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The effects of the Gutzwiller projection on a BCS wave function with varying particle number are consid-
ered. We show that a fugacity factor has to be introduced in these wave functions when they are Gutzwiller
projected, and derive an expression for this factor within the Gutzwiller approximation. We examine the effects
of the projection operator on BCS wave functions by calculating the average number of particles before and
after projection. We also calculate particle number fluctuations in a projected BCS state. Finally, we point out
the differences between projecting BCS wave functions in the micro- and grand-canonical schemes, and
discuss the relevance of our results for variational Monte Carlo studies.
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I. INTRODUCTION

Recently, Anderson has underscored the importance of
fugacity in wave functions that do not conserve particle
number.1 Following an earlier paper by Laughlin,2 Anderson
argued that a fugacity factor should be included in varia-
tional wave functions of the form

P��BCS� = P�
k

�uk + vkck↑
† c−k↓

† ��0� . �1�

Here, P=�i�1−ni↑ni↓� is a �Gutzwiller� projection operator
that excludes double occupancies at sites i,3 and ��BCS�, a
BCS wave function. Projected wave functions of this form
were originally proposed to describe the phase diagram of
doped Mott Hubbard insulators such as the high-temperature
superconductors.4–7 Detailed variational Monte Carlo �VMC�
studies have been carried out recently using projected
d-wave BCS states as variational wave functions for the two-
dimensional Hubbard model, after a suitable canonical
transformation.8,9

Despite their simple form, projected wave functions ex-
hibit nontrivial properties because the projection operator
acts on a quantum many-body state. The action of the pro-
jection operator �in reducing the allowed states in the Hilbert
space� concomitant with the correlations of the quantum
state being projected, leads to a variety of physical
phenomena.10 Other interesting effects include nontrivial
matrix-element renormalization near half-filling11 and the oc-
currence of superconductivity near a �antiferromagnetic�
Mott insulator.12

Approximate analytical calculations with wave functions
such as Eq. �1� can be done using a renormalization scheme
based on the Gutzwiller approximation. Within this approxi-
mation, the effects of projection on the state ��0� are ap-
proximated by a classical statistical weight factor multiply-
ing the quantum result.13,14 Thus, for example,

���Ô���
�����

� g
��0�Ô��0�
��0��0�

, �2�

where Ô is any operator and g is the so-called Gutzwiller
factor. For example, the Gutzwiller approximation for the

kinetic energy operator ci
†cj +cj

†ci and the superexchange in-

teraction between sites i and j, S� i ·S� j, yields the Gutzwiller
factors

gt =
1 − n

1 − n/2
, gs =

1

�1 − n/2�2 , �3�

where n is the density of electrons. In deriving these renor-
malization factors, one considers the number of terms that

contribute to ���Ô��� and to ��0�Ô��0�. The ratio of these
two contributions is the renormalization factor.

The renormalization factors are functions of the local
charge density. This is a well defined quantity when one
considers, for example, a projected Fermi liquid state,

P��FS� = P �
k�kF

ck↑
† ck↓

† �0� . �4�

Suppose, instead, we consider wave functions such as the
BCS state in Eq. �1�, where the particle number fluctuates. In
this case, it is not clear what the local charge density in Eq.
�3� should be. It may be argued that the correct n is set by the

average particle number N̄. Projecting a BCS state then
changes the average particle number; i.e., the average num-
ber of electrons in ��BCS� does not equal that in P��BCS�.
Clearly, we need a scheme to keep track of this effect.

Note that this problem can be avoided completely, as is
done in most variational Monte Carlo studies. Here, the par-
ticle number is fixed �one works in a micro-canonical en-
semble�, and Eq. �1� replaced by

PNP��BCS� = PNP�
k

�uk + vkck↑
† c−k↓

† ��0� . �5�

The operator PN fixes the particle number, and the issue of
projection changing the mean particle number does not
arise.4 However, there are also other VMC studies with wave
functions that do not have a fixed particle number.15 More-
over, we are often interested in carrying out analytical ap-
proximations in the spirit of Eq. �2�. Since such manipula-
tions are done more easily with BCS wave functions �where
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the particle number is not fixed�, it is desirable to understand
the effects of the projection operator on this class of wave
functions. In this paper, we present analytical and numerical
considerations of this problem. In doing so, we clarify the
notion of fugacity introduced by Anderson.1 We also discuss
the relevance of this approach for the Gutzwiller approxima-
tion in the grand-canonical scheme and the corresponding
VMC studies.15

II. THE FUGACITY FACTOR

Consider the projected BCS wave function, Eq. �1�. It is
clear that the projection operator P changes the average
number; viz.,

��BCS�N̂��BCS�
��BCS��BCS�

�
��BCS�PN̂P��BCS�
��BCS�P2��BCS�

.

