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A numerical method is developed to calculate the transition temperature of double or multilayers consisting
of films of superconductors and normal conductors. The approach is based on a dynamic interpretation of
Gorkov’s linear gap equation and is very flexible. The mean free path l of the different metals, transmission
through the interface, ratio of specular reflection to diffusive scattering at the surfaces, and fraction of diffusive
scattering at the interface can be included. Furthermore, it is possible to vary the mean free path and the BCS
interaction NV in the vicinity of the interface. The numerical results show that the normalized initial slope of
a superconductor–normal metal �SN� double layer is independent of almost all film parameters except the ratio
of the density of states, �ds /Ts��dTc /ddn�=�sn�Nn /Ns�. There are only very few experimental investigations of
this initial slope and they consist of Pb/Nn double layers �Nn stands for a normal metal�. Surprisingly the
coefficient �sn in these experiments is of the order or less than 2 while the �weak coupling� theory predicts a
value of about 4.5. This discrepancy has not been recognized in the past. The origin of this discrepancy is not
understood.
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I. INTRODUCTION

The transition temperature of a thin superconducting film
in contact with a normal metal is reduced. This is known as
the superconducting proximity effect �SPE�. The double
layer SN or a multilayer �SN�n can consist �i� of a supercon-
ductor S and normal conductor N or �ii� of two superconduct-
ors with different transition temperatures �the one with the
lower Tc is generally denoted as N�. Its systematic experi-
mental investigation started in the 1960s by the Hilsch group
in Goettingen1,2 and stimulated a number of further experi-
mental investigations.3–6 For the dirty case �the mean free
path of the conduction electrons is much smaller than the
coherence length� Werthamer7 derived a set of implicit equa-
tions for the transition temperature of double layers consist-
ing of two superconductors. After some modification accord-
ing to de Gennes’ boundary condition8 between the
superconductors, the Werthamer theory described the experi-
mental results for double layers of two superconductors quite
well �see, for example, Refs. 5, 8, and 9�. The Werthamer
theory is restricted to a short mean free path �using the dif-
fusion approximation� and uses what is now called the single
mode approximation �the gap function is approximated by a
cos�ksz� dependence�. Theoretical results for the clean case
where the mean free path l is larger than the BCS coherence
length �BCS are more difficult and the case where l ,�BCS and
the film thicknesses are of the same order of magnitude are
much more challenging.

In recent years the superconducting proximity effect has
experienced a renewed interest. A large number of papers
studied the SPE theoretically10–22 and experimentally23–30

particularly during the last ten years. The studies have been
extended to double layers of a superconductor and a ferro-
magnet �SF�.31–33

Recently our group revisited the superconducting proxim-
ity effect using it as an experimental tool.29,28 One interesting
piece of information the SPE provides is the transparency of

the interface between the two metal films for the conduction
electrons. The reduction of Tc in the superconducting com-
ponent of the SN double layer depends on the rate at which
electrons can cross the interface between the superconductor
S and the normal metal N. This interface transparency is of
interest in a number of other disciplines and applications in
solid-state physics.

When our group tried to compare the experimental results
for the transition temperature with theoretical predictions we
found that only a few recent theoretical investigations calcu-
lated the transition temperature of SN double layers.13,11,34

These papers considered the extreme cases, either the clean
limit for an infinitely large mean free path13 or the dirty
limit34 where the mean free path is much shorter than the
BCS coherence length. Reference 34 considered
superconductor-ferromagnet double layers in the “dirty
limit.” It includes the case of an SN double layer by setting
the exchange energy in the ferromagnet equal to zero. A
multimode expansion of the order parameter is used in the
superconductor. This yields a complex set of equations
which contain the transition temperature implicitly. Their
single mode approximation is similar to Werthamer’s result.

Since our experiments used films with short and large
mean free paths the author preferred to develop a numerical
procedure which is capable of calculating the transition tem-
perature of arbitrary sequences of superconductors and nor-
mal conductors in a wide range of the mean free path. This
calculation uses a simple interpretation of the gap equation
which was stimulated by de Gennes’ work.8 Below I will
sketch the �simple� numerical procedure. In Sec. II the theo-
retical background is reviewed and the numerical procedure
is discussed in detail. In Sec. III some of the numerical re-
sults are presented. In the discussion of Sec. IV I will point
out a discrepancy between all experiments I am aware of
which study the change of Tc of a superconducting film when
covered with a thin normal conducting film, i.e., the normal-
ized intial slope �ds /Ts��dTc /ddn�, where ds and Ts are the
thickness and transition temperature of the superconductor
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and dTc /ddn is the initial slope of the Tc reduction for zero
thickness dn of the normal conductor.

