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We present a study of a class of exact solutions having a form of spiral vortices for an isotropic two-
dimensional Heisenberg ferromagnet using a continuum theory and direct numerical simulations of the spin
system on a square lattice. We find their features issued from the conservation laws and describe their inter-
action. Reasons behind the formation of the proper spin configurations on a square lattice are investigated.
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I. INTRODUCTION

In the last two decades solitons, vortices, and other non-
linear excitations in low-dimensional magnets have attracted
much interest. These excitations play an essential role in
two-dimensional �2D� magnetism and contribute to breaking
of the long-range order in 2D magnets. Magnetic vortices are
important for the dynamical and thermodynamical properties
of magnets, for a review see Refs. 1–3. Predictions of the
Belavin-Polyakov theory4 for localized structures with a fi-
nite energy �instantons� observed much later experimentally5

gave rise to intensive investigations of solitons in 2D
magnets.6–9

Some years ago magnetic vortices have been directly ob-
served in permalloy10–14 and Co magnetic nanodots.15–17

High-frequency dynamical properties of the vortex state
magnetic dots have been probed by Brillouin light scattering
of spin waves18 and x-ray imaging technique.19 In recent
experiments the spin-wave modes excited by magnetic field
pulses of small litographically define disks with a spin vortex
configuration are imaged using time-resolved magneto-optic
Kerr microscopy20 and phase sensitive Fourier transforma-
tion technique.21 Both axially symmetric dynamical modes
showing concentric nodes and symmetry breaking azimuthal
eigenmodes having azimuthal nodes have been observed. An
analysis of the time and frequency dependencies22 of the
modes demonstrates that for moderate field pulses and large
magnetic elements �several tens of microns� the excitation
spectrum is dominated by magnetostatic modes. However, as
noted by the authors of Ref. 23, when the size of the ele-
ments is reduced or higher modes are excited, the exchange
interactions can, in general, no longer be ignored and the
dynamic response gradually changes from a purely magne-
tostatic to an exchange-dominated one. One of the aims of
the paper is to show an existence of nonlinear modes both
with circular and azimuthal nodes in a 2D isotropic ferro-
magnet obtained with an account only exchange interaction.
These modes can be observed as spiral-like vortex configu-
rations. In addition to a detailed study of the spiral solutions
within both XY and Heisenberg models is of interest for the
possible applications in the physics of liquid crystals, quan-
tum Hall effect and in the study of biological systems featur-
ing self-organized spiral structures.24,25

In this paper, we present a study of the spiral vortices in
the isotropic 2D ferromagnet using a continuum theory and
direct numerical simulations of the spin system on a lattice.
Our principal concern is to understand in detail the structure
of the spiral patterns and to find out the reasons for their
appearance. Real compounds are not ideal systems and lat-
tice defects such as impurities, local fields, and anisotropy
are present in any material sample. The effect of nonmag-
netic impurities �vacancies� on vortex and vortex-antivortex
structures has recently been studied for 2D magnetic models
with XY symmetry.26–28 These investigations show that an
ideal vortex or their pair formations are deformed if the vor-
tex centers are near the vacancy. In the continuum limit an
account of the imputities results in logarithmic singularities
in the spin field. On the other hand, in the quantum field
studies of 2D O�N� models enjoying a continuous symmetry
these classical configurations with the logarithmic singulari-
ties are known as “superinstantons.”29 To produce these con-
figurations “superinstanton” boundary conditions �SIBCs�
were introduced. These consist of Dirichlet conditions on the
boundary of the system, and the additional freezing of one
spin in the center of the sample. It was argued that unlike to
standard free, periodic, and Dirichlet boundary conditions
SIBC do not possess a well defined perturbation
expansion,30,31 which means that by fixing the spin in the
center one can change the ground state of the system.

