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We derive a relationship between the optical conductivity scattering rate 1 /���� and the electron-boson
spectral function �2F��� valid for the case when the electronic density of states, N���, cannot be taken as
constant in the vicinity of the Fermi level. This relationship turns out to be useful for analyzing the experi-
mental data in the pseudogap state of cuprate superconductors.
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I. INTRODUCTION

Optical conductivity data on ���� vs � contains impor-
tant information on electron dynamics. In general however
the relationship between ���� and the electron self-energy is
rather complicated. Under such circumstances the reduction,
if possible, of the complete expression for conductivity, to
somewhat more approximate but simpler analytic form can
be valuable. It can help our understanding of the basic phys-
ics as well as provide experimentalists with a simpler basis
for the analysis of data.

In the specific case of an electron-phonon system, the
analytic formula provided by Allen1 has proved to be valu-
able. It relates the measured optical scattering rate through a
simple integral to the underlying electron-phonon spectral
function �2F��� which is, in the end, the fundamental quan-
tity of interest. A generalization of Allen’s formula to finite
temperature was provided by Shulga et al.2 In this paper we
want to extend this previous work to the case when the un-
derlying electronic density of states is energy dependent
rather than constant. A motivation for this extension is to
provide guidance in the interpretation and analysis of optical
data in the pseudogap regime of the cuprates. In fact the
formula derived herein has already been used in the experi-
mental work of Hwang et al.3 on ortho-II YBCO.

II. PRELIMINARIES

The Drude formula for optical conductivity ����=�1���
+ i�2���,

���,T� =
�p

2

4�

1

1/� − i�
�1�

can be extended �see Refs. 4 and 5 and references therein� to
include a frequency-dependent scattering rate

���,T� =
�p

2

4�

1

1/���,T� − i��1 + 	��,T��
, �2�

where 1/��� ,T� is the frequency-dependent optical scatter-
ing rate and 	�� ,T� is the optical mass enhancement. For a
spherical Fermi surface the plasma frequency �p

2 =4�ne2 /m,
where n is the free-carrier density and m is the carrier mass.

One can solve Eq. �2� for 1 /���� and 1+	��� in terms of
the optical conductivity found from experiment,

1

����
=

�p
2

4�
Re� 1

����
� �3�

and

1 + 	��� = −
�p

2

4�

1

�
Im� 1

����
� . �4�

The plasma frequency can be extracted from the experimen-
tal data using the sum rule �0


�1���d�=�p
2 /8. Although the

representations of experimental data using �1���, �2��� and
1/���� with 1+	��� are formally equivalent, it has become
rather popular to discuss the pseudogap behavior in high-
temperature superconductors �HTSC� using the language of
the optical scattering rate and mass enhancement. For ex-
ample, a drop of 1/���� extracted from in-plane optical con-
ductivity measurements in HTSC which is observed below a
certain frequency for the temperatures T�Tab

* is associated
with the above-mentioned pseudogap.4

Another advantage of 1 /���� is that in an electron-
phonon system it is related to the electron-phonon interaction
spectral density, �2F���. For example, there is an approxi-
mate relationship6

�2F��� =
1

2�

d2

d�2��
1

����
� �5�

which is valid at T=0 in the normal state. Note that one can
consider a general electron-boson interaction function, be-
cause instead of �2F��� one can, for instance, introduce
electron-spin excitation spectral density, I2����.7 Thus below
we imply this more general case, but preserve the historical
notation �2F���.

Despite its “magic” simplicity, formula �5� works rather
well �see, e.g., Refs. 8 and 9�, but unfortunately its practical
applications are limited because the experimental data must
be �ambiguously� smoothed “by hand” before the second de-
rivative can be taken. This problem was very recently cir-
cumvented in Ref. 10 by solving the corresponding integral
equations for �2F���. For example, instead of differentiating
� /����, one can extract �2F��� using the well-known result
of Allen1
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d��� − ���2F��� . �6�

The last expression was derived using the second order per-
turbation theory and in fact, Eqs. �6� and �5� are equivalent
under the condition 1/���=0�=0.

