=ET /�. Equation
�5� is equivalent to the condition a��0, where �0=�D /Tc is
the dirty superconducting coherence length then, Eq. �2� de-
scribes an ensemble of zero-dimensional grains. In addition,
Eq. �5� states that the energy scale, �−1, with � being the

mean free time, related to Ĥimp is much larger than .
The grains are coupled by tunneling. The tunneling

Hamiltonian is written as �t�ET�

ĤT = �
i,j�

�
pq,�

�tij
pqâi,p�

† âj,q� + H.c.� . �6�
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We assume that the momentum of an electron is com-
pletely randomized after the tunneling. Finally, assuming that
the system is macroscopically a good metal, t��, we can
safely neglect the Coulomb interaction, it being well
screened,14 and weak localization corrections too, at least for
not too low temperatures,17 i.e., when T�gT�.

The tunneling heat current operator is given as

ĵ�heat� = ia�
i,j�

�
pq�

�
ntij
pqâi,p�

† âj,q� − H . c . � , �7�

where 
n is the Matsubara frequency of the electron involved
in the transport.

In linear response theory, the heat conductivity is defined
as

� = lim
�→0

�Qret
�heat��i���

��T
�

i��→�+i0+
, �8�

where Q�heat����� is the linear response function to an ap-
plied temperature gradient:

Q�heat����� = T2t2a2�
i,j�

�

n

�
n+� + 
n�2

�� �dp�G�
̃n+�,p� � �dq�G�
̃n,q� , �9�

where G�
̃n ,p� is the exact Matsubara Green’s function of an
electron in a grain, �dp�= �ddp / �2��d�, 
̃n and 
n+� are short-
hand notations for 
n+ �i /2��sgn 
n and 
n+��, respectively.
In the latter equation, we considered the tunneling amplitude
uniform and momentum independent, tij

pq� t. The thermal
conductivity for free electrons, �0, Eq. �1�, is given by the
diagram in Fig. 1, where, as usual, Green’s function is
G�
̃n ,p�=1/ �i
̃n−��p��, and each vertex contributes as
i2at�
n+�� /2�. Electrical conductivity reads �0

=e2�8/��gTa2−d; therefore, the Lorenz number is L0

=�0 /�0T=�2 /3e2.

III. SUPERCONDUCTING FLUCTUATION CORRECTIONS
TO THERMAL CONDUCTIVITY

At temperatures above but not far from the critical one,
superconducting fluctuations allow the creation of Cooper
pairs that strongly affect transport. In other words, fluctua-
tions open a new transport channel, the so-called Cooper

pair fluctuation propagator, Ref. 1. It is such a contribution
that gives rise to corrections to both the electrical and ther-
mal conductivity.

With respect to the bulk case, the propagator is renormal-
ized by the tunneling, and as explained in the Appendix, it
takes into account the possibility that each electron forming
the Cooper pair can tunnel from one grain to another, without
losing the coherence.

The expression for the superconducting fluctuation propa-
gator for a granular metal, calculated in Ref. 10, is

�K���� = −
1

�F

1

ln T
Tc

+
�����

8Tc
+ z

gT�

Tc
�1 − �K�

, �10�

where K is the wave vector associated with the lattice of the
grains, �� is a bosonic Matsubara’s frequency, and z the
number of nearest neighbor grains. The function �K
= �1/z��aeiK·a is the so-called lattice structure factor, where a
is a vector connecting nearest neighbor grains. The main
steps of the calculation of Eq. �10�, done in Ref. 10, are
reviewed for completeness in the Appendix.

The various contributions to thermal conductivity are
shown in Figs. 2 and 3.

The correction due to the density of states renormaliza-
tion, Fig. 2�a�, is the only one which is present even in ab-
sence of tunneling; therefore, for temperatures T−Tc�gT�,
we expect this term to give a significant contribution to the
thermal conductivity. For lower temperatures, the bulk be-
havior will be recovered.