The paper is organized as follows. In Sec. II the con-
tinuum approximation based upon equations of nonlinear
spin dynamics is presented. We briefly review the existing
literature and show that the continuum isotropic Heisenberg
model yields two types of static solutions. A class of exact
solutions of the model, that are local minima of the classical
energy, is obtained using a special linearization procedure.
We find a harmonic function of initial dynamical variables
obeying the linear Laplace equation. Then, an inverse trans-
formation gives solutions of the initial nonlinear model as
functions of the harmonic solutions of the Laplace equation.
As a result, exact solutions for the 2D isotropic ferromagnet
are generated where spiral vortices are of special interest.
They are likely to be relevant for nonperfect systems with
defects. Thus, it has been recently shown that vortices are
attracted by a nonmagnetic impurity.32
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In Sec. III we consider numerical simulations of spin con-
figurations predicted by the continuum theory. First we in-
vestigate spin textures for the planar xy model with the im-
posed SIBCs. We show that in the sector with topological
charge q=0 the ground state is a logarithmic source of the
strength �. We find how the strength depends on a turn of the
fixed spin in regard to spins at the system edges and check
the continuum theory prediction for the energy. We consider
the simplest formation of such kind of logarithmic sources, a
pair including two sources of opposite strengths � and −�.
Then we investigate the case when the structure takes an
out-of-plane form. A numerical simulation gives the struc-
tures which are close to the nodal solutions of Heisenberg
model. In the topological sectors q�0 the ground state is
either a planar logarithmic spiral �xy model� or a space spiral
vortex with an out-of-plane form �Heisenberg model�. We
show that these spin configurations minimizing an energy
with imposed SIBCs reproduce features predicted by the
continuum theory well.

II. ANALYTICAL RESULTS

The model to be investigated is the isotropic spin-S
Heisenberg ferromagnet defined by the Hamiltonian

H = − �
p,n

JpnS�pS�n, �1�

where S�p represents the spin operator at the site p of a 2D
square lattice with the nearest-neighbor distance a� , and Jpn
=J�n,p+a� �J�0� are the nearest-neighbor exchange cou-
plings. The nonlinear differential equations describing the
dynamics of the model can be obtained by taking diagonal
matrix elements of the equation of motion for the raising
operator Sp

+=Sp
x + iSp

y

− i�
dSp

+

dt
= �H,Sp

+� �2�

of the pth spin in spin-coherent representation ���
=�p��p ,�p�, where 0��p�	 and 0��p
2	 parametrize
the spin states on the unit sphere.33 For the bilinear Hamil-
tonian this results in the system for the classical variables

	�p ,�p
 parametrizing the S�p spin

sin �p
��p

�t
= −

S

�
�

n

Jnp sin �n cos �p cos��p − �n�

+ sin �p
S

�
�

n

Jnp cos �n, �3�

��p

�t
=

S

�
�

n

Jnp sin �n sin��n − �p� . �4�

From hereon, n runs over the nearest neighbors. In the con-
tinuum limit we introduce the fields ��x ,y� ,��x ,y�, which
are defined in the �x ,y� plane. The equation of motion for
static solutions ��p /�t=��p /�t=0 can be obtained by apply-
ing the continuum approximation to the equation of spin mo-
tion on the discrete lattice. This yields

�� = sin � cos ���� ��2,

�� �sin2 ��� �� = 0. �5�

A remarkable property of these equations is a conformal
invariance that allows us to subdivide their static solutions
into two groups. For the first group of solutions the expres-
sion

��

�x

��

�y
−

��

�y

��

�x
�6�

does not equal zero. Then we can obtain solutions from al-
ready known ones via conformal transformations. Indeed,
�1�x ,y� ,�1�x ,y� are some particular solutions of Eqs. �5�.
We may see by direct calculations that the fields
�1�u1�x ,y� ,u2�x ,y�� ,�1�u1�x ,y� ,u2�x ,y�� are also the solu-
tions of the same system provided the u1+ iu2 is an arbitrary
analytic function F of the argument x+ iy

u1 + iu2 = F�x + iy� . �7�

Up to now, all known solutions belong to the first group.
For this case ��x ,y� may be written in the simple form

��x,y� = u2�x,y� , �8�

and the another function � depends only on the u1�x ,y�, i.e.,
�1�u1�x ,y� ,u2�x ,y��=�1�u1�, and obeys the simple equation
of pendulum motion