A finite temperature generalization of Eq. �6� was derived
in Ref. 2 using the Kubo formula

1

����
=

�

�
�

0




d��2F����2� coth
�

2T
− �� + ��coth

� + �

2T

+ �� − ��coth
� − �

2T
� . �7�

In fact, there is no finite temperature equivalent of a “magic”
equation �5� for Eq. �7�, so that for finite T’s �2F can only be
found by inversion of the last equation. The numerical
method of inversion of Eq. �7�, its limitations and the result-
ing doping and temperature dependences of the bosonic
spectral function, �2F��� in several families of HTSC were
investigated in detail in Ref. 10.

There is, however, an important assumption used in de-
riving both the T=0 Eq. �6� and its finite temperature exten-
sion �7�, viz. the electronic density of states �DOS�, N��� is
taken as a constant in the vicinity of the Fermi level. As
shown in Ref. 10 when Eq. �7� is used for analyzing the
experimental data in the pseudogap state of HTSC, the re-
sulting �2F contains nonphysical negative values. This prob-
lem originates from the fact that the above-mentioned as-
sumption N���=const is definitely strongly violated in the
pseudogap state. The essence of the pseudogap phenomenon
is that N��� becomes a nontrivial function of energy and the
form of N��� depends strongly on the temperature and dop-
ing.

Therefore it would be very useful to have a generalization
of Eqs. �6� and �7� valid for N����const. Interestingly, such
a generalization of the zero temperature expression �6� was
already done 20 years ago by Mitrović and Fiorucci11 in re-
lation to A15 compounds

1
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=

2�

�
�

0

�

d��2F����
0

�−�

d�
1

2
�N���

N�0�
+

N�− ��
N�0� � .

�8�

Equation �8� was derived using the method of Ref. 1 and it is
easy to see that for N���=const it reduces to Eq. �6�.

The purpose of the present work is to obtain a generali-
zation of the finite temperature expression �7� valid for
N����const. In contrast to Refs. 1 and 11 we base our deri-
vation on the Kubo formula which turns out to be more
useful for considering the T�0 case.

We begin by presenting in Sec. III the expression for op-
tical conductivity ���� in terms of frequency-dependent self-
energy ��� for the case N����const. The corresponding
expression for ��� is obtained in Sec. IV for the case of

nonconstant quasiparticle DOS Ñ���. The difference between

the usual DOS N��� and the quasiparticle DOS Ñ��� is

pointed out. In Sec. V we present the relationship between
the optical scattering rate, 1 /����, electron-boson interaction

function �2F���, and the quasiparticle DOS Ñ���. The
frequency-dependent impurity scattering rate 1 /�imp��� is
considered in Sec. VI. In the discussion, Sec. VII, we illus-
trate that the pseudogap opening results in the decrease of
1 /���� and consider possible applications of our results.

III. OPTICAL CONDUCTIVITY FOR N„�…Åconst

We begin with the Kubo formula for electrical
conductivity12

�ij��� =
i

� + i0
��ij − �ij

R�� + i0�� , �9�

where �ij is the diamagnetic term and �ij��� is the retarded
correlation function obtained by analytical continuation
��ij

R���=�ij�i�m→�+ i0�� of the imaginary time expression

�ij�i�m� =
1

V
�

0

�

d�ei�m�	ji�q = 0,��j j�0,0�
, �m =
2�m

�
.

�10�

Here ji�q ,�� is the Fourier transform of the paramagnetic
electric current density operator, V is the volume of the sys-
tem, T=1/� and for the case of parabolic band �ij
=�p

2 /4��ij =e2n�ij /m. The electrical conductivity �9� con-
sists of a regular part