FIG. 1. Diagram for the thermal conductivity in granular metals.
The solid lines are impurity-averaged single-electron Green’s func-
tions with the specified momentum and Matsubara’s frequency, and
belonging to the grain i and j. The vertices are discussed in the text.

FIG. 2. Diagrams representing various fluctuation contributions
to the thermal conductivity. �a� density of states contribution. �b�
Maki-Thompson contribution. The solid lines are impurity-averaged
single-electron Green’s functions, wavy lines represent the fluctua-
tion propagator, and the shadowed areas are Cooperon vertex cor-
rections. Crossed circles represent tunneling vertices.
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The MT correction, represented in Fig. 2�b�, can be evalu-
ated using the same procedure as in the case of the DOS one.
It is important to stress that the sign of linear response func-
tion is the same as for the DOS; in fact, the energies of
electrons entering the diagram from opposite sides have op-
posite signs but the same happens to their velocities. In the
case of electrical conductivity, the sign of linear response
function is opposite. It is this difference that ultimately re-
sults in the cancellation of two identical contributions in the
thermal conductivity.6

Let us finally comment on the AL contribution, given by
the diagrams in Fig. 3. It is well known, in the case of ho-
mogeneous metals, that such a correction to the thermal con-
ductivity is not singular.6,18 We will show briefly that in the
case of granular metals this correction vanishes19 in the static
limit too, but not in the dynamical one, giving an important
and characteristic contribution to the total correction.

In the following paragraphs, we present the evaluation of
corrections to thermal conductivity due to different diagrams.

A. Density of states correction

The diagram for the DOS correction is given in Fig. 2�a�
and the corresponding response function can be written as

Q�DOS����� = T2t2a2�
i,j�

�
��

�ij��������,��� , �11�

where

����,��� = �

n

�2�
n+�,
−n−�+���
n + 
n+��2I�
n,��,��� ,

�12�

and

I�
n,��,��� =� �dp�G0
2�p,
n+��G0�p,
−n−�+��

�� �dp��G0�p�,
n� . �13�

We introduced the Cooperon vertex correction, ��
1 ,
2�
=1/��1/ �
1−
2�� in the zero-dimensional limit and without
tunneling corrections.20 The main contribution to singular

behavior comes from “classical” frequencies, �����Tc; con-
sequently, we will take the so-called static limit, ��=0, in
the calculation of correction. This will be true also for the
Maki-Thompson correction in the next paragraph. In the
dirty limit, we can neglect all the energy scales in the elec-
tronic Green’s function in comparison with 1/��T, and the
factor I�
n ,0 ,��� turns out to be

I�
n,0,��� = − 2���F��2���
n
n+�� − ��− 
n
n+��� .

Inserting the previous expression in Eq. �12�, we are left
with the sum over the electronic Matsubara frequencies. It is
straightforward to check that the only linear contribution in
�� is given by ��0,���=−����F

2 . By means of Eq. �11�, we
obtain the general form for the DOS response function after
the analytical continuation

Q�DOS��− i�� = �− i��
8

�
gTTa2�

i,j�
�ij�0� , �14�

where we also took into account the multiplicity of the DOS
diagrams. The corresponding correction to heat conductivity
is given by

���DOS�

�0
= −

3

�2

1

gT

gT�

Tc
�

BZ
�dK�

1

� + z
gT�

Tc
�1 − �K�

. �15�

We took the lattice Fourier transform and defined the re-
duced temperature �=ln�T /Tc���T−Tc� /Tc. �dK�
= �ad / �2��d�ddK is the dimensionless measure of the first
Brillouin zone. Close to Tc, the integral takes its main con-
tribution from the small momentum region and we recover
the bulk DOS behavior as

�� �
1

gT
��

�� , d = 3

ln
1

�
, d = 2

1
��

, d = 1.� �16�

B. Maki-Thompson correction

The MT correction �Fig. 2�b�� reads

Q�MT����� = a2Tt2�
i,j�

�
��

�ij��ij�����,��� , �17�

where

����,��� = T�

n

��
n+�,
−n−�+����
n,
−n+��

��
n + 
n+��2I�
n,��,��� , �18�

and

FIG. 3. Diagrams of the blocks appearing in the Aslamazov-
Larkin contribution to thermal conductivity. �b� has a double molte-
plicity, since the bare tunnel vertex can stay on both side of the
block.
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I�
n,��,��� =� �dp�G0�p,
n+��G0�p,
−n−�+��

�� �dp��G0�p�,
n�G0�p�,
−n+�� . �19�

Using the same procedure outlined above to calculate the
DOS correction, we get

���MT�

�0
=

3

�2

1

gT

gT�

Tc
�

BZ
�dK�

�K

� + z
gT�

Tc
�1 − �K�

. �20�

As expected, the MT correction has the same singular behav-
ior as the DOS but the opposite sign. On the other hand,
because such a correction involves the coherent tunneling of
the fluctuating Cooper pair from one site to the nearest
neighbor, it is proportional to the lattice structure factor �K;
due to this proportionality, in the regime T−Tc�gT�, the
correction vanishes because �BZ�dK��K�0. Let us stress
again that this is not the case for the DOS correction, which
in this regime behaves as −�1/g��ET /Tc��1/��.

C. Aslamazov-Larkin correction

The AL diagrams can be built up by means of blocks in
Fig. 3, by considering all their possible combinations in
pairs. For the sake of simplicity, we will call the first block,
Fig. 3�a�, B1, and the second one B2. Finally, one has three
different kinds of diagrams: the first one, with two B1-type
blocks; the second one with two B2-type blocks, and the
latter, with both of them. Because of the double molteplicity
of B2-type block, one has a total of nine diagrams contribut-
ing to thermal conductivity. In the following, first we evalu-
ate the analytical expression of B1 and B2 in the static ap-
proximation, then in the dynamical one, giving the
expression of the total AL correction.

The general expression of response function for the AL
diagrams reads

Q�AL����� = T2a2t4 �
l,i�

j,m�

�
��

�ij���+���ml����

� Bleft���,���Bright���,��� , �21�

where Bleft and Bright can be either of B1 or B2 type.
B1 block reads

B1���,��� = �

n

�
n + 
n+����
n+�,
�−n���
n,
�−n�

�� �dp�G0�p,
n+��G0�p,
�−n�

�� �dp��G0�p�,
�−n�G0�p�,
n� . �22�

Taking the integrals over the Fermi surface, in the static ap-
proximation, we get

B1���,0� = �2��F��2�

n

��
n+�
n��
n + 
n+����
n+�,− 
n�

���
n,− 
n�

= �2��F�2 � � �

n�−��

+ �

n�0

� 
n + 
n+�

�
n+� + 
n�
1

�2
n�
.

�23�

Manipulating the sum, it is easy to see that

B1���,0� = �2��F�2 �
0�
n���

1

2
n

= �2��F�2��	 ��

2�T
+

1

2

 − �	1

2

�

� 	��F

2

2��

T
. �24�

In the same way as sketched above, one can show, always in
the static approximation, that the block B2 vanishes identi-
cally. Then, all the diagrams containing B2-type blocks do
not give any contribution. Since the only AL diagram with
two B1-type block is proportional to the square of Eq. �24�, it
is quadratic in the external frequency �, and therefore van-
ishes identically in the limit �→0.

To evaluate the first nonvanishing AL correction, one has
to consider the dynamical contribution. In such a case, the B2
block, for instance, reads