II. THEORETICAL BACKGROUND

A. Linear gap equation

The superconducting phase transition in zero magnetic
field is generally of second order. Therefore, close to transi-
tion temperature Tc of the double layer, the gap function
��r�, which is the order parameter of the phase transition, is
small and only terms linear in the gap function contribute.
This linear gap equation, first formulated by Gorkov,35 was
rewritten by de Gennes8 as

��r� = V�r� � d3r� �
��n���D

H�n
�r,r����r��

H�n
�r,r�� = kBTG�n

�r,r��G�n

* �r,r�� �1�

Here ��r� is the gap function at the position r, �n= �2n
+1�	kBT /
 are the Matsubara frequencies, V�r� is the effec-
tive electron-electron interaction at the position r. The sum is
limited to the range ��n���D where �D is the Debye fre-
quency. This corresponds to a sum over n from −nc to +nc
where nc=�D / �2	T�=�D�T, where �D and �D are the De-
bye temperature and frequency and �T=
 / �2	kBT�. The
function H�n

�r ,r�� is the product of two Green functions
G�n

�r ,r�� and G�n

* �r ,r�� which represent a cooperon. Since
the Green function G�n

�r ,r�� represents the amplitude of an
electron traveling �at finite temperature� from r� to r the
product G�n

�r ,r��G�n

* �r ,r�� describes the amplitude of a
cooperon traveling from r� to r. Since the two single-particle
Green functions are conjugate complex to each other, the
product of their amplitudes is proportional to the probability
of a single electron to travel from r� to r. If one interprets in
Eq. �1� G�n

�r ,r��G�n

* �r ,r�� as the propagation of single elec-
trons then one has an equivalent problem and its solution is
also the solution of the gap equation. In the following the
solution of the equivalent problem will be pursued.

From the properties of the Green functions G�n
�r ,r�� �see

the Appendix, Sec. I� it follows that H�n
�r ,r�� is the electron

density if one injects electrons continuously with a rate N /�T
at the point r�, while their density decays along the path as
exp�−2��n�s /vF� where s is the distance traveled �not the
distance from r�� and N is the BCS density of states.

The right side of Eq. �1�, d3r�H�n
�r ,r����r�� �excluding

�n=−nc

nc , yields the density of electrons at the position r when
one injects constantly N��r��d3r�dt� /�T electrons in the in-
cremental volume volume d3r� at the position r� per time
interval dt�, which decay during their propagation with the
decay rate of 2��n� ��T=
 / �2	kBT��. �N��r��d3r� represents
a �dimensionless� number of electrons and the rate of in-
jected electrons per volume is N��r�� /�T�. These electrons
propagate with their Fermi velocity from r� to r, either di-
rectly or diffusively. Their density decays along the path as
exp�−��n�t�� � where t�� is the time since the departure from r�.
At the position r the surviving density of all arriving elec-

trons is integrated over �d3r��−

0 dt�. When summed over �n

and multiplied with the attractive electron interaction V�r�
one has to recover the original ��r�.

For further treatment we define the propagation density
��vF ;r ,0 ;r� , t��0�. If an electron with Fermi velocity vF is
introduced at the time t��0 at the position r� then
��vF ;r ,0 ;r� , t�� describes the probability to find the electron
at the time 0 at the position r. With this definition we can
express H�n

�r ,r��,

H�n
�r,r�� = N�r���

−


0

��vF;r,0;r�,t��exp�− 2��n��t���
dt�

�T
,

where 1/�T=2	kBT /
.
The sum over �n in Eq. �1� applies only to the exponential

decay functions exp�−2��n��t��� and yields the time function
�T�t��,

�T�t�� = �
��n���D

exp�− ��n��t���

=
1 − exp�− 2��D�T + 1��t��/�T�

sinh��t��/�T�
�2�

��D=Debye frequency�. Then one can express the gap equa-
tion as

��r� = V�r� � d3r�N�r���
−


0 dt�

�T
�T�t����vF;r,0;r�,t����r�� .

�3�

It is obvious that the superconducting properties of the
system occur only in the effective interaction V�r�� and the
decay function �T�t��. Of course, ��r� is the superconducting
pair amplitude but in Eq. �3� it is just the eigenvector of the
integral kernel. The self-consistency condition requires that
this eigenvalue is equal to 1.

This interpretation of the gap equation yields a natural
extension to a time-dependent pair amplitude or gap func-
tion. One obtains

��r,t� = V�r� � d3r�N�r��

��
−


t dt�

�T
�T�t����vF;r,0;r�,t����r�,t�� . �4�

From this equation one can derive a time-dependent
Ginsburg-Landau equation.36

For a homogeneous superconductor one has a constant
energy gap. In this case one can perform the integral over
d3r�, using �d3r��vF ;r ,0 ;r� , t��=1 and dividing by �,

1 = �VN�s�
−


0 dt�

�T
�T�t�� , �5�

which yields

1

NV
= �

n=0

nc 1

n + 1
2

.
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The condition �5� is used to determine the BCS coupling
strength �NV�s. It has the advantage that it is not restricted to
integer values of nc=�D�T.

B. Gap equation for double and multilayers

Now we can apply the gap equation �3� to the proximity
effect. The direction z is chosen perpendicular to the
multilayer and the films are treated as homogeneous in the
x-y plane. If there is no magnetic field then the gap depends
only on the z direction. Therefore one can perform the inte-
gration over �dx�dy���vF ;r ,0 ;r� , t��= �̄�z ,0 ;z� , t��.

Now the function �̄�z ,0 ;z� , t�� describes the density at the
time t=0 and the position z integrated over the x and y di-
rections. For the numerical procedure it is more convenient
to shift the time integration from the range �−
 ,0� to the
range �0,
�,

��z� = V�z� � dz�N�z���
0


 dt

�T
�T�t��̄�z,t;z�,0���z�� .

The multilayer will be divided into small sheets parallel to
the film surfaces. The layers are indexed by � and possess a
thickness �� �see Fig. 1�.

In the present paper we determine the gap function ��z� at
the transition temperature of an SN �superconductor–normal
metal� double layer. We proceed with the following steps
which are demonstrated by Fig. 2.