The effect of the projection operator can be seen most clearly
by examining the particle number distribution in the un-
projected and projected Hilbert spaces. Towards this end, let

us write the average numbers N̄�0��N̄� in the unprojected
�projected� Hilbert space, as

N̄�0� = �
N

N�N
�0�, �6�

N̄ = �
N

N�N. �7�

Here,

�N
�0� =

��BCS�PN��BCS�
��BCS��BCS�

,

�N =
��BCS�PPNP��BCS�

��BCS�PP��BCS�
,

are the particle number distributions in the unprojected and
projected BCS wave functions, respectively; PN is an opera-
tor that projects onto terms with particle number N. The par-
ticle number distributions before and after projection may be
related by

�8�

where

Equation �8� constitutes the Gutzwiller approximation for the
projection operator PN with the corresponding renormaliza-
tion factor, gN; C is an irrelevant constant �the ratio of the
normalization of the unprojected and projected wave func-
tions�, which does not depend on N. Following Gutzwiller,

we estimate gN by combinatorial means, as being equal to the
ratio of the relative sizes of the projected and unprojected
Hilbert spaces. Then,

gN � C

L!

�L − N↑ − N↓�!N↑!N↓!

L!

�L − N↑�!N↑!

L!

�L − N↓�!N↓!

, �9�

where L is the number of lattice sites and N↑�N↓� is the
number of up �down� spins. Since in a BCS wave function,
N↑=N↓=N /2, N being the total number of particles, the ex-
pression for gN can be simplified to

gN � C
	�L − N/2�!
2

L!�L − N�!
. �10�

Hence, if we were to impose the condition that the aver-
age particle numbers before and after projection be identical,
a factor gN

−1 has to be included in Eq. �7�. From Eq. �7� and
Eq. �8�, we then obtain the particle number after projection

N̄new, as

N̄new � �
N

N
1

gN
�N = �

N

N
gN�N

�0�

gN
= N̄�0�, �11�

which is the desired result.
Now, let us show how this procedure can be implemented

for the wave function ��BCS�. Since the BCS wave function
is a linear superposition of states with particle number
. . . ,N−2,N ,N+2, . . ., we consider the effect of projection on
two states whose particle numbers differ by 2. We then ob-
tain the ratio

f2 �
gN+2

gN
� � L − N

L − N/2
2

, �12�

in the thermodynamic limit. Equation �12� shows that the
projection operator acts unequally on the N and N+2 particle
states; the renormalization of the weight of the N+2 particle
states gN+2, is f2 times the weight of the N particle states, gN.
This effect can be rectified as in Eq. �11� by multiplying
every Cooper pair ck↑

† c−k↓
† by a factor 1 / f in the BCS wave

function. It produces the desired result, viz., the projected
and unprojected BCS wave functions have the same average
particle number.

Alternatively �following Anderson�, we can multiply ev-
ery empty state by the factor f and write

��BCS
�f� � = �

k

�fuk + vkck↑
† c−k↓

† �
�f2�uk�2 + �vk�2

�0� . �13�

Again by construction, the fugacity factor f in Eq. �13� en-
sures that the projected wave function P��BCS

�f� � and the un-
projected wave function ��BCS� have the same particle num-
ber. The denominator in Eq. �13� is the new normalization
factor.

The following points are in order. �a� The fugacity factor
f in Eq. �12� depends on the variable particle number N.
However, since the particle number of the BCS wave func-

tion is sharply peaked within the range N̄�0�−�N̄�0� to N̄�0�
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+�N̄�0�, we will assume that the fugacity factor f = f�N̄�0�� in
the thermodynamic limit �b� In this limit, Eq. �12� reduces to
f2=gt

2, where gt is the Gutzwiller factor defined in Eq. �3�.
Equation �13� then reduces to

��BCS
�f� � = �

k

�gtuk + vkck↑
† c−k↓

† �
�gt

2�uk�2 + �vk�2
�0� , �14�

which is the wave function proposed by Anderson1 �c� The
fugacity factor ensures that projection affects the N and N
+2 particle states of the BCS wave function in the same way.
In principle, such a factor could depend on the k-value, but in
this paper, we will treat it as a mere combinatorial device �d�
The combinatorial argument fails at half-filling when L

= N̄�0�.