B2���,��� = �

n

�
n + 
n+����
n+�,
�−n���
n,
�−n�

�� �dp��G0�p�,
�−n�G0�p�,
n�G0�p�,
n+��

�� �dp�G0�p,
n+�� . �25�

In the evaluation of the block, because of the pole struc-
ture of fluctuation propagator, one can neglect the ��

dependence,1,4 and keep just the one in ��. The calculation
of the integrals and the sums in the latter equation is, in the
dynamical approximation, a little bit more cumbersome. One
has to take into account the different possible signs of ��

and 
n. Finally, Eq. �25� reads

B2�0,��� = − 2���F�2�

n

2
n

�2
n − ���2 ���������
n − ��� + ��

− 
n�� + ��− �������� − 
n� + ��
n��� , �26�

��x� being the step function.
By taking the lowest order in the bosonic frequency ��,

one gets the result for the block

B2�0,��� = −
1

2
	��F

2T

2

��. �27�

In the same way, one can evaluate also B1 with the result
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B1�0,��� = − 2B2�0,��� , �28�

which is consistent with the homogeneous case.1,4 The sum
over �� in the response function can be performed by writ-
ing the sum as an integral,1 and exploiting the properties of
the pair correlators.

Finally, the AL dynamical correction to thermal conduc-
tivity reads

���AL�

�0
=

9

2�

1

gT
	gT�

Tc

2�

BZ
�dK�

�1 − �k�2

� + z
gT�

Tc
�1 − �K�

. �29�

The latter equation is the first nonvanishing correction due to
an AL channel. Such a correction is always positive, and it
depends, as in the MT, on the lattice structure factor �K, but
it does not vanish in the regime T−Tc�gT�. This is a good
feature of the system, since far from Tc, the dynamical con-
tribution plays an important role, and in this region, one has
to compare it with DOS one, as discussed in the following
section. Here, we just observe that since the corrections, Eqs.
�15�, �20�, and �29� have different signs, nonmonotonic be-
havior in the total correction is expected, depending on the
ratio gT� /Tc.

IV. DISCUSSION

As we have seen, the total superconducting fluctuation
correction to the thermal conductivity close to critical tem-
perature is given by the following expression:

��

�0
=

3

�2

�

Tc
�

BZ
�dK�

�1 − �K�� 3�
2

gT�

Tc
�1 − �K� − 1�

� + z
gT�

Tc
�1 − �K�

. �30�

This correction has been obtained at all orders in the tunnel-
ing amplitude in the ladder approximation. Its behavior is
plotted in Fig. 4 as a function of the reduced temperature for
the case of a two dimensional sample, and for different val-
ues of the ratio gT� /Tc. We can recognize two different re-

gimes of temperatures: far from Tc, ��gT� /Tc, and close to
Tc, ��gT� /Tc. For a sake of simplicity, we will identify
these two regimes as “high temperatures” and “low tempera-
tures,” respectively.

�i� High temperature regime ��gT� /Tc. In this region, the
electrons do not tunnel efficiently between the grains and the
system behaves almost as an ensemble of zero-dimensional
systems. As a consequence, only the DOS and AL terms
contribute significantly to the superconducting fluctuations;
the correction to heat conductivity reads

��

�0
�

3

�2

�

Tc

1

�
�3�

2

gT�

Tc
	1 +

1

z

 − 1� . �31�

This expression shows a 1/� singularity and it can have ei-
ther positive or negative sign, depending on the ratio gT� /Tc;
we call �1 the value of the above-mentioned ratio solution of
Eq. �31�. In the absence of renormalization due to tunneling,
the correction is negative and corresponds to the typical sin-
gularity of the quasi-zero-dimensional density of state. On
the other hand, increasing the barrier transparency gT�, the
correction grows due to the presence of the direct channel,
i.e., the AL term, which becomes more and more important,
until the correction itself vanishes at �1, after which it be-
comes positive. A direct comparison with the behavior of the
electrical conductivity10 shows that, already at this level,
there is a positive violation of the Wiedemann-Franz law,
being

�L

L0
=

��

�0
−

��

�0
� �−

3

�2 +
9

2�

gT�

Tc

z + 1

z
+

7��3�
�2 � �

Tc

1

�
.