�a� The superconductor is divided into Zs layers of
thickness �s where �s=ds /Zs �ds is the thickness of the su-
perconducting film�.

�b� The BCS interaction Vs for the superconductor�s�
is fitted, using the density of states Ns and the Debye tem-
perature �D �Appendix Sec. 2 a�.

�c� The time interval �d=2�s /vF,s is the time step of
the numerical calculation �vF,s is the Fermi velocity of the
superconductor� �Appendix Sec. 3�.

�d� For the normal conductor �superconductor with
lower Tc� the same time step is used by dividing its thickness
in layers of thickness �n=vF,n�d /2.

�e� An initial gap function ��=��z�� is introduced.
Each cell is occupied at the time t�=0 with O��0�
=N�z������z�� electrons. �N�z�� is the local density of states,

i.e., equal to Ns in the superconductor� �Appendix Sec. 2 b�.
�f� A procedure for diffusive and ballistic propagation

of electrons in the different films is derived �Appendix Sec.
3�.

�g� The maximal transmission of an electron through
the interface in each direction is calculated. It can be scaled
down to include a barrier at the interface �Appendix Sec. 4�.

�h� The density O��m� is calculated in discrete steps
for the time t�=m�d �Appendix Sec. 3�.

�i� Due to thermal dephasing this density is, at each
step, multiplied with the time factor �T�m�d�.

�j� The sum �mO��m��T�m�d� is formed, multiplied
with ��d /�T� /�� and, in the superconductor�s�, multiplied
with Vs, the attractive electron-electron interaction.

�k� The resulting function �̃� is the input �� for the
next iteration.

�l� Since the eigenvalue has to be 1 the ratio r

=���̃�z�� /����z�� is calculated. If r�1�r�1� one increases
�lowers� the temperature.

�m� The interation process is completed when initial
and final �� agree with a relative accuracy of 10−5. This is
generally achieved after a few iterations.

All the steps of the numerical procedure are described in
detail in the Appendix.

III. RESULTS

There are numerous parameters in the superconducting
proximity effect: the coherence lengths �s,n=vF�T �for the
superconductor this is the BCS �BCS if one uses the transition
temperature in �T=
 / �2	kBT�, the mean free path ls,n, and
the film thickness ds,n for each film. In addition one has the
interface and the boundaries. Any barrier between the two
metals will reduce the transfer through the interface. Further-
more, one can have additional scattering at the interface be-
tween the two films due to a mismatch of the two lattices.
The two surfaces with the vacuum can reflect or scatter the
incident electrons or anything in between. All these scatter-
ing parameters influence the propagation of the electrons and
therefore the transition temperature of the double layer. In
the numerical calculation all these parameters can be in-

FIG. 1. A double layer of a superconductor S and a normal
conductor N. The two films are split in thin parallel layers � with
the z position z�. FIG. 2. The double layer is sliced into sheets of thickness �s ,�n

parallel to the film planes.
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cluded if they are known or used as fit parameters.

A. Transition temperature

In the majority of experiments the onset of superconduc-
tivity is measured for a double layer of a thick normal con-
ducting film which is covered with a superconducting film of
increasing thickness. Therefore the first plotted numerical re-
sult represents a double layer of an infinitely thick normal
conductor which is covered with a superconductor of in-
creasing thickness. Among the large number of possible pa-
rameters the following choice is made: �i� the electronic
properties �Ns,n ,vF,n� of the normal metal and the supercon-
ductor are identical, �ii� the mean free path of the normal
conductor is infinite, �iii� the thickness of the normal conduc-
tor is infinite, �iv� the interface is perfectly transparent, �v�
for the mean free path of the superconductor the following
values are chosen: ls=
 ,�0 ,�0 /10,�0 /100. The results are
shown in Fig. 3�a�. The parameter � is defined as �= ls /�0.
The curves of the transition temperature versus thickness of
the superconductor show the typical behavior; they approach
Ts for large ds and show a steep decline at a critical thickness
dcr. The value of the critical thickness decreases strongly
with decreasing mean free path ls of the superconductor. It
might be surprising that even a mean free path ls=�0 shifts
the Tc-ds curve considerably to smaller thicknesses. For the
smallest mean free path of ls=� /100 the critical thickness is
about dcr	0.19�0. In Fig. 3�b� Tc is plotted versus the re-
duced thickness ds /dcr. The points lie almost on a universal
curve, particularly those for smaller ls.

B. Pair amplitude

In the next step the actual dependence of the gap function
on position is of interest. In Figs. 4�a�–4�d� this gap function
��z�� is plotted as a function of z�=z /ds. We choose double
layers where Tc lies in the steep decline of the Tc curves in
Fig. 3 at about Tc /Ts	0.3. Figure 4�a� shows ��z�� /�0 for

FIG. 3. �a� The reduced transition temperature Tc /Ts for an NS
double layer where dn=
, ln=
 as a function of thickness ds /�
��=BCS coherence of S�. �a� For different mean free paths ln of S,
the parameter �= ls /�. �b� The same plot as �a� with the S thickness
scaled with the critical thickness dcr.