III. PARTICLE NUMBER RENORMALIZATION IN
PROJECTED BCS WAVE FUNCTIONS

In the previous section, we showed that the inclusion of
the fugacity factor is necessary for the average particle num-
ber in a BCS wave function to be unchanged by projection.
Alternatively, one might ask what is the effect of the projec-
tion operator on a BCS wave function. If projection changes
the mean particle number of a BCS state, how are the particle
numbers before and after projection related? In this section,
we will use the fugacity factor to answer this question. In
particular, we will show how particle density after projection
can be determined self-consistently by including the fugacity
factor in the projected BCS state 	Eq. �14�
.

Consider two BCS states defined by

��BCS� = �
k

�uk + vkck↑
† c−k↓

† ��0� , �15�

��BCS
�r� � = �

k

�uk + gtvkck↑
† c−k↓

† �
��uk�2 + gt

2�vk�2
�0� = �

k

�uk
�r� + vk

�r�ck↑
† c−k↓

† ��0� ,

�16�

where,

uk
�r� �

uk

��uk�2 + gt
2�vk�2

, �17�

vk
�r� �

gtvk

��uk�2 + gt
2�vk�2

. �18�

From Eq. �12�, it is clear that the projection operator re-
duces the ratio of the weights of N+2 and N particle states in
a BCS wave function by a factor gt. It then follows that

��BCS
�r� �N̂��BCS

�r� �
��BCS

�r� ��BCS
�r� �

�
��BCS�PN̂P��BCS�

��BCS�P��BCS�
�19�

when

gt =
L − N̄�r�

L − N̄�r�/2
. �20�

The average particle number N̄�r� of the state ��BCS
�r� � is given

by

N̄�r� =
��BCS

�r� �N̂��BCS
�r� �

��BCS
�r� ��BCS

�r� �
= 2�

k

�vk
�r��2. �21�

Since the particle numbers of ��BCS
�r� � and P��BCS� are iden-

tical, we can use Eq. �18� in Eq. �21� to obtain

N̄�r� � N̄after =
��BCS�PN̂P��BCS�

��BCS�P��BCS�
� 2�

k

gt
2�vk�2

�uk�2 + gt
2�vk�2

.

�22�

Note that gt is specified by the particle number after projec-

tion: Nafter�=N̄�r��.
Now, since the number of particles in the state ��BCS�

before projection is given by

N̄before = 2�
k

�vk�2,

Eq. �22� provides us with a way to calculate the number of
particles in the state P��BCS� after projection, if ��BCS� �i.e.,
uk and vk� is specified before projection. Equation �22� can

be solved self-consistently for N̄after. We solve Eq. �22� nu-
merically on a square lattice, using the standard BCS expres-
sions for a d-wave superconductor, uk�vk�:

vk
2 =

1

2
�1 −

�k

Ek
 , �23�

uk
2 =

1

2
�1 +

�k

Ek
 , �24�

where

Ek = ��k
2 + �k

2�1/2, �25�

�k = �0	cos�kx� − cos�ky�
 , �26�

�k = − 2	cos�kx� + cos�ky�
 − � . �27�

The only free parameters are the chemical potential � and
the variational parameter �0.

By fixing the parameter �0, we determine the particle
numbers �before and after projection� for various chemical

potentials. The results for particle density �n� N̄ /L� are
shown in Fig. 1. The results clearly show that the particle
density before projection attains its maximal value �nbefore

=2�, if nafter=1 �half-filling�. This result holds for any finite
value of the variational parameter �0. In the opposite limit
�viz., low density of electrons�, nbefore converges to the value
of nafter as expected. The size of the intermediate region de-
pends on the magnitude of the parameter �0, as illustrated by
the results in Fig. 1.
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The accuracy of Eq. �22� can be checked by comparing
our results with those of Yokoyama and Shiba �YS�, who
performed VMC studies of projected BCS wave functions
with fluctuating particle number �but without the fugacity
factor�.15 They determined the particle density of the pro-
jected d-wave state P��BCS� as a function of the chemical
potential � and the variational parameter �0, within a grand-
canonical scheme. The unprojected wave function ��BCS� is
specified as usual, through Eqs. �23�–�27�. Since YS do not
include a fugacity factor in their definition of the BCS wave
function, projection changes the particle number. Thus, we
use Eq. �22� to determine nafter, which we compare with their
results for particle number.