�32�

�ii� Low temperature regime ��gT� /Tc. Here the tunnel-
ing is effective and there is a crossover to the typical behav-
ior of a homogeneous system, as T→Tc, from the point of
view of the fluctuating Cooper pairs. Physically, the bulk
behavior is recovered, and one gets a nondivergent �though
nonanalytic� correction even at �=0, where it equals

���� = 0�
�0

=
3

z�2

1

gT
	3�

2

gT�

Tc
− 1
 . �33�

The latter equation gives the saturation value in any dimen-
sion; it is also evident in the 1/gT order of the perturbation
theory. Again, the value of the constant can be either nega-
tive or positive. The correction vanishes at a value gT� /Tc
=�2, which is independent on the dimensionality and larger
than �1. In the interval �1�gT� /Tc��2, it has a nonmono-
tonic behavior, being positive and increasing for high tem-
peratures and negative for low temperatures. Such a behavior
has been represented, for the case of d=2, in Fig. 4. The
deviation from the Wiedemann-Franz law in the low tem-
perature region is much more evident than in the high tem-
perature one, because of the pronounced singular behavior of
the electrical conductivity close to the critical temperature.10

V. CONCLUSIONS

We have calculated the superconducting fluctuation cor-
rections to heat conductivity. In the region of temperatures

FIG. 4. Total fluctuation correction to the thermal conductivity
for different values of gT� /Tc for a two-dimensional system. A 1/�
suppression is observed at high temperatures, with a sign depending
on such ratio. At low temperatures, a finite correction, inversely
proportional to the coordination number z, is reached at �=0. In a
finite interval of values of gT� /Tc, a nonmonotonic behavior of the
correction is observed, where the correction is positive and increas-
ing with decreasing temperature, reaches a maximum, and then
goes to a smaller �possibly negative� value at the critical
temperature.
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T−Tc�gT�, a strong singular correction is found, reported in
Eq. �31�, corresponding to the sum of the DOS renormaliza-
tion and the AL contribution in a quasi-zero-dimensional sys-
tem. Moving closer to the critical temperature, when T−Tc
�gT�, the divergent behavior of the DOS term is cutoff by
the MT correction, which has opposite sign, while the AL
term regularizes by itself to a finite value; this regularization
signals the fact that the system undergoes a crossover to the
homogeneous limit. A nondivergent behavior is found at the
critical temperature, in agreement with previous calculation
in homogeneous superconductors.6,18 The energy scale that
separates the two regions, gT�, can be recognized as the in-
verse tunneling time for a single electron.21 As a final re-
mark, we want to note that the ratio zgT� /Tc appears as the
coefficient of the K-dependent term in the superconducting
fluctuation propagator, Eq. �10�; from the standard theory of
the superconducting fluctuations, the coefficient of K2 in the
propagator is actually the superconducting coherence
length;1 we can therefore define an “effective tunneling su-
perconducting coherence length” as �0

�T�=a�gT� /Tc. From
this definition, we can see that, if �0

�T��a, the grains are
strictly zero-dimensional at high temperature and the correc-
tion to the thermal conductivity is always negative, while if
�0

�T��a, the direct channel of the superconducting correla-
tions is strong enough to change sign to such correction.

ACKNOWLEDGMENTS

We gratefully acknowledge illuminating discussions with
A. A. Varlamov, I. V. Lerner, and I. V. Yurkevich. This work
was supported by IUF �F.W.J.H.� and Université Franco-
Italienne �R. Ferone�.

APPENDIX: MICROSCOPIC DERIVATION OF
FLUCTUATION PROPAGATOR

Here we report a short description of the derivation of Eq.
�10�, evaluated in Ref. 10, to remind the reader of the main
steps and the main assumptions of the calculation. We start
from the expression of the partition function in the interac-
tion representation,

Z = Tr exp	− �
0

�

Ĥ���d�

= Tr�exp	− �

0

�

Ĥ0���d�
 � T� exp	− �
0

�

�ĤP���

+ ĤT�d�
� . �A1�

We decouple the electronic fields in ĤP by means of
Hubbard-Stratonovich transformation, introducing the order
parameter field ; because of our assumption, ET�, the
grains can be considered strictly zero dimensional and we
can neglect the spatial coordinate dependence in the field i
in Eq. �A1�. We now expand over the field i; the expansion
is justified by our assumption to be close to but above the
critical temperature where the mean field �BCS� value of

order parameter is still zero; moreover, we have to expand
the action to the second order in t, too; this expansion is
justified in the region22 t�1/��ET. We obtain two different
contributions to the action: the first one is the typical action
of superconducting fluctuations; the other one is the tunnel-
ing correction, Seff=Seff

0 +Seff
t . The first term is1

Seff
0 = −

T

V
�
��

�i�����2� 1

�
− 4��FT� �

2
n���

��
n,
�−n�� .