FIG. 4. �a�–�d� The gap function ��z� is plotted versus the po-
sition z /ds in the superconductor for NS double layers. Each draw-
ing corresponds to one of the curves in Fig. 3�a�. ds is close to the
critical thickness dcr. The ratio ls /�0 is noted in the figures.
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the superconductor with ls /�0=0.01. �Since the amplitude of
��z�� approaches zero at the transition temperature the value
�0 at the maximum is of no physical significance�. Since the
gap function has a horizontal slope at the free surface a com-
parison with a cosine function cos�p�1−z��� is useful. The
resulting fits are shown in Figs. 4�a�–4�d�. Figure 4�a� for
ls /�0=0.01 shows an almost perfect quarter of a cosine func-
tion with p=1.57 which is as close to 	 /2 as it can be. For
ls /�0=0.1 the shape of the gap curve is still quite close to a
cosine function but the factor has the value p=1.46. For
ls /�0=1 the shape of the gap curve shows already clear de-
viations from a cosine curve and the coefficient is p	1.25.
Finally in the clean limit the gap function curves stronger for
small z� than the cosine curve and the coefficient is p
	1.05 for the shown fit. This behavior is interesting because
in a number of theoretical papers the gap function is ex-
panded into a series (see, for example, Ref. 34 where a series
consisting of cos��0�ds−z� /�d� and cosh���m�z−ds� /�d�� is
used, �d=
ls� is the superconducting diffusion length, and
�0 ,�m are coefficients defined in that work).

The simple form of the gap function in the case of ls /�0
=0.01 makes it very obvious why the very disordered super-
conductors �often discriminatingly called dirty superconduct-
ors� are much easier to describe. This becomes still more
obvious if one compares the shape of the gap function at
different Tc /Ts values �which means, of course, using differ-
ent thicknesses of the superconductor�. In Fig. 5�a� the �nor-
malized� gap functions for Tc /Ts values of about 0.3 and 0.9
are shown as a function of z /ds. They lie perfectly on the
same quarter of a cosine function. This is very different for

the clean limit where the shape depends strongly on the tem-
perature.

C. Dirty limit

Since in the dirty limit the gap function approached such
a simple form for a superconductor in contact with an infinite
clean normal metal it is worthwhile to check the situation
when both metals are dirty. This is the case which most
theoretical papers investigate.

In Fig. 6�a� � / �NV� is plotted for a double layer of two
superconductors with different transition temperatures of Tn
=5 K and Ts=10 K. In addition the density of states for su-
perconductor N �with the lower transition temperature� is
larger by a factor of 1.5 than for superconductor S. Therefore
the superconducting coherence lengths �0s=
vFs / �2	kBTs�
=100 nm and �0n=
vFn / �2	kBTn�=300 nm are different
�the additional factor of 2 stems from the ratio of the transi-
tion temperatures�. The difference in the density of states and
the Fermi velocity of the two metals yields a ratio of the two
transmission coefficients at the interface TN→S /TS→N=0.444.

The thickness of each film is dn=ds=20 nm. In Fig. 6�a�
the mean free paths are chosen in both films to be ls= ln
=1 nm. For the corresponding superconducting diffusion
lengths �ds ,�dn one finds �ds=
�0sls=10 nm and �dn=
�0nln
=17.3 nm. According to de Gennes the function � / �NV�
should be continuous at the interface. As can be easily rec-
ognized from the plot in Fig. 6�a� this condition is well ful-

FIG. 5. �a� The gap function ��z� is plotted versus the position
z /ds for two NS double layers, each at two different ds �resulting in
different Tc of about 0.3 and 0.9Ts�. �a� Dirty limit ls /�=0.01. �b�
Clean limit ls=
.

FIG. 6. �a�,�b� The function � / �NV� for an S1S2 double layer,
Tc1=Ts2 /2 �details in text and figures�. Both films are in the dirty
limit. In �a� the transmission coefficient from S2 to S1 is t=1.0 while
in �b� t=0.8.
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filled. Werthamer7 expressed the z dependence of the gap
function ��z� in the two superconductors as

cosh�kn�dn + z�� for − dn � z � 0,

cos�ks�ds − z�� for 0 � z � ds.

Figure 6�a� shows a fit for z�0 to the function
a cosh�kn�dn+z�� and for z�0 to the function cos�ks�ds−z��.
The fitted curves lie within the trace of the points. The fitted
values for the parameters are ks=0.0506 nm−1, kn
=0.0468 nm−1, and a=0.351. This yields for the value of
� / �NV� on the left and the right side of the interface: 0.516
and 0.530. The corresponding slopes on the left and right
side of the interface are 4.29�10−2 and 1.77�10−2. Accord-
ing to de Gennes the derivative �D /V�d� /dz should be con-
tinuous at the interface for the dirty limit. Using the input
data of the two superconductors Ds,n and Vs,n one obtains for
the ratio of the slopes 2.61. The simulated ��z� yields a slope
ratio at the interface of 2.42. So the de Gennes condition is
verified with an accuracy of about 10%.

In a second simulation the transmission through the inter-
face is reduced by a factor 2. It is quite remarkable that this
changes the transition temperature by just 0.1 K from Tc
=7.6 K to 7.7 K. In Fig. 6�b� the function � / �NV� is plotted
for the double layer as a function of z. One recognizes that
now � / �NV� is no longer continuous at the interface. The
functional form in N and S can still be well fitted by a hy-
perbolic cosine and a cosine function. �The fitted curves lie
within the width of the numercal points.�

D. Initial slope

When one condenses the normal metal on top of the su-
perconductor then the transition temperature of the double
layer decreases. Here the focus is on the question of how the
intial slope at dn=0 depends on various parameters, such as
the mean free path in the superconductor and the normal
conductor and the transparency of the interface.