�u1,u1
�u1� =

1

2
sin�2��u1�� . �9�

The cases of the infinite and finite pendulum motions cor-
respond to the following solutions:

cos ��x,y� = sn�u1�x,y�
k

,k� �0 
 k 
 1� , �10�

cos ��x,y� = ksn�u1�x,y�,k� �0 
 k 
 1� , �11�

where the Jacobi elliptic function of modulus k is used.
Equations �8�, �10�, and �11� describe a set of quiescent
topological defects centered at positions zi=xi+ iyi �see
Ref. 34� with

u1�x,y� + iu2�x,y� = �
i=1

n 
2ikK

	
Ni + Qi�ln�x + iy − zi�

�12��Ni,Qi � Z� .

Here, K=K�k� is the complete elliptic integral of the first
kind, and ci are fixed complex parameters.

For n=1, N1=0, and k=1 the solution of Eqs. �8� and
�10�–�12�

cos ��x,y� = tanh u1�x,y�, u1 = Q ln �x2 + y2,

u2 = Q arctan
 y

x
�

coincides with the Belavin-Polyakov vortex �“baby”
soliton�4 with the topological charge Q.
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For n=1, N1�0, k�1 the solution of Eqs. �10� and �12�
represents a N1-armed logarithmic spiral consisting of 2N1
spiral regions separated by the same number of logarithmic
spiral walls.34 The field ��x ,y� �8� and �12� determined by
the topological charge Q1 does not alter along the logarith-
mic spiral curves in the �x ,y� plane. Note that the spiral
vortices in the ferromagnet, involving both � and � vari-
ables, have the different mathematical structure in compari-
son with the optical spiral vortices and the spiral vortex so-
lution of the complex Landau-Lifshitz model35 where only a
� angle is used to build proper configurations.

We are more interested in the second group of solutions
when the expression �6� equals zero. In this case the angle
��x ,y� is an arbitrary function of ��x ,y�. Then we use the

ansatz �� �= f����� � to find solutions of this class with

�� � ��� �. After eliminating the �� � from �Eq. �5��, the equa-
tion for � being

sin �
df

d�
+ 2f cos � + f3sin2 � cos � = 0. �13�

This is Bernoulli equation in the variable f���, the general
solutions are therefore given by

f��� =
1

�c2sin4 � − sin2 �
, �14�

where c2�1 is an arbitrary parameter. Inserting the ratio

�� �= f����� � and Eq. �14� into Eq. �5� we find the fields
��r�� ,��r�� as

cos � =
�c2 − 1

c
cos a ,

� = arctan�c tan a� + �0, �15�

where the field a�x ,y� is satisfied the Laplace equation

�a = 0. �16�

We will only consider special case of solution for a�x ,y�

a = �
i=1

n

�i ln
��x − x0i�2 + �y − y0i�2

Ri
�

+ �
i=1

n

qi arctan
 y − ỹ0i

x − x̃0i
�, qi � Z , �17�

with the parameters �i ,qi ,Ri ,c. In the above expression
�x0i ,y0i� and �x̃0i , ỹ0i� are positions of sources and vortices,
respectively, �0 is an initial value of azimuthal angle �. We
call the parameter � a strength of source that is identical to
the term used in the hydrodynamic theory. From Eq. �15� we
see that the parameter c governs out-of-plane spin compo-
nents. In the soliton �15� the spins are confined to the vicinity
of the xy plane with 	 /2−�max��
	 /2+�max unlike the
solutions of Eqs. �8�, �10�, and �12�. The maximal value �max
is given by �max=arcsin�c2−1/c for n=1. Equations �15�
and �17� include well-known solutions considered earlier by
some authors. Below, we list these cases.

�1� n=1, c=1 �pure in-plane solutions�. Using Eq. �15� we
find immediately that �=	 /2 and �=q�+� ln�r /R� written
in the polar coordinates r ,�. For �=0 we restore Kosterlitz-
Thouless �KT� vortices, and for q=0 we have “sources,” the
equation for � being �=� ln�r /R�.29,36

�2� n=1, ��0, q=0 �solutions with out-of-plane spin
components�. Equation �15� can be written as

cos � =
�c2 − 1

c
cos
� ln

r

R
� ,

� = arctan�c tan
� ln
r

R
�� + �0. �18�

This agrees with the result obtained in Ref. 37 �“nodal” so-
lutions�.