�A2�

�� always appears as the combination of two fermionic Mat-
subara frequencies and it is therefore a bosonic one, as it
should be. The sum over the fermionic frequencies in Eq.
�A2� is logarithmically divergent and must be cut off at De-
bye’s frequency;1 using the definition of superconducting
critical temperature, one obtains

Seff
0 = − �F

T

V�
��

�i�����2�ln
T

Tc
+ �	1

2
+

����
4�Tc


 − �	1

2

� ,

where ��x� is the digamma function, defined as the logarith-
mic derivative of gamma function.1,23 Close to critical tem-
perature, T�Tc, as already mentioned, the main contribution
to singular behavior comes from “classical” frequencies,
�����Tc. Then, we can expand the � function in the small
parameter ���� /Tc,

Seff
0 = − �F

T

V �
K,��

�ln
T

Tc
+

�����
8Tc

��K�����2. �A3�

In the last expression, for later convenience, we consid-
ered the lattice Fourier transform; K belongs to the first Bril-
louin zone of reciprocal grain lattice. As has been mentioned,
the zero-dimensional character of the grain resides in the
independence of the action on coordinates inside each grain.

FIG. 5. Top: The total tunneling correction to the fluctuation
propagator self-energy is reported. The upper diagram is related to
the possibility of tunneling of both electrons forming the fluctuating
Cooper pair during the lifetime �GL of the Cooper pair itself. The
other two diagrams consider the renormalization of the intragrain
fluctuation propagator. Bottom: The ladder series for the fluctuation
propagator in the presence of tunneling is reported. The crosses are
BCS electron-electron interaction.
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The tunneling-dependent part of the action is calculated
starting from diagrams in Fig. 5: they represent the first non-
vanishing correction to fluctuation propagator due to tunnel-
ing. Their reexponentiation corresponds to the sum of the
ladder series of tunneling and pairing interaction as reported
in Fig. 5. The calculation of Fig. 5�a� gives the contribution
due to the possibility of tunneling of both electrons during
the lifetime of the fluctuating Cooper pair, i.e., the Ginzburg-
Landau time �GL=� /8�T−Tc�; it is equal to

Seff
t,�a� = zgT �

K,��

�K�K�����2, �A4�

where, as mentioned, z is the number of nearest neighbors.
Figures 5�b� and 5�c� give an identical contribution,

which is related to the probability that a single electron, par-
ticipating in the fluctuating Cooper pair, undergoes a double
tunneling, back and forth, during the Ginzburg-Landau time.
Such a contribution reads

Seff
t,�b+c� = − zgT �

K,��

�K�����2. �A5�

The final result for fluctuation propagator at every order in
tunneling in the ladder approximation is

�K���� = −
1

�F

1

ln T
Tc

+
�����

8Tc
+ z

gT�

Tc
�1 − �K�

. �A6�

Finally, we notice that the classical limit ���=0� for the
fluctuation propagator Eq. �A6� can be obtained from a
straightforward generalization of the Ginzburg-Landau func-
tional for granular metals

F��� = �
i,j�
�

i

�dr��
j

�dr���a�i
*�r�� j�r���ij��r − r��

+ J��i�r� − � j�r���2� , �A7�

where the parameter a is given by �1/4m�2�ln�T /Tc�, where
m is the electron mass, while the so-called Josephson param-
eter keep track of the tunneling effect; J= �1/4m�2�
��zgT� /Tc�. See also Ref. 24 for the region of applicability
of the theory reported above.
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