The dependence of the initial slope on the mean free path
is shown in Figs. 7�a� and 7�b�. In both figures the thickness
of the superconductor is equal to the BCS coherence length
�0. The transition temperature Tc /Ts is plotted versus the
thickness of the normal conductor. In Fig. 7�a� the mean free
paths in both films are equal and vary between ls= ln
=�0 /10, �0, and 103�0. In Fig. 7�b� four different combina-
tions of �ls , ln� are chosen. From the top to the bottom �ls , ln�
is equal to ��0 /100,�0 /100�, ��0 /100,103�0�,
�103�0 ,�0 /100�, and �103�0 ,103�0�. For all curves the initial
slope is identical. �In all the numerical calculations which
were discussed so far the two densities of states are assumed
equal, Ns=Nn.�

In Fig. 8 the dependence of the initial slope on the thick-
ness of the superconducting first layer is tested. The graph
shows the dependence of Tc /Ts for a small range of the
thickness dn of the normal conductor to emphasize the initial
range.

In Table I the normalized initial slope is collected. �The
numerical points had to be fitted with a polynomial to extract
the slope from the numerical results.� Up to a thickness of

ds=� the Ssn is constant within about ±1%. For larger ds it
decreases slightly. But since the value of dTc /ddn becomes
quite small this thickness range is not well suited for the
experimental determination of the slope. The main result is
that the normalized initial slope is essentially independent of
the thickness of the superconductor.

Finally, Fig. 9 shows that the initial slope does not depend
on the transmission through the interface. In this calculation
the density of states in both metals is chosen to be equal,
Ns=Nn, and the mean free paths are ls= ln=� /10. The trans-
mission coefficient is varied between 0.2 and 1.0. The result-
ing Tc-dn curves show the same initial slope.

FIG. 7. �a�,�b� Tc for an SN double layers as a function of dn /�.
The thickness of the superconductor is equal to the BCS coherence
length � �Ns=Nn�. �a� The mean free paths ls= ln are parameters. �b�
Different combinations of the mean free paths are used as
parameters.

FIG. 8. Tc for an SN double layers as a function of dn /�. The
parameter ds is the thickness of the superconductor �Ns=Nn, ls= ln

=� /10�.
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IV. DISCUSSION

The intention of this paper was to develop a convenient
numerical procedure for the superconducting proximity ef-
fect so that graduate students could instantly compare their
experimental results with the theory. One important result of
this investigation is the fact that the �normalized� initial slope
of an SN double layer is independent of most film param-
eters except the density of states ratio and the effective BCS
interaction,

Ssn =
ds

Tc0
�dTc

ddn
� = �sn

Nn

Ns
. �6�

In the case of a weak-coupling superconductor �sn is
given by the Cooper limit, i.e., �sn=1/ �NV�s, the inverse of
the BCS interaction. If the Debye temperature is not several
orders of magnitude larger than Ts then one has to determine
�sn in Eq. �6� numerically. Using Ts=7.2 K for Pb then the
prefactor is about 4.5. �This is actually the value for a wide
range of the Debye temperature between 100 and 300 K.�

Recently our group investigated the proximity effect be-
tween the superconductor Pb and several alkali metals.29 It
was a great surprise that the experimental initial slope of
these SN double layers could not be explained with the den-
sity of states from the literature. Instead the experimental
�ds /Ts��dTc /dT� was too small by more than a factor of 2.
Table II gives some of the data of the SN double layers. �The
thickness of the normal metal was the smallest thickness in a
full curve.�

We searched the literature for other measurements of SN
double layers and their initial slope. It turned out that there
are very few measurements of SN layers. �At this stage we
excluded transition metals because they show two-band su-
perconductivity and it is not obvious how the different su-

perconducting bands couple to the normal conductor.� There
were essentially two groups of publications which had mea-
sured SN double layers which contained information about
the initial slope. The first group of papers was by Hilsch and
co-workers1,2 who investigated quench condensed PbCu lay-
ers. The second work was by Minnigerode6 who also inves-
tigated PbCu layers but prepared the layers at room tempera-
ture. Particularly, the second paper gives detailed tables of
thicknesses of the two components and transition tempera-
tures. The results of these papers are collected in Table III.
The first column gives the components of the SN double
layer, the second and third columns the thicknesses of the
superconductor and normal metal. The fourth column con-
tains the experimental normalized slope and the fifth gives
the ratio Nn /Ns. The last column contains the ratio of the
experimental �normalized� slope to the density-of-states ra-
tio. Again the experimental normalized slopes are much
smaller than the theory predicts.

Ashida et al.13 have calculated the transition temperature
of SN double and multilayers in the clean limit. Propagation
through the interface is described by the coefficient of reflec-
tion R from the normal conductor side. For thin normal con-
ductor thickness dn they found some analytic expressions for
Tc. In the thin-film limit they obtained a divergence of the
initial slope dTc /d�dn�, and their thin-film limit differs from
the Cooper result. Ashida et al. do not interpret or explain
their result. The underlying equations are complex and inter-
woven, and it is difficult to uncover the underlying physics
and the influence of the simplifications. One has to be very
careful with the limiting cases; this can be seen from Ashida
et al.’s expression for Tc in the limit of R close to 1. Ashida
et al. obtained in this limit that Tc does not depend on dn,

FIG. 9. Tc for SN double layer as a function of dn /�. The pa-
rameter t is the transparency of the interface �Ns=Nn, ds=�, ls= ln

=� /10�.