A new class of exact solutions

cos � =
�c2 − 1

c
cos
� ln

r

R
+ q�� ,

� = arctan�c tan
� ln
r

R
+ q��� + �0 �19�

are the two-dimensional spirals.38 Figure 1 presents them for
different parameters � and q. The former value assigns a
spiral twist and the latter defines a number of spiral arms.
For �=0 we obtain a vortex with a nonzero out-of plane
component

cos � =
�c2 − 1

c
cos�q�� ,

� = arctan�c tan�q��� + �0. �20�

Unlike the Skyrmion the soliton has a zero topological
charge 	2�S2�=0. Since � does not depend on the radial co-
ordinate r, the solution has no axial symmetry.

There are several conserved quantities that are important

in what follows: the total energy E, the linear momentum P� ,
the angular momentum Lz, and the total number of spin re-
versals N �see, e.g., Ref. 39�.

The energy of the soliton given by Eq. �15� can be evalu-
ated in continuum approximation resulting in a more com-
pact form

E =
1

2
JS2� dr���� a�2. �21�

Using Eq. �17� for the function a we obtain

E = 	JS2��
i

��i
2 + qi

2�ln
L

r0
+ �

ij

��i� j + qiqj�ln
L

dij
� ,

�22�

dij =��x0i−x0j�2+ �y0i−y0j�2 is a distance between ith and jth
vortices, L is a size of the system, and r0 is a cutoff radius
where the continuum approximation breaks down. After the
formal substitution qiqj→�i� j +qiqj in Eq. �22� we recog-
nize the energy of interacting in-plane vortices. We note the
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absence of terms �iqj. One can see that vortices and sources
do not interact with each other. The parameters Ri and c do
not enter into the expression at all.

Two spiral vortices of opposite values �� ,q� and �−� ,
−q� with a pair separation d has the finite energy

E = 2	JS2��2 + q2�ln
 d

r0
�

meaning that these vortices may be bound in pairs.

Next we derive another conserved quantities related with
the spiral vortex. The density of momentum is determined by
the formula

P� =
�S

c + �c2 − 1 cos a
�� a

consisting of the radial

Pr =
�S

c + �c2 − 1 cos a

�

r
�23�

and the azimuthal

FIG. 1. Spiral vortices with �=2.0 �q=1 �a�, q=2 �b�� and with �=0.3 �q=1 �c�, q=2 �d��. Density images of the amplitude and the phase
of the magnetization are given for the last set. The map �e� has one node curve dividing the bright-dark regions of equal amplitude but
opposite phase. The map �f� consists of four regions, oscillating in pairs in phase. Note a similarity of topological small-� spiral vortices with
dynamical magnetostatic nonaxially symmetric modes �see Fig. 1 in Ref. 23� and Figs. 3 and 4 in Ref. 21.
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P� =
�S

c + �c2 − 1 cos a

q

r
�24�

parts. The Pr and P� components are defined by the twist
parameter � and the vorticity q, respectively. Substituting
Eqs. �23� and �24� in the relations

�
0

2	

PrR0d� = ��S�
0

2	

d�
1

c + �c2 − 1 cos
q� + � ln
r

R
�

= 2	��S

and

�
0

2	

P�R0d� = q�S�
0

2	

d�
1

c + �c2 − 1 cos
q� + � ln
r

R
�

= 2	q�S

we clarify the physical meaning of the quantities � and q.
The first constraint is related with a flow of the momentum
through the circle of the radius R0 surrounding the vortex
core and the last one determines a quantized circulation
along the circle.

The total orbital angular momentum Lz along the rotation
axis through the area 	L2 here reads as

Lz = S�q�
0

L

rdr�
0

2	

d�
1

c + �c2 − 1 cos
q� + � ln
r

R
�

= S�q	L2,

where the density of the angular momentum is defined as

S�q

c + �c2 − 1 cos
q� + � ln
r

R
� .