As seen in Fig. 2, our results are in good qualitative
agreement with YS. Discrepancies are mostly due to finite
size corrections. YS use 6�6 and 8�8 lattices, while our
analytic calculations are for the thermodynamic limit.16 The
results show the singular effect of the projection near the
insulating phase �half-filling�. The chemical potential goes to
infinity in this limit.

In Appendix A, we present an alternate derivation of Eq.
�22� by a saddle point approximation without using a
fugacity-corrected wave function. This approach also allows
for the calculation of particle number fluctuations �2 /L.

IV. GUTZWILLER APPROXIMATION IN THE MICRO-
AND GRAND-CANONICAL SCHEMES

In this section, we discuss the differences between the
Gutzwiller approximation in the micro- and grand-canonical
schemes. The validity of our statements can be checked by a
comparison to nearly exact VMC.4,8,15,17

Let us first consider the micro-canonical case. Here, we

are interested in the expectation value of an operator Ô cal-
culated with a particle number conserving projected wave
function PNP��BCS�. The corresponding Gutzwiller approxi-
mation can be understood as follows:

��BCS�PPNÔPNP��BCS�
��BCS�PPNP��BCS�

� g
��BCS�PNÔPN��BCS�

��BCS�PN��BCS�

= g
��BCS�Ô��BCS�
��BCS��BCS�

, �28�

where PN is the projector on the terms with particle number

N. The Gutzwiller factor g corresponds to the operator Ô.
The left-hand side of the first row represents a quantity
which can be calculated exactly by fixed particle number
VMC.4,8 Since the particle number is fixed, the Gutzwiller
approximation can be invoked, leading to the right-hand side
of the first row. The equality to the second row is guaranteed
only if N is equal to the average particle number of ��BCS�
�N= N̄�. Here, we perform a transformation from a micro-
canonical to a grand-canonical ensemble, which is valid in
the thermodynamic limit.

In the grand-canonical scheme, where we calculate the

expectation value of Ô with a particle number nonconserving
wave function, this scheme must be modified as follows:

��BCS
�f� �PÔP��BCS

�f� �
��BCS

�f� �PP��BCS
�f� �

� g
��BCS�Ô��BCS�
��BCS��BCS�

, �29�

where P��BCS
�f� � is the projected d-wave state corrected for

fugacity, i.e., a fugacity factor is included simultaneously
with the projection �see Sec. II�. This correction is essential
to guarantee the validity of the Gutzwiller approximation;
without it, the left-hand side �lhs� and right-hand side �rhs� of
Eq. �29� would correspond to states with different particle
numbers.

Comparing Eq. �28� and Eq. �29�, we get

��BCS�PPNÔPNP��BCS�
��BCS�PPNP��BCS�

�
��BCS

�f� �PÔP��BCS
�f� �

��BCS
�f� �P2��BCS

�f� �
. �30�

Equations �29� and �30� constitute the main results of this
section. Equation �29� shows that when the Gutzwiller ap-
proximation is used for a wave function that does not have a
fixed particle number, a fugacity factor must be included

FIG. 1. �Color online� Particle density before projection nbefore

as a function of the particle density after projection nafter for d-wave
states with different parameters �0. The dashed line indicates the
Fermi liquid result nbefore=nafter.

FIG. 2. �Color online� The particle density after projection nafter

as a function of parameter �0 for a d-wave BCS state at various
chemical potentials �. The figure shows a comparison between re-
sults from Eq. �22� �solid lines� and the VMC results of Yokoyama
and Shiba �see Ref. 15� 	for 6�6 �circles� and 8�8 lattices
�squares�
. Numbers in the figure denote the chemical potentials of
the corresponding curves and data points.
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along with the projection. Equation �30� shows that to obtain
identical results, one has to use different wave functions in
the grand-canonical �rhs� and micro-canonical �lhs� schemes.
The wave function ��BCS

�f� � is a d-wave state corrected by the
fugacity factor, whereas ��BCS� is a pure d-wave state. Our
arguments leading up to Eqs. �29� and �30� can be verified by
a comparison with VMC studies. We now proceed to do so.