TABLE I. Normalized initial slope for different thicknesses ds

of the superconductor.

ds

�

ds

Ts

dTc

ddn

0.25 4.35

0.5 4.34

0.75 4.31

1.0 4.26

1.5 4.13

2.0 4.02

TABLE II. The normalized initial slope of SN double layers with Pb as superconductor and different
normal metals. Columns 2–6 give the thickness of the superconductor, the normal conductor, the experimen-
tal initial slope, the ratio of the density of states, and the ratio �Ssn�exp/ �Nn /Ns�=�sn.

Metals ds �nm� dn �nm� �Ssn�expt. Nn/Ns Ratio �sn

Pb/K 12.9 2.04 0.423 0.223 1.90

Pb/Na 13.9 2.18 0.546 0.300 1.82

Pb/Ag 17.9 2.10 0.625 0.335 1.86
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corresponding to a vanishing initial slope dTc /d�dn�. We
pointed out in a recent paper that even for R close to 1 one
obtains for sufficiently small dn a large interface crossing
from the normal metal because the attempt rate is roughly
vF /4dn, yielding again the Cooper limit.

It is rather amazing that this fundamental discrepancy be-
tween experiment and theory has not been realized. What is
the reason for this disagreement? One possibility is that the
use of the weak-coupling theory of superconductivity is not
adequate for the double layers containing the supercondutor
Pb. The superconductor Pb is a convenient component of an
SN double layer because it has a rather large Tc and is easy
to condense. However, Pb is a strong-coupling supercon-
ductor. The Fermi sphere of free electrons is modified by the
electron-phonon interaction.

An obvious proposal would be to solve the superconduct-
ing proximity effect for strong-coupling superconductors.
This means to develop and solve a series of equations for the
energy and position dependent gap function ��r ,�l� which
has Eq. �4� as limiting case. This is a very demanding job
which goes beyond the scope of the present paper and has to
be left for future investigations. Instead I considered the
analogy to the Cooper limit for strong superconductors. This
thin-film limit, strong-coupling treatment yields for the ini-
tial slope

ds

Ts
�dTc

ddn
� 	 1.7

Nn

Ns
.

The prefactor of 1.7 appears to be a very satisfactory result.
However, in the strong-coupling treatment one uses the bare
density of states and treats the enhancement separately while
in the comparison with the experiment one uses the dressed
density of states. This introduces an additional factor of �1
+��	1.8 so that the initial slope becomes about 3Nn

* /Ns
*,

which is similar to the weak-coupling calculation. This is in
one way rather satisfying, because it means that a renormal-
ized treatment yields in first approximation the same as the
strong-coupling treatment. However, it does not solve the
puzzling difference between experiment and theory.

V. CONCLUSION

This paper derives the transition temperature of a double
or multilayer of a superconductor and a normal conductor
numerically. The equivalence in the propagation of the su-
perconducting pair amplitude and a single electron in Gork-
ov’s linear gap equation is used. The single electrons act as
messengers who carry the information about the supercon-
ducting gap �Ns��r�� /�T� from one position-time
�r� , t��0� to another position-time �r , t=0�. This
message which decays thermally with time as �T�t�
=���n���D

exp�−2��n��t��� is integrated at �r , t=0� over all
start position times �r� , t�� and, after multiplication with the
BCS interaction Vs, yields the new gap function ��r�. At the
transition temperature the procedure has to be self-
consistent, i.e., the initial and final gap function have to be
identical. The propagation of the single electrons is then
quasi-classically simulated. The framework of the calcula-
tion is the weak-coupling theory of superconductivity.

This numerical procedure to calculate the transition tem-
perature of double or multilayers consisting of thin films of
superconductors and normal conductors is very flexible. The
following parameters can be taken from the experiment or
fitted during the calculation:

�a� mean free path of the different metals
�b� transmission through the interface
�c� ratio of specular reflection to diffusive scattering at

the surfaces
�d� fraction of diffusive scattering at the interface.

Furthermore, it is possible
�a� to vary the mean free path along the thickness of

the films
�b� to vary the BCS interaction NV at the interface.

The few examples which were presented in Sec. III dem-
onstrate why the dirty case is so much simpler than the clean
one. They also show that even for small thicknesses of the
normal metal the gap parameter in the superconductor is not
quite constant. Still the initial slope for an SN double layer
follows the prediction of the Cooper limit.

An important outcome of the numerical simulation is the
result that the normalized initial slope of an SN double layer

TABLE III. The normalized initial slope of PbCu double layers. Columns 2–6 give the thickness of the
superconductor, the normal conductor, the experimental initial slope, the ratio of the density of states, and the
ratio �Ssn�exp/ �Nn /Ns�.

