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Through the measurements of magnetic field dependence of specific heat in La2−xSrxCuO4 in zero tempera-
ture limit, we determined the nodal slope v� of the quasiparticle gap. It is found that v� has a very similar
doping dependence of the pseudogap temperature T* or value �p. Meanwhile the virtual maximum gap at
�� ,0� derived from v� is found to follow the simple relation �q=0.46kBT* upon changing the doping concen-
tration. This strongly suggests a close relationship between the pseudogap and superconductivity. It is further
found that the superconducting transition temperature is determined by both the residual density of states of the
pseudogap phase and the nodal gap slope in the zero temperature limit, namely, Tc��v��n�0�, where �n�0� is
the extracted zero temperature value of the normal state specific heat coefficient which is proportional to the
size of the residual Fermi arc karc. This shows that the superconductivity may be formed by forming a new gap
on the Fermi arcs near nodes below Tc. These observations mimic the key predictions of the SU�2� slave boson
theory based on the general resonating-valence-bond picture.
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I. INTRODUCTION

Since the discovery of the cuprate superconductors,
19 years have elapsed without a consensus about its mecha-
nism. Many exotic features beyond the Bardeen-Cooper-
Schrieffer theory have been observed. One of them is the
observation of a pseudogap in the electron spectral function
near the antinodal points �� ,0� and �0,�� at a temperature
T*�Tc.

1 In a conventional BCS superconductor, this gapping
process occurs simultaneously with the superconductivity at
Tc. It has been heavily debated about the relationship be-
tween the pseudogap and the superconductivity in cuprates.
One scenario assumes that the pseudogap �p marks only a
competing or coexisting order with the superconductivity
and it has nothing to do with the pairing origin. However
another picture, namely the Anderson’s resonating-valence-
bond �RVB� �Ref. 2� model �and its offspring�3 predict that
the spin-singlet pairing in the RVB state �which causes the
formation of the pseudogap� may lend its pairing strength to
the mobile electrons and cause them to naturally pair and
then to condense at Tc. According to this picture there should
be a close relationship between the pseudogap and the super-
conductivity.

In order to check whether this basic idea is correct, we
need to collect the information for the pseudogap and the
superconducting energy scale, especially their doping depen-
dence. The pseudogap values �p �or its corresponding tem-
perature kBT*��p� and its doping dependence have been
measured through experiments.1 To determine the supercon-
ducting energy scale, we note that the normal state Fermi
surface is formed by four small arcs near the nodal points.4

As temperature is lowered below Tc, a new gap opens on
these arcs. To illustrate this point more clearly, in Fig. 1 we
present a schematic plot for different gaps or energy scales.
The dotted line represents the gap structure of the normal

state, assuming the presence of Fermi arcs near the nodal
points. The region of zero gap corresponds to the Fermi arc.
The dashed line and the solid line represent two possible gap
structures for superconducting states at T=0. The solid line
is the standard d-wave gap with maximum gap value �p at
�� ,0� and �0,��. From this picture, we see that the nodal
gap slope, which is defined as v�= �d�s /d��node /�kF, can be
used to determine the superconducting energy scale. The re-
lationship between the nodal gap slope v� and the maximum
pseudogap �p remains a mystery. In particular, the two quan-
tities may be independent of each other if the superconduc-
tivity is not induced by the formation of the pseudogap.
Therefore, to measure the nodal gap slope near the nodal

FIG. 1. Schematic plot for the pseudogap energy, superconduct-
ing energy scale, and nodal gap slope. The solid line represents a
standard d-wave gap �=�p cos 2� with maximum gap value �p

near �� ,0� and � the angle starting from kx. The dotted line shows
the pseudogap near nodes if the superconductivity would be sup-
pressed completely �based on the Fermi arc picture�. The dashed
line shows a possible quasiparticle gap near nodes. The nodal gap
slope is defined as v�= �d�s /d��node /�kF. The nodal gap slope v�

and the maximum gap �p near �� ,0� may not be related if the
superconductivity �which controls the gap structure near nodes� has
nothing to do with the pseudogap.
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point in the zero temperature limit becomes highly desired.
When combined with the known results on the pseudogap
�p, this will allow us to detect the relation between the
pseudogap and the superconductivity.