The expectation values in the micro- and grand-canonical
schemes can be calculated �nearly exactly� by VMC studies.
In Fig. 3, we show VMC results from Gros4 �fixed particle
number VMC, micro-canonical� and from YS �grand-
canonical VMC�.15 The discrepancy between the two sets of
results can be explained readily by Eq. �30�. In the case of
�0→0, there is only small room for particle number fluctua-
tions even in the particle nonconserving wave function.
Micro- and grand-canonical schemes should then give iden-
tical results. The VMC calculations in Fig. 3 do not exactly
show this behavior since the grand-canonical scheme be-
comes inaccurate in this limit.15 YS consider a pure d-wave
state; i.e., the fugacity factor is not included in their calcula-
tions. In their paper, YS argued that the discrepancies be-
tween the two results can be removed by introducing an ad-
ditional variational parameter 	, so that ak�vk /uk is

replaced by ak�	vk /uk �Eq. 4.1 in Ref. 15�. We opine that
the parameter 	 is directly related to our fugacity factor; i.e.,
	=gt in the wave function ��BCS

�f� �. This conclusion is sup-
ported by the comparison of VMC data to the corresponding
Gutzwiller approximation �see below�.

The validity of the approximation in the micro-canonical
case 	Eq. �28�
 is well accepted. It is used, for instance, in the
renormalized mean field theory of Zhang et al., where all
physical quantities are calculated using unprojected wave
functions and the corresponding Gutzwiller renormalization
factors.5 A comparison with VMC studies with a fixed par-
ticle number shows good agreement5 �also illustrated in
Fig. 3�.

To compare the grand-canonical VMC of YS with the
Gutzwiller approximation, we need to modify Eq. �29�. This
is necessary because YS do not include the fugacity factor in
their considerations, as pointed out earlier. We modify Eq.
�30� by the following procedure.

�i� We start with a d-wave BCS state ��BCS� for specified
values of �0.

�ii� We use Eq. �22� to determine the chemical potential
�. This fixes the particle density nafter of P��BCS�.

�iii� We remove the fugacity factor to get ��BCS
�r� � via Eq.

�16�. The fugacity factor is determined for nafter. ��BCS
�r� � and

P��BCS� correspond to the same particle density nafter.
�iv� The expectation values of the wave function P��BCS�

can now be approximated by ��BCS
�r� � and Gutzwiller factors;

viz.,

��BCS�PÔP��BCS�
��BCS�PP��BCS�

� g
��BCS

�r� �Ô��BCS
�r� �

��BCS
�r� ��BCS

�r� �
. �31�

This Gutzwiller approximation generalizes Eq. �2� for
wave functions that do not conserve particle number. In Ap-
pendix B, we discuss this approximation for the different
terms in the t−J model.

In Fig. 4, we compare the Gutzwiller approximation of
the kinetic energy E�1�, and the expectation value E�2�, of the

remaining terms in the t−J model ��ŜiŜj�, �n̂in̂j�, and the
three-site term� to those from the grand-canonical VMC. A
good agreement between the VMC and Gutzwiller results is
seen, which confirms the validity of our grand-canonical
Gutzwiller approximation 	Eq. �29�
.

In Figs. 3 and 4, we also show Gutzwiller approximations
for the fixed particle number VMC.4 Clearly, micro- and
grand-canonical approaches yield different energies �as do
the corresponding VMC studies�. We emphasize this is be-
cause of the projection operator P, which changes the par-
ticle number in a grand-canonical scheme. For these two
methods to yield the same results, a fugacity-corrected wave
function must be used when working in a grand-canonical
ensemble. Hence, all previous speculations about the coinci-
dence of these two VMC schemes in the thermodynamic
limit have to be reformulated carefully.

V. SUMMARY

In this paper, we considered the effects of Gutzwiller pro-
jection on a state that does not have a fixed particle number.

FIG. 3. �Color online� �a� The kinetic energy E�1� and �b� the
energy of the remaining terms E�2� per site of the t−J model as a
function of the variational parameter �0 for the d-wave state at a
filling n=0.9. Fixed particle �micro-canonical� VMC data4 �circles,
82 sites� and grand-canonical VMC �see Ref. 15� �squares, 8�8
sites� are compared. The dashed/solid lines represent the corre-
sponding Gutzwiller approximations. For a detailed description, we
refer to the text and Appendix B.
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We showed that it is necessary to include a fugacity factor
when invoking the Gutzwiller approximation for such states.
The effects of projecting a number nonconserving BCS state
were studied by examining the relation between particle
number before and after projection. We obtained an analyti-
cal expression 	Eq. �22�
, and compared to variational Monte
Carlo data �Fig. 2�. We discussed the discrepancies in the
VMC results for projected BCS wave functions obtained in
the micro- and grand-canonical schemes, and presented a
resolution. In conclusion, we have clarified several subtle
properties of the Gutzwiller projection operator P acting on a
BCS state, and hope that these results lead to a better under-
standing of the Gutzwiller approximation in the grand-
canonical scheme.