�ij
reg��� = −

i

�
��ij

R��� − �ij
R�0�� �11�

and singular part, related to the superconducting condensate,

�ij
SC��� =

i

� + i0
��ij − �ij

R�0�� . �12�

Since in what follows we restrict ourselves to considering the
normal state of the isotropic two-dimensional system, we
suppress the subscript reg and consider ����=�xx

reg���
=�yy

reg��� deriving, for example, �xx���.
Neglecting vertex corrections, the calculation of ���� re-

duces to evaluation of the bubble diagram

�ij�i�m� = − 2e2T �
n=−



 � d2k

�2��2vFi�k�vFj�k�G�i�n

+ i�m,k�G�i�n,k� , �13�

where vFi�k�=���k� /�ki is the Fermi velocity and

G�i�n,k� =
1

i�n − ��k� − �i�n,k�
�14�

is the fermionic Green’s function with the self-energy
�i�n ,k� and �n=��2n+1� /�. Using the spectral represen-
tation for the Green’s function �14�, one can easily sum over
fermionic Matsubara frequencies in Eq. �13�,
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�xx�i�m� = − 2e2�
−





d�� d2k

�2��2��� − ��k��

�vFx
2 �k��

−





d�1�
−





d�2
nF��1� − nF��2�
�1 − �2 + i�n

�A��1,k�A��2,k� , �15�

where the spectral function

A��,k� = −
1

�
Im GR�� + i0,k� , �16�

nF���=1/ �e��+1� is the Fermi distribution, and we inserted
the integral over � which is equal to 1. Since we are inter-
ested in the complex conductivity ���� we cannot remove
one of the integrations over � in �15� by taking Im ���
+ i0�, but one of the integrations can be done by again using
the spectral representation for retarded �advanced� Green’s
function

GR,A��,k� = �
−





d�2
A��2,k�

� ± i0 − �2
. �17�

Then we obtain

�xx��� = − 2e2�
−





d��nF�����
−





d�N���vFx
2 ���A���,��

��GR��� + �,�� + GA��� − �,��� , �18�

where to isolate the effects of the energy dependence of the
single-spin-band DOS,

N��� =� d2k

�2��2��� − ��k�� , �19�

the velocity vFx
2 ��� is defined as �see Refs. 11 and 13�

vFx
2 ��� �

1

N��� � d2k

�2��2vFx
2 �k���� − ��k�� . �20�

Writing Eq. �18� we also assumed that A�� ,k� and, accord-
ingly, GR,A�� ,k� to be dependent only on ��k�.

Now we must make two important assumptions: The first
one is quite common and states that the self-energy �i� ,��
does not depend on �, so that the whole dependence of
GR,A�� ,�� is contained in the free-electron dispersion ��k�.
The second assumption is that the energy dependence of the
square of the plasma frequency

�p
2���
4�

= 2e2N���vFx
2 ��� �21�

can be ignored as compared to the dependence of N��� in the
vicinity of �=0, so that in Eq. �18� we can replace �p

2��� by
�p

2��=0�. The validity of this approximation for A15 com-
pounds was discussed in Ref. 11 and here we will assume
that it is also valid for HTSC. In this respect, the first as-
sumption can be considered as a statement that �� ,�� is
approximated by �� ,�=0�.16 After these two assumptions
are made we can integrate over � and finally arrive at the

following representation for the optical conductivity �see,
e.g., Refs. 2,14,15,16�:

���� =
�p

2

4�

i

�
�

−





d��nF��� − nF�� + ���

�
1

� + i/�imp + *��� − �� + ��
, �22�

where ��� is the retarded self-energy on the real axes and
*��� its complex conjugate. In Eq. �22� we also included the
electron-impurity scattering rate, 1 /�imp, its frequency depen-
dence will be considered in Sec. VI. One can check that for
T=0 Eq. �22� reduces to the expression for ���� written in
Refs. 6, 8, and 9.