Some previous results using, for example, angle-resolved
photo-emission �ARPES� �Ref. 5� or superfluid density seem
to be inconclusive due to either energy resolution �ARPES
above 10 meV� or unexpected difficulty in analyzing the data
�e.g., a so-called Fermi liquid correction factor �FL is inevi-
tably involved in analyzing the low temperature data of su-
perfluid density�. In this paper, we report the evidence of a
proportionality between the nodal gap slope v� and the
pseudogap temperature T*. Remarkably a simple relation,
namely �q=0.46T*, between the virtual maximum quasipar-
ticle gap ��q� derived from v� and the pseudogap tempera-
ture T* is found. We also find that Tc is determined by both
the nodal gap slope v� and the size of the Fermi arcs �karc� in
the underdoped normal state. Both observations are antici-
pated by the SU�2� slave boson theory6 based on the general
RVB picture.

II. EXPERIMENT

We determine the properties of the nodal quasiparticles by
measuring the low temperature electronic specific heat.
La2−xSrxCuO4 single crystals measured in this work were
prepared by the traveling solvent floating-zone technique.
Samples with seven different doping concentrations as fol-
lows: p=0.063 �Tc=9 K, nominal x=0.063, post-annealed in
Ar gas at 800 °C for 48 h�, 0.069 �Tc=12 K, as-grown
sample with x=0.063�, 0.075 �Tc=15.6 K, nominal x=0.07
and post-annealed in O2 gas at 750 °C for 12 h�, 0.09 �Tc
=24.4 K, as grown, x=0.09�, 0.11 �Tc=29.3 K, as grown, x
=0.11�, 0.15 �Tc=36.1 K, nominal x=0.15�, and 0.22 �Tc
=27.4 K, nominal x=0.22� have been investigated. The qual-
ity of our samples has been characterized by x-ray diffrac-
tion, and R�T� data showing a narrow transition �Tc	2 K.
The samples have also been checked by ac and dc magneti-
zation showing also quite narrow transitions. The full
squares in Fig. 6 represent the transition temperatures of our
samples. The heat capacity presented here was measured
with the relaxation method based on an Oxford cryogenic
system Maglab-EXA-12. In all measurements the magnetic
field was applied parallel to the c axis. As also observed by
other groups for La-214 systems, the anomalous upturn of
C /T due to the Schottky anomaly of free spins is very weak.
This avoids the complexity in the data analysis. Details about
the sample characterization, the specific heat measurement,
the residual linear term, and extensive analysis are reported
in a recent paper.7

It has been widely perceived that the pairing symmetry in
the hole doped cuprate superconductors is of d wave sym-
metry with line nodes in the gap function. In the mixed state,
due to the presence of vortices, Volovik8 pointed out that
supercurrents around a vortex core lead a Doppler shift to the
quasiparticle excitation spectrum. This will dominate the low
energy excitation and the specific heat �per mol� behaves
as8,9 Cvol=A�H with A
1/v�. This square-root relation has
been verified by many measurements which were taken as

evidence for d wave symmetry, for example, by specific
heat,10–16 thermal conductivity,17 tunneling �to measure the
Doppler shift of the Andreev bound states�,18 etc. In this way
one can determine the nodal gap slope �v��. Since the pho-
non part of the specific heat is independent on the magnetic
field, this allows us to remove the phonon contribution by
subtracting the C /T at a certain field as that at zero field, one
has ��=�C /T= �C�H�−C�0�� /T=Cvol /T−�T with � the
coefficient for the quasiparticle excitations of a d-wave su-
perconductor at zero field �Ce=�T2�. In the zero temperature
limit ��=Cvol /T=A�H is anticipated.