The total linear momentum amounts here to �P� d2r=0.
The conservation of total number of spin reversals �mag-

non density�

N = S�1 −
�c2 − 1

c
cos
� ln

r

R
+ q��� �25�

involves the magnon density current

j� =
JS2

�c

q

r
e�� +

�

r
e�r� . �26�

From Eqs. �23� and �26�, it follows that the presence of ad-
ditional terms with a nonzero strength of source � produces

radial components in the densities of the momentum P� and
the magnon current j�.

To complete our analytical study we discuss stability of
the spiral vortices. Given the energy �21� we would like to
consider the effect of perturbation �
, that belongs to the
same class as the a�x ,y� does, on the soliton structure �Eq.
�15��. This yields

E�a + �
� =
1

2
JS2� dr���� a + �� �
�2 =

1

2
JS2� dr� ���� a�2

+ 2��� a���� �
� + ��� �
�2� =
1

2
JS2� dr� ���� a�2

+ ��� �
�2� � E�a� ,

i.e., the system pays an energy cost and the soliton turns out
to be stable against the small perturbations of the field
a�x ,y�.

Among the several questions that should be arisen in the
above analysis, an origin of logarithmic sources and a range
of possible values of � parameter are ones of the most im-
portant. Due to the intrinsic interest, an analysis of physical
reasons behind the formation of spiral vortices is called for.
In addition, the continuum theory cannot completely de-
scribe subtle differences occurring on the lattice at short
length scales. Therefore we should concern how to organize
a numerical process leading to spin configurations that may
be compared with the spiral vortices. We are aware of the
difference between these spin patterns and spiral vortices
predicted by the continuum theory. In the first case we deal
with a ground state of the system under certain constrains
and in the other case with stationary nonlinear excitations.
Our studies will involve lattice model on 2D square lattice.
Ultimately, a lattice model is the original source of any con-
tinuum theoretical description. We will then compare the
continuum theory predictions to results found in numerical
calculations.

III. NUMERICAL SIMULATIONS

A. The model

To describe in full detail the method of numerical simu-
lations we rewrite the system �3� and �4� in the form conve-
nient for an iteration procedure. From Eq. �4� we get

cos �p
�
n

Jnp sin �n sin �n� = sin �p
�
n

Jnp sin �n cos �n�
that yields

sin �p

= ±
�n

Jnp sin �n sin �n

���n
Jnp sin �n sin �n�2 + ��n

Jnp sin �n cos �n�2
,

�27�

cos �p

= ±
�n

Jnp sin �n cos �n

���n
Jnp sin �n sin �n�2 + ��n

Jnp sin �n cos �n�2

�28�

and the upper sign must be taken for a ferromagnet �Jnp

�0�. Similar equation for �p is obtained from Eq. �3� which
can be written as
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sin �p
�
n

Jnp cos �n� = cos �p�
n

Jnp sin �n�cos �n cos �p + sin �n sin �p� . �29�

Application of Eqs. �27� and �28� to this equation gives

cos �p = sin �p

�n
Jnp cos �n

���n
Jnp sin �n sin �n�2 + ��n

Jnp sin �n cos �n�2
�30�

that after some simplifications yields the expression used in a numerical algorithm

cos �p =
�n

Jnp cos �n

���n
Jnp cos �n�2 + ��n

Jnp sin �n sin �n�2 + ��n
Jnp sin �n cos �n�2

. �31�

Together with Eq. �30� it implies sin �p�0.
In actual practice, the spin configuration was found by

using the original lattice spin fields S�n and iteratively repoint-
ing each along the effective local field due to its neighbors.
Scanning linearly through the lattice each site was updated in
sequence, being reset along the net field due partly to some
unchanged neighbors and some that have already been re-
pointed. This gives fast convergence than a synchronized
global update. The iterations stop if the sum

� =��
i,j=0

N

�sin �ij
�k� − sin �ij

�k−1��2 + �
i,j=0

N

�sin �ij
�k� − sin �ij

�k−1��2

�32�

taken over a quarter of the lattice on the kth step is less than
tolerance 10−6–10−10. We employed the lattice coordinates in
Eq. �32� for the notation of site indices.