To investigate the effect of electron-boson interaction on
1/���� we must express Re�1/����� in terms of the self-
energy  in the simplest possible form. It can be anticipated
if one substitutes Eq. �22� in Eq. �3� and rewrites it as fol-
lows:

1

����
= � Im � 1

� + i/�imp
�

−





d��nF��� − nF�� + ���

�
1

1 − ��� + �� − *����/�� + i/�imp�
�−1

. �23�

Now expanding the denominator of Eq. �23�, doing the inte-
gration and then “de-expanding” the result �see Refs. 8 and
9� we obtain the following approximate representation:

1

����
=

1

�imp
−

1

�
�

−





d��nF��� − nF�� + ���

�Im��� + �� − *���� . �24�

In deriving Eq. �24� we used the assumption ��+��
−*���� �+ i /�imp to expand and then assumed that

�
−





d��nF��� − nF�� + ����� + �� − *��� � �� + i/�imp

to “de-expand.” Based on these inequalities one would ex-
pect that all results that follow from Eq. �24� are valid only
for large �. Nevertheless, the numerical comparison of the
results obtained by the direct substitution of the self-energy
�32� in Eq. �22� with 1/���� computed using Eq. �7� in Ref.
2 shows that the last equation is valid for a much wider range
of the frequency �. This is in spite of the fact that the deri-
vation of Eq. �7� is based on the approximate Eq. �24�. Fi-
nally we remind that since we did not include vertex correc-
tions, 1 /���� is expressed in terms of the usual self-energies
instead of transport “self-energies” discussed in Ref. 15. Ac-
cordingly in Sec. V the optical scattering rated 1/���� will
be expressed in terms of the tunneling �2F instead of the
transport �tr

2F considered by Allen in Ref. 1.

IV. SELF-ENERGY FOR Ñ„�…Åconst

Now we consider the influence of a nonconstant DOS on
the usual relationship between the self-energy ��� and the
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electron-boson interaction function �2F. We begin with the
well-known expression �see, e.g., Refs. 17 and 18�

�i�n� = T �
m=−



 �
−





d�
N���
N�0��0




d��2F���
2�

�m
2 + �2

�G�i�n − i�m,�� �25�

written for the case when �2F��� does not depend on the
electron energy. In Eq. �25�,

G�i�n,�� �
1

N��� � d2k

�2��2��� − ��k��G�i�n,k� , �26�

the DOS N��� is defined by Eq. �19� and its energy depen-
dence usually is also neglected. Our goal is, however, to
retain N��� and consider the influence of N����const on
��� and, accordingly, on ����. Again using the spectral
representation for the Green’s function G�i�n ,k�, one can
easily sum over Matsubara frequencies in Eq. �25� and ob-
tain

�i�n� = �
−





d�
N���
N�0��−





d���
0




d��2F���

��−
1

�
Im GR�� + i0,���I�i�n,�,��� , �27�

where17

I�i�n,�,��� =
nB��� + 1 − nF����

i�n − � − ��
+

nB��� + nF����
i�n + � − ��

�28�

with the Bose distribution nB���=1/ �e��−1�.
Let us now consider the quantity

Ñ��� � −
1

�
�

−





d�N���Im GR�� + i0,�� �29�

which enters Eq. �27�. Using Eq. �26� and the definition of
the spectral function �16� one can easily check that

Ñ��� =� d2k

�2��2A��,k� , �30�

viz. this quantity represents the fully dressed quasiparticle
DOS which could contain a pseudogap that has its origin in
correlation effects. Finally making an analytical continuation
i�n→�+ i0 and taking the imaginary part of ��� we obtain

Im ��� = − ��
0




d��2F���� Ñ�� − ��
N�0�

�nB��� + 1

− nF�� − ��� +
Ñ�� + ��

N�0�
�nB��� + nF�� + ���� .

�31�

It is easy to see that for Ñ���=N�0�=const the previous
equation reduces to a more familiar expression2,17

Im ��� = −
�

2
�

0




d��2F����2 coth
�

2T
− tanh

� + �

2T

+ tanh
� − �

2T
� . �32�

V. OPTICAL SCATTERING RATE:
BOSON CONTRIBUTION

Substituting the self-energy �31� in the expression �24�
and doing simple replacements of the variables, we arrive at
the main result of the present paper,