III. RESULTS AND DISCUSSION

In order to get �� in the zero temperature limit, we ex-
trapolate the low temperature data of C /T vs T2 �between
2 K and 4 K� to zero K. The data taken in this way and
normalized at 12 T are presented in Fig. 2. It should be men-
tioned that the similar data have been published in our pre-
vious paper.7 Here for clarity we present the data again with
more detailed analysis. It is clear that the Volovik’s �H rela-
tion describes the data rather well for all doping concentra-
tions. This is to our surprise since it has been questioned
whether the Volovik relation is still obeyed in the under-
doped regime14 especially when competing orders are ex-
pected to appear19–21 and impurity scattering is present. We
attribute the success of using the Volovik relation here to
three reasons.

�1� We use ��= �CH�c−CH=0� /T instead of using ��
= �CH�c−CH�c� /T. The latter may inevitably involve the un-
known DOS contributions from other kinds of vortices �for
example, Josephson vortices� when H�C.

�2� The contribution from a second competing order to ��
may be small compared to the Volovik’s term in the zero
temperature limit. This is reasonable when considering a
contribution to the heat capacity by the competing order as
�T� with ��1. For example, the specific heat due to the
spin correlation in the two-dimensional �2D� antiferromag-
netic phase is �T2. In zero temperature limit this term goes
away.

�3� The DOS induced by the Doppler shift effect in our
experiment is much stronger than that induced by the impu-

FIG. 2. Field dependence of ��= �C�H�−C�0�� /T normalized
by the data at about 12 T in zero temperature limit. It is clear that
Volovik’s �H relation describes the data rather well for all samples.
This indicates a robust d-wave superconductivity in all doping
regimes.
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rity scattering. We will further address this point in the forth-
coming discussion. To have a self-consistent check of the �H
relation found in the zero temperature limit, we plot the raw
data of �� /�H vs T at finite temperatures. A typical example
for the very underdoped one �p=0.069� is shown in Figs.
3�a� and 3�b�. One can see that in the low temperature region
the data �� /�H scale for all fields ranging from 1 T to 12 T,
showing the nice consistency with the relationship ��
�H
for this sample in the zero temperature limit. From here one
can also determine the prefactor A in ��=A�H �here, for
example, A=0.28 mJ/mol K2 T0.5 for p=0.069� and then
compare backwards the value determined from the data
shown in the main panel leading to, of course, the same
value. The same feature appears for all other doping concen-
trations. For clarity, they will not be shown here.

It is clear that the Volovik’s �H relation describes the data
rather well for all doping concentrations. This successful
scaling of �� vs �H makes it possible to derive the prefactor
A, and one can further determine the nodal gap slope v�.
Figure 4�a� shows the doping dependence of the prefactor A.
The error bar is obtained by fitting the extracted zero tem-
perature data to ��=A�H. For a typical d-wave supercon-
ductor, by calculating the excitation spectrum near the nodes,
it was shown that16

A = �p

4kB
2

3�lc
� �

0

nVmol

v�

�1�

here lc=13.28 Å is the c-axis lattice constant, Vmol=58 cm3

�the volume per mol�, �p a dimensionless constant taking 0.5
�0.465� for a square �triangle� vortex lattice, n=2 �the num-
ber of Cu-O planes in one unit cell�, and 0 the flux quanta.

The v� has then been calculated without any adjusting pa-
rameter �taking �p=0.465� and shown in Fig. 4�b�. It is re-
markable that v� has a very similar doping dependence as
the pseudogap temperature T*, indicating that v�
T*
�p. If
converting the data v� into the virtual maximum quasiparti-
cle gap ��q� �Ref. 16� via v�=2�q /�kF �here kF�� /�2a is
the Fermi vector of the nodal point with a=3.8 Å �the in-
plane lattice constant��, surprisingly the resultant �q value
�shown by the filled squares in Fig. 4�b�� is related to T* in a
simple way ��q�0.46kBT*�. It is important to emphasize
that this result is obtained without any adjusting parameters.
Counting the uncertainties in determining T* and the value of
�p, this relation is remarkable since �q and T* are deter-
mined in totally different experiments. Because v� �or �q�
reflect mainly the information near nodes which is predomi-
nantly contributed by the superconductivity, above discovery,
i.e., v�
T*
�p �or �q�0.46kBT*� strongly suggests a close
relationship between the superconductivity and the
pseudogap. A similar conclusion was drawn in underdoped
YBa2Cu3Oy by analyzing the low temperature thermal
conductivity.22 If the pseudogap is supposed to be caused by
the formation of the RVB state,2 our results here point to a
fact that the RVB singlet pairing may be one of the unavoid-
able ingredients for superconductivity. It remains to be seen
whether this conclusion holds also for the electron doped
samples, since so far it is not clear yet whether the
pseudogap exists in these N-type samples.