Metals ds �nm� dn �nm� �Ssn�expt. Nn/Ns Ratio

Pb/Cua 10.0 10.0 0.542 0.448 1.21

Pb/Cua 15.0 10.0 0.500 0.448 1.12

Pb/Cub 22.9 3.30 1.110 0.448 2.48

Pb/Cub 24.3 3.90 0.935 0.448 2.08

Pb/Cub 32.9 4.10 0.883 0.448 1.97

Pb/Cub 27.2 13.10 0.683 0.448 �1.52�
Pb/Cub 28,0 26.40 0.842 0.448 �1.88�
Pb/Cub 33.4 17.70 0.608 0.448 �1.36�
aData from Ref. 1 are quench condensed.
bData from Ref. 6 are condensed at room temperature.
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as a function of dn at dn=0 does not depend on
�a� the mean free path of the two metals
�b� the thickness of the superconductor
�c� a �not too large� barrier between the two metals.

This slope is essentially given by

ds

Tc0
�dTc

ddn
� = �sn

Nn

Ns
.

For the extreme weak-coupling superconductor the value
of �sn is 1 / �NV�s. If one applies the numeric procedure to
double layers with Pb as the superconducting component
then one obtains �sn	4.6. This is in strong disagreement
with the results of the few experiments which allow the
evaluation of the initial slope. Their values for �sn lie in the
range of 1.5–2.0.

APPENDIX

1. Kernel in the clean limit

In the clean limit the thermal Green function has the form

G��r,r�� = −
m

2	
2�r − r��
exp�ikF�r − r��

�

���
−

���
vF

�r − r��

that yields

H��r,r�� = kBTG��r,r��G�
* �r,r��

or

H��R� =
2	kBT


vF
N

1

4	R2 exp�−
2���
vF

R

since H��r ,r�� depends only R= �r−r�� �using the BCS-
density of state N=m2vF / �2	2
3��.

Without the damping the number of electrons between the
radius R and R+dR is

2	kBT


vF
NdR =

2	kBT



Ndt

using dR=vFdt�. This means that H��r ,r����r��d3r� corre-
sponds to an injection of

dZ =
2	kBT



N��r��d3r�dt

electrons in the volume d3r� during the time dt� at the posi-
tion r�. dZ is indeed a �dimensionless� number. The expo-
nential decay exp�−2���R /vF� corresponds to a decay with
time since R=vFt:

exp�− 2���R/vF� = exp�− 2���t� .

The density of an electron at the position r and the time t
=0 that was injected at �r� , t��0� and propagates with Fermi
velocity vF can be described by the propagation density
��vF ;r ,0 ;r� , t��. Therefore H��r ,r�� can be written as

H��r,r�� =
2	kBT



N�r���

−


0

dt���vF;r,0;r�,t��

�exp�− 2����t��� .

This yields the gap equation using �T�t�� from Eq. �2�,

��r� = V�r� � d3r�N�r���
−


0 dt�

�T
��vF;r,0;r�,t���T�t����r�� .

This result is not restricted to the clean case but applies to
the arbitrary mean free path.

2. Numerical procedure

As shown in Fig. 2 the metal films are divided in sheets of
thickness ��. Furthermore, the time development is per-
formed in diffusion steps of �d=2�s /vFs, t�=m�d. Then the
self-consistent gap equation takes the form

��z�� =
V�z��

��
�
��

���N�z���

��
m=0



�d

�T
�T�m�d��̄�z�,m�d;z��,0���z��� .

�For the zero term in the time summation only half the value
is taken.� In the following we denote ��z�� ,V�z�� ,N�z�� as
�� ,V� ,N�.

a. Value of the BCS interaction „NV…s

For the superconductor with the transition temperature Ts,
the density of states Ns, and the Debye temperature �s the
implicit equation

1

�NV�s
= �

0


 dt

�T
�Ts

�t/�Ts
�

is used.

b. Initial conditions

At the time t=0 a simple gap function �� in the supercon-
ducting film�s� is chosen, for example, ���=kBTs for the su-
perconducting film�s�. At the time t=0 or m=0 we define an
occupation O���m=0� of the different cells,

O��0� = ����N�.

This occupation is equally divided in left and right moving

electrons O�
��0� and O�

��0� with O�
��0�=O�

��0�=O��0� /2. In
the following subsections the recipe is given for how to cal-

culate from the occupation O�
��m� ,O�

��m� at the time t=m�d

the occupation O�
��m+1� ,O�

��m+1�. The total occupation is

O��m�=O�
��m�+O�

��m�. With this time developing occupa-
tion the new gap function becomes

��
˜ =

V�

��

�d

�T
�
m=0




�T�m�d�O��m� .

This iterated gap function has two defects: �i� its shape gen-
erally does not agree with the original gap function ��, and
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�ii� the ratio of the average amplitudes r= ���
˜ � / ���� will not

be 1. By determining numerically dr /dT from two iterations
with the same initial gap function and two temperatures T
and T+T� the temperature is adjusted, using Newton’s ex-

trapolation method. After a few iterations ���
˜ � becomes suf-

ficiently close to ���� and the adjusted temperature is the
transition temperature of the multilayer. The iteration is com-
pleted when


 1

Zs
��

���
˜ − ���2

1

Zs
��

��

� 10−5.

3. Diffusive and ballistic propagation

The important task is to devise a simple fast procedure
that describes the ballistic propagation of the electrons for
distances shorter than the mean free path l and the diffusive
propagation for distances larger than l. It helps considerably
that only the propagation in the z direction has to be modeled
properly �as long as no magnetic field perpendicular to the
film is applied�. We consider the electrons in a thin layer of
thickness dz in the interval �z ,z+dz�. Half of the electrons
have a positive z component vz=vF cos � of the velocity. As
long as they are not scattered their average velocity in the z
direction is

�vz� =

�
0

	/2

2	 sin �vF cos �d�

�
0

	/2

2	 sin �d�

=
1

2
vF.