1

����
=

�

�
�

0




d��2F����
−





d�� Ñ�� − ��
N�0�

+
Ñ�− � + ��

N�0�
�

��nB��� + nF�� − ����nF�� − �� − nF�� + ��� , �33�

which establishes a link between the optical scattering rate
1 /����, the electron-boson interaction function �2F��� and

the quasiparticle DOS Ñ���. It is important to stress that in

contrast to N���, the quasiparticle DOS Ñ��� which enters
Eqs. �31� and �33� is directly related to the spectral function
A�� ,k� measured by ARPES experiments.19 Note that in Eq.
�33� material parameters enter only as the electron-boson
spectral density and the fully dressed electron DOS. Differ-

ent mechanisms leading to the same Ñ��� are differentiated
in the optical scattering rate only through the size and shape
of �2F���.

To understand better the rather lengthy Eq. �33� we con-
sider limiting cases where one can establish a link with al-
ready known results.

�i� For T=0 the Bose distribution in Eq. �33� drops out
and it reduces to Eq. �8� with the band DOS N��� replaced

by the quasiparticle DOS Ñ���. Note that it was pointed out
in Ref. 11 that N��� in Eq. �8� should be interpreted as the
quasiparticle DOS, but the golden rule approach of Allen1

used in Ref. 11 does not allow to establish this fact directly.
Comparing Eqs. �8� and �33� one can see that finite tempera-
ture brings an essential element, the Bose distribution nB���.

�ii� When Ñ���=const it becomes possible to integrate
over � in �33�. Indeed using the integral

�
−





dznF�z + a�nF�− z − b� = �a − b�nB�a − b� �34�

we arrive at Eq. �7� obtained by Shulga et al. in Ref. 2.
Obviously, Eq. �7� also follows directly from Eqs. �32� and
�24�.

�iii� At temperatures much higher than the boson spectrum
upper-energy cutoff, T��c, expression �33� reduces to
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lim
T/�c→


1

����
=

�T

�
�

0




d�
�2F���

�
�

−





d�� Ñ�� − ��
N�0�

+
Ñ�− � + ��

N�0�
��nF�� − �� − nF�� + ��� .

�35�

When Ñ���=const the last equation can be further simplified5

lim
T/�c→


1

��0�
= 4�T�

0




d�
�2F���

�
. �36�

In the case when the electron-phonon interaction is the origin
of �2F���, Eq. �36� reflects the familiar result that the high-
temperature electron-phonon contribution to a dc resistivity
is linear in temperature. This no longer strictly holds for Eq.
�35� where there is an additional T dependence in the integral
over �.

VI. OPTICAL SCATTERING RATE:
CONTRIBUTION OF IMPURITIES

While Eq. �33� represents the electron-boson contribution
to the optical scattering rate, the total scattering rate

1

�tot���
=

1

����
+

1

�imp���
�37�

consists of two parts, viz. the above-mentioned bosonic
1/���� and that caused by impurities 1 /�imp���.

There is a simple way of obtaining 1/�imp��� by using the
following expression for

�2Fimp��� =
1

2�imp

�����
�T

�38�

and assuming that the integration of ���� over � from 0 to 

gives 1/2. 1 /�imp in Eq. �38� is the normal state impurity
scattering rate and it is implied that the limit �→0 in
�2Fimp��� must be taken before doing the limit T→0. Sub-
stituting Eq. �38� in Eq. �33� we arrive at the expression

1

�imp���
=

1

�imp

1

4�
�

−





d��nF�� − �� − nF�� + ���

�� Ñ���
N�0�

+
Ñ�− ��
N�0�

� . �39�

Energy dependence in Ñ��� implies an energy and tempera-
ture dependence in the impurity scattering rate. For T=0, Eq.
�39� reduces to the result of Ref. 11,

1

�imp���
=

1

�imp

1

�
�

0

�

d�
1

2
� Ñ���

N�0�
+

Ñ�− ��
N�0�

� . �40�

Note that due to the above-mentioned noncommutativity of
the limits �→0 and T→0 in Eq. �38�, the last expression
cannot be obtained simply by substituting Eq. �38� in Eq. �8�.
It is very easy to see that for Ñ���=const, Eq. �40� as well as