FIG. 3. �a� The typical original data of �� vs. T for the under-
doped sample p=0.069 at different magnetic fields. �b� The same
set of data plotted as �� /�H vs. T. One can clearly see that in zero
temperature limit �� /�H is a constant for all fields implying the
validity of the Volovik’s relation ��=A�H. From here one can also
determine the value A which is about 0.28 mJ/mol K2 T0.5 as
marked by the thick bar.

FIG. 4. �a� Doping dependence of the pre-factor A determined in
present work �open circles�. Here the point at p=0.19 was adopted
from the work by Nohara et al. on a single crystal.14 �b� Doping
dependence of the pseudogap temperature T* �open symbols� sum-
marized in Ref. 1 �see Fig. 26 there� and our data v� �solid line�.
T*-susceptibility refers to the pseudogap temperature determined
from the maxima in the static susceptibility, and T*−� to the tem-
perature at which there is a slope change in the DC resistivity �all in
La2−xSrxCuO4�. Above T*−� the resistivity has a linear temperature
dependence. The full squares represent the calculated virtual maxi-
mum quasi-particle gap �q derived from v� without any adjusting
parameters. Surprisingly both set of data are correlated through a
simple relation ��q�0.46kBT*� although they are determined in
totally different experiments. This result implies a close relationship
between the pseudogap �p and the nodal gap slope v�.
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In above discussion, we see the consistency between our
low temperature specific heat data and the Volovik’s square
root relation ��=A�H. This seems surprising since the tem-
perature range we considered here is about several kelvin. At
such an energy scale, the impurity scattering will strongly
alter the DOS in the low energy region by generating some
new quasiparticles. However, by applying a magnetic field,
the Doppler shift of the quasiparticle excitation spectrum
will contribute a new part to DOS. This energy shift is actu-
ally not small compared to the temperature. We can give a
simple estimation on the energy shift �E. It is known that
�E=�FL

��3/2��vF� / lB�, here lB is the magnetic length
which is defined as lB= �c� /eB�1/2, and 0��FL�1 is a
Fermi liquid correction term. Taking vF=2.73�107 cm/s,23

we have �E=3.67�FL
�B /1T meV. For example, taking the

maximum field �12 T� in our experiment, we get �E
=12.2�FL meV which is actually a relatively big energy
scale compared to the temperature T since �FL�1. This may
explain why the Volovik’s simple square-root relation ��
=A�H can be easily observed in our single crystals with an
inevitable certain amount of impurities.

In the following we will investigate what determines Tc.
Keeping the doping dependence of v� in mind, it is easy to
understand that v��kF should not be a good estimate of the
superconducting energy scale for the underdoped samples
since Tc and v� have opposite doping dependences. The ba-
sic reason is that the normal-state Fermi surfaces are small
arcs of length karc near the nodal points. The superconducting
transition occurs by forming extra gaps on the Fermi arcs. So
the effective superconducting energy scale should be esti-
mated as Es� 1

2v��karc. From the normal state electronic
specific heat Cele=�nT, we have �n=4nkB