We thank P. W. Anderson, N. P. Ong, and H. Yokoyama
for several discussions. N. F. was supported by the Deutsche
Forschungsgemeinschaft. V. N. M. acknowledges partial fi-
nancial support from The City University of New York, PSC-
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APPENDIX A: SADDLE POINT APPROXIMATION TO
MEAN PARTICLE NUMBER AND NUMBER

FLUCTUATIONS IN PROJECTED BCS WAVE FUNCTIONS

In Sec. III, we used the fugacity factor to derive Eq. �22�.
Here, we present an alternative approach by a saddle point
approximation to discuss the effects of projection on the
mean particle number of a BCS state. This approach also
describes the particle number fluctuations after projection.

The particle number distribution for an unprojected BCS
wave function �N

�0� can be written as

�N
�0� = � 2

N�!
� d

d

N�

�
k

��uk�2 + �vk�2
��

→0

, �A1�

where N�=N /2 is the number of electron pairs. This relation
can be checked by expanding the product in the wave func-
tion, as

��BCS� = �
k

�uk + vkck,↑
† c−k,↓

† ��0� ,

and considering contribution to ��BCS ��BCS� from each
term. In Sec. III, we showed that the particle number distri-
bution of a projected wave function �N is related to the un-
projected distribution �N

�0� by

�N = gN�N
�0�, �A2�

where

gN � C
��L − N/2�!�2

L!�L − N�!
.

Particle number and number fluctuations of the projected
wave function can be derived from Eq. �A2� and Eq. �A1�,
upon invoking a saddle point approximation. We define a
generating function �
, as

�
 � 2�
k

��uk�2 + �vk�2
� = �
N�=0

L


N��2N�

�0� . �A3�

We invert Eq. �A3� using a contour integral on the complex

-plane along a circle around 
=0:

�N
�0� =

1

2�i
� �



N�+1d
 . �A4�

Note that, in the integrand, only �2N�

�0� /
=�N
�0� /
 gives a finite

value. The others powers of 
 vanishes. Multiplying by gN
gives

�N �
1

2�i
� gN

�



N�+1d
 . �A5�

Equation �A5� can be written as

�N �
1

2�i
� d
ef�
,N�, �A6�

where

FIG. 4. �Color online� �a� The kinetic energy E�1� and �b� the
energy of the remaining terms E�2� per site of the t−J model, as a
function of the variational parameter �0 for the d-wave state at
various densities. The data points �diamond, circle, square� are
taken from the grand-canonical VMC study of Yokoyama and Shiba
�see Ref. 15�. The solid/dashed lines represent the corresponding
Gutzwiller approximations for a grand-canonical/fixed-particle
VMC study. For a detailed description, refer to the text and Appen-
dix B.
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f�
,N� = log �
 − �N

2
+ 1log 
 + log gN. �A7�

Using Stirling’s formula,

log gN � 2�L −
N

2
log�L −

N

2
 − �L − N�log�L − N�

− L log L + log C . �A8�

The saddle point �n̄= N̄ /L , 
̄� of Eq. �A6� is determined by

�f

�

=

� log �


�

−

N/2 + 1



=

�

�

�

k

log��uk�2 + �vk�2
�

−
N/2 + 1



= �

k

�vk�2

�uk�2 + �vk�2

−

N/2 + 1



� 0. �A9�

For N1,

n̄ � 2
N̄/2 + 1

L
= 2

1

L
�

k


̄�vk�2

�uk�2 + 
̄�vk�2
, �A10�

and

�f

�N
= −

1

2
log 
 − log�L −

N

2
 + log�L − N� � 0;

�A11�

i.e.,


̄ = � L − N̄

L − N̄/2
2

= gt
2. �A12�

Eq. �A10� and Eq. �A12� lead to Eq. �22�, as

nafter = n̄ =
N̄

L
=

2

L
�

k

gt
2�vk�2

�uk�2 + gt
2�vk�2

,

for the average particle density of a projected BCS wave
function. Without the factor gN, this calculation would give
the well known result for an unprojected BCS wave function:

nbefore = n̄ = 2
1

L
�

k

�vk�2.