We take this as the minimum requirement for the ballistic
simulation.

The simulation of the diffusion in the z direction is rather
straightforward. At the time t=0 we have the initial occupa-
tion O��0�.

Let us first consider the diffusion in one dimension. Here
the electrons have either the velocity +vF or −vF. The size of
the cells is � and an electron needs the time �0=� /vF to
cross a cell. We divide the initial occupation O��0� into

O�
��0�=O�

��0�=O��0� /2 for the left- and right-moving elec-
trons. When the electrons reach the boundary of the cell they
will be partially transmitted through the boundary with the
probability p and partially reflected with the probability �1
− p�. This yields the rule of how one obtains from the occu-
pations at the time t=m�0 the occupation at the next time
step t= �m+1��0,

O�
��m + 1� = pO�−1

��m� + �1 − p�O�
��m� ,

O�
��m + 1� = pO�+1

��m� + �1 − p�O�
��m� .

This yields a one-dimensional diffusion with the diffusion
constant D= 1

2 �p / �1− p����2 /�0�.

Ballistic propagation requires setting p almost equal to 1.

In this case almost all the O�
��m� electrons move from cell �

to cell ��+1� during the time �0. This means that they propa-
gate the average distance �=vF�0 during the time �0. There-
fore this model does not fulfill the basic requirement for
ballistic propagation in three dimensions that �vz�= 1

2vF.
A three-dimensional diffusion can be obtained by a se-

quential propagation in the x, y, and z directions, each for a
time of �0 with the velocity vF. This yields a diffusion con-
stant D= 1

2 �p / �1− p����2 /3�0� and triples the average time
for the diffusion in the z direction. Since the electrons propa-
gate only during every third of the interval 3�0 in the z di-
rection they propagate the distance � during the time 3�0,
i.e., their average velocity in the z direction is only �vz�
=vF /3.

We can simulate the average diffusive and ballistic propa-
gation of the electrons in the z direction by propagating ev-
ery other time interval �0 in the z direction. Then the time
step is �d=2�0. In this case the diffusion constant is D
= 1

2 �p / �1− p����2 /�d� and the ballistic propagation yields
�vz�=vF /2 as required.

It should be mentioned that it is essential that the electron
density is divided into �at least� two components, one for
motion in the +z and the other for the −z direction. A single
density component with hopping to neighbor places yields
only small diffusion constants of D= �p /2���2 /�0� and can-
not describe the ballistic propagation at all.

For the normal conductor the same time element �d is
used to simulate the propagation. The thickness dn is divided
in cells �or layers� of thickness �n=vF,n�0=vF,n�d /2. This
synchronizes the diffusion in the whole double layer.

The transparency p of the cell walls is obtained from the
experimental conductivity � of the films, where �m
=2e2NmDm or

Dm =
�m

2e2Nm
, pm =

Dm

�1

2

�m
2

2�0
+ Dm
 ,

where m stands for s or n.

4. Interface between two films

The transmission of electrons through an interface be-
tween two metals �which we denote with S and N� is only in
exceptional cases equal to 1. If, for example, the Fermi wave
number kF,s is larger than kF,n then any electron in S whose
component k� parallel to the surface is larger than kF,n cannot
cross the interface because afterwards it would have an en-
ergy of at least �
k��2 /2m which is larger than the Fermi
energy EF,n= �
kF,n�2 /2m in the normal conductor. An elec-
tron in N with Fermi energy would not violate the conserva-
tion of energy when crossing the interface. However, a plane
wave which crosses a step in the potential energy is partially
reflected. Therefore the transition probability is less than 1
for any electron. If one averages the transition probability of
all these electrons �to cross the interface from N to S� one
finds

GERD BERGMANN PHYSICAL REVIEW B 72, 134505 �2005�

134505-10



TN→S = f�EF,n

EF,s
− 1
, where

f�x� =
4

15

�
�x + 1��3�x + 6� − �
x�5 − 10x − 6

x2 .

For small x the asymptotic expansion is f�x���1− 4
15


x�.
The detailed balance requires that in equilibrium the num-

ber of electrons which cross from S to N is equal to the
number of electrons which cross from N to S. Let us assume
that the electron distribution is in equilibrium and we con-
sider an interface S /N. Os�m� and On�m� are the occupations
in the cells on the left and right side of the interface. The
transmission coefficients are by Tsn and Tns. Then the occu-
pation at the time �m+1��d is

Os
��m + 1� = TnsOn

��m� + �1 − Tsn�Os
��m� ,

On
��m + 1� = TsnOs

��m� + �1 − Tns�On
��m� .

In equilibrium one has Os,n
�=Os,n

�= 1
2Os,n and Os,n�m+1�

=Os,n�m�. This yields

TnsOn�m� = TsnOs�m� .

Since Os,n=�s,nNs,n one obtains finally

Tsn

Tns
=

�nNn

�sNs
.

If one considers real metals a considerably more difficult
situation arises when the superconductor has a mass en-
hancement of the density of states �as most superconductors
have, in particular the strong-coupling ones�. However, inde-
pendent of how complicated the individual transmission
probabilities are, the detailed balance will always apply. In
our simulation we use Tns�1 as a fit parameter and calculate
Tsn using the detailed balance.
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