2karcVmol /�vFlc. As-
suming Es�kBTc we find

Tc = �s
�2vFlc�nv�

8nkB
3Vmol

= ��nv�, �2�

where �s is a dimensionless constant in the order of unity; vF
is the nodal Fermi velocity normal the Fermi surface. The
value of �n�0� can be estimated from specific heat,24,25 or
indirectly by ARPES �Ref. 26� or NMR.27 Here we take the
values for �n�0� summarized by Matsuzaki et al.24 and fit it
�in units of mJ/mol K2� with a formula �n=��p− pc�� yield-
ing �=182.6, pc=0.03, �=1.54. In Fig. 5 we present the
doping dependence of the zero temperature specific heat co-
efficient �n�0� and karc. One can see that karc becomes
smaller than 2� /a in an underdoped region showing the self-
consistency of the picture of Fermi arcs. In Fig. 6 we present
the doping dependence of the truly measured Tc �filled
squares� and the calculated value �open squares� by Eq. �2�
with �=0.7445 K3 mol s / Jm. In underdoped region, the
truly measured and calculated Tc values coincide rather well
implying the validity of Eq. �2�. In the overdoped region, �n
will gradually become doping independent, therefore one ex-
pects Tc
v�. So the energy scale of the superconductivity is
not given by v��kF��p, but by 1

2v��karc or more precisely
by Eq. �2� in the underdoped region.

To have a framework about the experimental results, in
the following, we will review one particular explanation

based on the slave-boson approach although there are many
theories about the ground state of the pseudogap.28 Within
the SU�2� slave-boson theory,6 the pseudogap metallic state
is viewed as a doped algebraic spin liquid �ASL�.29 A doped
ASL is described by spinons �neutral spin-1

2 Dirac fermions�
and holons �spinless charge-e boson� coupled with a U�1�
gauge field. Due to the attraction between the spinons and
the holons caused by the U�1� gauge field, a spinon and a
holon recombine into an electron at low energies.6,29 Due to
the spin-charge recombination, the pseudogap metallic state
is described by electronlike quasiparticles at low energy.
Since the binding between the spinon and the holon is weak,
the large pseudogap near the antinodal points �� ,0� and
�0,�� is not affected. So the Fermi surface of the recombined

FIG. 5. �a� The doping dependence of �n�0� derived from spe-
cific heat �open squares24� based on entropy conservation, ARPES
�open circles26�, and Knight shift �up-triangles27� in La2−xSrxCuO4.
The solid line is a fit to the data with �n=��p− pc�� yielding �
=182.6, pc=0.03, �=1.54. �b� A comparison between karc calcu-
lated from �n�0� and 2� /a. One can see that the karc becomes
smaller than 2� /a in the underdoped region showing the relevance
of the Fermi arcs in the pseudogap phase.

FIG. 6. Doping dependence of the truly measured superconduct-
ing transition temperature Tc �full squares� and that calculated by
Tc=�v��n�0� �open squares� with �=0.7445 K3 mol s /Jm. The
solid line represents the empirical relation Tc /Tc

max=1−82.6�p
−0.16�2 with Tc

max=38 K.
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electrons cannot form a large closed loop. A simple theoret-
ical calculation6 suggests that the Fermi surface of the re-
combined electrons forms four small arcs near the nodal
points �±� /2 , ±� /2�. Thus the SU�2� slave-boson theory6

contains two key features: the pseudogap due to spin singlet
pairing and the Fermi arcs due to the spin-charge
recombination.29 And the superconductivity arises from the
coherent motion of the quasiparticles on the arcs, thus one
expects that Tc is proportional to the gap on the Fermi arc:
kBTc� 1

2v��karc, instead of the pseudogap �p near the antin-
odal points. Meanwhile, since the spin pairing is responsible
for both the pseudogap �p near the antinodal points and the
nodal gap slope v�, it is reasonable to see the proportionality
between v� and T*�
�p� or �q�0.46kBT*. This is exactly
what we found in the experiment.

IV. CONCLUDING REMARKS

In summary, the Volovik’s relation of the d-wave pairing
symmetry has been well demonstrated by low temperature
specific heat in wide doping regime in La2−xSrxCuO4. Based
on this analysis the nodal gap slope v� is derived and is
found to follow the same doping dependence of the

pseudogap �p. This strongly indicates the close relationship
between the pseudogap and the superconductivity. Mean-
while it is found that the superconducting transition tempera-
ture Tc is determined by v��n�0� instead of v�. This discov-
ery may suggest the importance of Fermi arcs near the nodal
region and the superconductivity is induced by the formation
of a new gap on these arcs. Both observations are consistent
with the SU�2� slave-boson theory based on the general RVB
picture.
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