To calculate the particle number fluctuations of the pro-
jected wave function, we need to expand f�
 ,N� up to sec-
ond order in N and 
 around the saddle point. Integration
over 
 in Eq. �A6� approximates the particle number distri-
bution � by a Gaussian distribution, yielding an expression
for number fluctuations. With

f

�
,N� �
�2f

�
2 = − �
k

�vk�4

��uk�2 + �vk�2
�2 +
N/2 + 1


2 ,

f
N�
,N� �
�2f

�
�N
= −

1

2

,

fNN�
,N� �
�2f

�N2 =
1

2

1

L − N/2
−

1

L − N
,

the second-order expansion can be written as

f�
,N� − f�
̄,N̄� � f

�
̄,N̄�
�
 − 
̄�2

2
+ f
N�
̄,N̄��
 − 
̄�

��N − N̄� + fNN�
̄,N̄�
�N − N̄�2

2
. �A13�

For this level of the saddle point approximation for 
, the

contour around 
̄ for the integral in Eq. �A6� must be taken

so that f

�
̄ , N̄��
− 
̄�2�0. Since f

�
̄ , N̄��0 and the con-
tribution only near the saddle point is relevant, the path is

taken from 
̄− i� to 
̄+ i�. By variable transformation 


= 
̄+ i
�, one can perform a Gaussian integral of 
�. We then
obtain a Gaussian distribution for �N, as

�N �
1

2�
�

−�

�

d
�ef�
̄+i
�,N�

� exp�� f N̄N̄ −
f


̄N̄

2

f 
̄
̄

 �N − N̄�2

2
�ef�
̄,N̄�. �A14�

The variance of N̄ �average particle number of a projected
BCS wave function� can now be read off from Eq. �A14�. We
get

�after
2

L
= −

1

L
� f N̄N̄ −

f

̄N̄

2

f 
̄
̄

−1

= 2� 1

�1 −
n̄

2
�1 − n̄�

+
1

2

L
�k


̄�uk�2�vk�2

��uk�2 + �vk�2
̄�2
�

−1

,

�A15�

where we used Eq. �A10� in the second term. For 
̄ we must
insert gt

2. For completeness, we mention that for the un-
projected wave function, i.e., gN not included, this approach
yields the known result

�before
2

L
= 4

1

L
�

k

�uk�2�vk�2. �A16�

The fluctuations �2 /L are illustrated in Fig. 5 as a function of
the particle density after projection nafter�=n̄� for unprojected
���BCS�� and projected �P��BCS�� BCS d-wave functions. As
expected, the fluctuations vanish at half-filling, since projec-
tion freezes the charge degrees of freedom entirely.

APPENDIX B: GUTZWILLER APPROXIMATION FOR THE
t−J HAMILTONIAN

We summarize the Gutzwiller approximation for the so-
called three-site terms in the t−J model, that are included in
the VMC study of Yokoyama and Shiba.15
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The t−J model can be derived from a large U expansion
of the Hubbard model. The Hamiltonian is valid in the re-
duced Hilbert space of no double occupied states, and is
given by

Heff = T + Heff
�2�, �B1�

where

T = − t �
�i,j�,�

�ci,�
† cj,� + cj,�

† ci,�� �B2�

and

Heff
�2� = J�

�i,j�
SiS j −

J

4 �
�i,j�

ninj −
J

4 �
i,����,�

ci+�,�
† ci,−�

† ci,−�ci+��,�

+
J

4 �
i,����,�

ci+�,−�
† ci,�

† ci,−�ci+��,�. �B3�

Here, J=4t2 /U, Si are the spin operators on site i, and ni
=ni,↑+ni,↓

with ni,�=ci,�
† ci,�. �i , j� are pairs of nearest-

neighbor �n.n.� sites and i+� denotes a n.n. site of i.
We are interested in the energies E�1� and E�2� calculated

in Ref. 15:

E�1� =
1

L

��BCS�PTP��BCS�
��BCS�PP��BCS�

,

E�2� =
1

L

��BCS�PHeff
�2�P��BCS�

��BCS�PP��BCS�
. �B4�

We invoke the Gutzwiller approximation. The renormaliza-
tion factors, gt for kinetic energy 	Eq. �B2�
 and gS for spin
exchange 	first term in Eq. �B3�
, are given in Eq. �3�. The
second term of Eq. �B3�, ninj, is not renormalized. The ap-
proximation for the three-site terms 	3rd and 4th terms of Eq.
�B3�
 is done as follows ����= P��0��:

���ci+�,↑
† ci,↓

† ci,↓ci+��,↑���

�����

=
���ci+�,↑

† ni,↓�1 − ni,↑�ci+��,↑���

�����

� g3

��0�ci+�,↑
† ni,↓�1 − ni,↑�ci+��,↑��0�

��0��0�
, �B5�

���ci+�,↓
† ci,↑

† ci,↓ci+��,↑���

�����
� g3

��0�ci+�,↓
† ci,↑

† ci,↓ci+��,↑��0�

��0��0�
.

�B6�

The renormalization factor g3 is derived by considering the
number of terms that contribute to the projected and the un-
projected sides. The projected side �lhs� contributes only if
�i� site i+� is unoccupied 	i.e., probability �1−n�
, �ii� site i
is singly occupied by a ↓-electron �i.e., probability n↓�, and
�iii� site i+�� is singly occupied by an ↑-electron �i.e., prob-
ability n↑�. On the other hand, the unprojected side �rhs�
in Eqs. �B5� and �B6� contributes only if �i� site i+� is
not occupied by an ↑-electron/↓-electron 	i.e., probability
�1−n↑� or �1−n↓�
, �ii� site i is singly occupied by a
↓-electron 	i.e., probability n↓�1−n↑�
, and �iii� site i+��
must have an ↑-electron �i.e., probability n↑�. These prob-
abilities yield the Gutzwiller factor �ratio of contributions
from projected and unprojected states�, as

g3 =
�1 − n�n�n�

�1 − n��n��1 − n��n�

=
1 − n

�1 − n��2 , �B7�

where we assumed n↑=n↓=n�.
We can now write down the renormalized t−J Hamil-

tonian Heff� , as

Heff� = T� + Heff��2�, �B8�

where

T� = − gtt �
�i,j�,�

�ci,�
† cj,� + cj,�

† ci,�� , �B9�

Heff��2� = gSJ�
�i,j�

SiS j −
J

4 �
�i,j�

ninj − g3
J

4 �
i,����,�

�ci+�,�
† ni,−��1 − ni,��ci+��,�

+ g3
J

4 �
i,����,�

ci+�,−�
† ci,�

† ci,−�ci+��,�. �B10�

FIG. 5. �Color online� The fluctuation �after
2 /�before

2 after/before
projection for different values of the variational parameter �0

=0.01/0.1/1 /10, as a function of the particle density after projec-
tion nafter.
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By using T� and Heff��2�, Eq. �B4� �E�1� and E�2�� can be calcu-
lated using unprojected wave functions,

E�1� =
1

L

��BCS�T���BCS�
��BCS��BCS�

,

E�2� =
1

L

��BCS�Heff��2���BCS�
��BCS��BCS�

. �B11�

Evaluating Eq. �B11� by Wick’s decomposition for a
d-wave BCS state,

E�1�

t
= − 2gt��x + �y� ,

E�2�

0.25J
= − �3gs − 1���x

2 + �y
2�/2 − �3gs + 1����̃x�2 + ��̃y�2�/2

− 2n2 − g3n�1 − n����2x + �2y + 2�x−y + 2�x+y�

− g3�1 + n����x
2 + �y

2 + 4�x�y� − g3�2 − n��	��̃x�2

+ ��̃y�2 + 4 Re��̃x�̃y
*�
 , �B12�

where we defined �� ,��=x ,y�

�� = �
�

�ci,�
† ci+�,�� =

1

L
�

k

2 cos�k���vk�2,

��±�� = �
�

�ci+�,�
† ci±��,�� =

1

L
�

k

2 cos�k� ± k����vk�2,

�̃� = �ci,↑
† ci+�,↓

† − ci,↓
† ci+�,↑

† � =
1

L
�

k

2 cos�k��vkuk
*.

The last three rows in Eq. �B12� correspond to the three-site
terms of the t−J model and are renormalized by the
Gutzwiller factor g3. Here, it is important to note that the

order parameter �̃� is related, but not identical, to the previ-
ous introduced variational parameter �0.
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