The most difficult computational problem in carrying out
this program is to find the initial configuration that relaxes to
a target spin configuration. It is meaningful to impose appro-
priate boundary conditions too. Obviously this a rich prob-
lem with a wide choice of options.

One way is to take the configuration according to the
continuum formula and assume that each spin has small am-
plitude dynamic deviations from the starting structure. An-
other approach has been used in a study of a single magnetic
vacancy centered in vortex.28 For numerical calculations a
finite core circular system of radius Rc is taken. Lattice sites
are set up surrounding the origin and only those within ra-
dius Rc are kept. A detailed discussion of starting configura-
tions needed for a finding of proper lattice structure and
boundary conditions adopted in calculations will be given in
every case. We note here, they are essentially different for
vortex, logarithmic, and spiral spin arrangements and their
pairs.

Another important point of numerical simulations is a cri-
teria of consistent between the relaxed spin configuration and
an appropriate continuum solution. We suggest the following
scheme for the comparing. �i� The continuum theory is not
relevant to spins at sites close to the vortex core. Far from
the core the relaxed spin angles must well be described by

the continuum formula. Thus, we have to control this coin-
cidence with a prescribed precision in a region where the
continuum description works. �ii� The number of indepen-
dent parameters in a continuum solution must be the same as
a number of corresponding degrees of freedom controlled in
numerical simulations. �iii� A relaxed configuration should
not lose the symmetry of continuum solution, i.e., it should
have a similar dependence on the space coordinates �r ,��.
�iv� In addition, we confirm the finding of proper solution by
analyzing the total energy of a relaxed configuration

E =
S2

2 �
n,p

Jnp�sin �n cos �p cos��p − �n� + cos �p cos �n�

comparing it with a continuum theory prediction.

B. Logarithmic source

1. XY model

Our current aim is to perform simulations of a logarithmic
source in the planar XY model. The static in-plane angles
satisfy the discrete nonlinear equations

sin �p =
�n

Jnp sin �n

���n
Jnp sin �n�2 + ��n

Jnp cos �n�2
, �33�

cos �p =
�n

Jnp cos �n

���n
Jnp sin �n�2 + ��n

Jnp cos �n�2
�34�

drawn from Eqs. �27� and �28� after the substitution sin �n
=1.

A homogeneous arrangement �p=�=const is an obvious
solution of these equations for any set of the exchange cou-
plings Jnp. An attempt to carry out numerical simulations
using a magnetic vacancy with some zero nearest-neighbor
exchange couplings, a magnetic impurity with another spin
and/or different exchange leads to the uniform arrangement
and does not permit to get a structure similar to a logarithmic
solution
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� = �0 + � ln
r

R
. �35�

A close examination of an in-plane arrangement given by the
analytical model shows that there is some bending of spins in
the center with reference to spin order in the vicinity of the
system edges. This nonuniformity of spin distribution can
gain insight into the numerical process driving the starting
spin configuration to desired in-plane structure. A reason be-
hind the formation of the nonuniformity may be either a
local magnetic field or a local anisotropy. We fix our atten-
tion on the first case. Indeed, an inclusion into the Hamil-
tonian of the local field h, acting on a spin at position r�0,
whose direction relative to fixed spins at boundary is deter-
mined by the angle � �see Fig. 2�

Hz = − g�0hS� dr���r� − r�0�cos�� − ��r��� �36�

leads to the continuum equation

���r�� =
g�0h

JS
sin�� − ��r�����r� − r�0� . �37�

It then follows that

��r�� = �u�r�� +
g�0h

2	JS
sin�� − ��r�0��ln�r� − r�0� , �38�

where �u is an arbitrary solution of the Laplace equation
��u=0 in two dimensions. A comparison of the result with
Eq. �35� yields

� =
g�0h

2	JS
sin�� − ��r�0�� . �39�

We can proceed and estimate the expression using consider-
ation of the mean-field theory. Taking �=	 /2 and suggest-
ing that all the spins are aligned parallel to the one direction
except the core spin, pointed fixedly along an axis deter-
mined both the exchange field zJS of the nearest neighbors
and the local filed h, we easily find

sin�� − ��r�0�� =
zJS

��zJS�2 + �g�0h�2
, �40�

where z is the number of nearest neighbors. Therefore,

� =
z

2	

g�0h
��zJS�2 + �g�0h�2

. �41�

As we can see � ranges from 0 to z /2	�0.636 when h
increases from zero to infinity. Most importantly, the local
magnetic field is the reason of an appearance of the logarith-
mic source in the system and there is the upper limit for �
values.