Eq. �39� reduce to the trivial result �imp���=�imp. For a more
extensive discussion of the impurity scattering problem when
the DOS is energy dependent the reader is referred to Ref.
20. In the fits to data made in Ref. 3 residual scattering is
small and not important. In that case 1/�imp is estimated to be
a few meV while the inelastic scattering rate rises to a value
larger than 600 meV in the frequency range of interest in the
fit. Under such circumstances any modulation of 1 /�imp���
brought about by energy dependence in Ñ��� is of no conse-
quence when fitting to the inelastic scattering part. This
would not be so if impurity scattering became large and of
the order of the inelastic scattering in the important fre-
quency range.

VII. DISCUSSION

To illustrate the effect of the opening of the pseudogap on
1/���� in Fig. 1 we plot 1 /���� computed with and without
pseudogap, but do not consider the contribution from impu-
rities. The case without pseudogap which corresponds to

Ñ���=N�0�=const was considered using Eq. �7�, while to
model a pseudogap we took3

Ñ���
N�0�

= � Ñ�0�
N�0�

+ �1 −
Ñ�0�
N�0�

� �2

�2���� − �� + ��� − ��

�41�

and used Eq. �33�. It is easy to see that the main effect of the

opening of the pseudogap �e.g., Ñ�0��N�0�� is to reduce
1/����. This result implies that when there is a pseudogap
one cannot use Eq. �6� to estimate �2F���, because the
strength of the peaks of �2F��� would be underestimated.
More importantly, the position of these peaks would be
shifted depending on our assumptions about the absence or
presence of the pseudogap.

FIG. 1. �Color online� The dependence 1/���� �in arbitrary

units� obtained from Eqs. �7� for Ñ���=const and �33� with Ñ���
given by Eq. �41�. We take the Einstein model for �2F���
=�2���−�E� with �E=2� and T=2.5�.
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Indeed by applying Eq. �33� in Ref. 3 to the analysis of
the experimental data it was demonstrated that there is agree-
ment between the sharp bosonic resonance observed in the
infrared scattering rate and the properties of the �� ,�� spin-
flip neutron mode. Using the above-mentioned property that
the decrease of N��� due to the opening of the pseudogap
effectively reduces 1/����, one can choose the position of
the bosonic resonance in �2F��� at �=248 cm−1 and thus
makes it agree with the frequency of the 31 meV neutron
mode, measured by Stock et al.21 The use of Eq. �33� is
crucial for this agreement and the conventional relationship
�6� valid for T=0 and N���=const would produce a peak in
�2F��� at �=350 cm−1. The possibility of achieving a rec-
onciliation between the experimental results obtained from
neutron scattering and optical conductivity is quite important
in developing a coherent theoretical description of cuprate
superconductors and shows the usefulness of Eq. �33�.

We note that since this kind of analysis involves modeling
the form of the pseudogap and its temperature dependence,
the final results for �2F��� are definitely not unique. How-
ever, one does not expect any qualitative change to the model
for �2F��� obtained in Ref. 3 which includes a very wide
temperature-independent background and a sharp
temperature-dependent peak. As a given sample is studied
using several experimental techniques and the quality of the

data improves, the fit should become more unique. Also it
would be interesting to repeat the analysis made in Ref. 10,
but now based on Eq. �33� derived in this paper, rather than
on Eq. �7� which is valid only for a constant density of states.

Finally we mention that in Ref. 10 data were analyzed not
only in the normal or pseudogap state at finite T, but also in
the superconducting state. This latter analysis is based on a
relationship between 1/���� and �2F��� derived in Ref. 1
for s-wave superconductor at T=0. In relation to the results
obtained in the present paper it is worthwhile to ask the
following question. Is it possible to distinguish the decrease
of 1 /���� caused by the pseudogap and by the superconduct-
ing s- or even d-wave gap? To address this question in detail
there is a need to generalize the corresponding expression
from Ref. 1 to d-wave symmetry of the superconducting gap
and T�0. Such considerations go beyond the scope of the
present work.
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