To check the predictions with the numerical simulation
data we consider a square lattice of size �2N+1�� �2N+1�
shown in Fig. 3 and take Jnp=J for simplicity. We carry out
the iteration process beginning from one of the corners of the
lattice. Let the local magnetic field directed along the j axis
act on a core spin which has the coordinates �N ,N� �Fig.
4�a��. This spin should be included into the numerical
scheme �Eqs. �33� and �34�� with a little modification

cos �NN =
�n

cos �n + g�h/�JS�

���n
sin �n�2 + ��n

cos �n + g�h/�JS��2
.

�42�

During the iterations a turn of the central spin ��r�0� propor-
tional to the applied field h is seen to develop in regard to
uniform arrangement at the boundaries which hold fixed and
are not updated during the iterations �Fig. 4�b��.

It is important to establish that our analytical model re-
produces the results obtained by numerical simulations. On a
lattice the in-plane angles �n deviate from the formula �35�
and obtain modifications largest near the core spin. These
angles satisfy a discrete Laplace equation

�
�

sin��n − �n+�� = 0 �43�

issued from Eq. �4�.
Similar to the analytical prediction, we find that the radial

dependence of the arrangement is mostly preserved, �n is
determined only by an absolute distance r measured from the

FIG. 2. Core spin �white arrow� points along an axis determined
jointly by the exchange field zJS of the nearest neighbors and the
local filed h.

FIG. 3. Coordinates �i , j� for square lattice. The core spin is
denoted by white-black circle. Solid circles indicate the inner sites
involved into iteration procedure. Open circles are the boundary
sites.
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core site �N ,N� beginning with r�3. Figure 4�c� compares
the numerical calculations performed for different scan di-
rections with the analytical values given by Eq. �35�. The
points in the inset are fitted by �=	 /2+0.135 ln�r /10.84�.
The mean-field approximation �41� would give �=2/�17	
�0.154, where the magnetic field is g�h / �JS�=1. One sees
that the agreement is very good.

It makes sense to explore on a lattice the dependence
����r�0��. Instead of inclusion of local in-plane magnetic field
the following simple but effective scheme was applied to
enforce a desired logarithmic source position. Again a square
lattice is used with a fixed spin at its center. This core spin
with a given ��r�0� would be excluded from updating in the
numerical routine. In order to find a range of values for the
coefficient � we investigate systems of size 21�21 and 41
�41. Figure 5�a� summarizes the results found from the re-
laxed configurations �ij with different starting deviations
��r�0� by showing � as a function of ��r�0�. One sees the
dependence is almost linear. The numerical � values for N
=21,41 are slightly different, i.e., � weakly depends on the
lattice size. The results indicate that relevant � values are
small, i.e., ���
1. More significantly, the analytical model
only contains two parameters � and R and a relaxed spin
configuration, obtained numerically, can only depend upon
two independent variables ��r�0� and N.

We then used the numerical code to calculate the energy
of the structure

FIG. 4. Starting configuration used to get a logarithmic source
�a� and equilibrium configuration obtained in the iteration procedure
�b�. Core spin is placed at position �10, 10�. The final equilibrium
state reached after 50 000 iterations with an accuracy 10−15. A com-
parison between the numerical simulation �points� and the analyti-
cal model �lines�. To exclude the lattice artifacts due to fixed bound-
ary conditions we use the points with 1� ln r�2 for the fitting
shown in the inset �c�.

FIG. 5. The � value as a function of ��r0� �a� and the energy E
as a function of �2 �b�. Note that the maximal � values found for
different lattice sizes, �max=0.650 �N=21� and �max=0.615 �N
=41�, are close to the estimation 0.636 of the mean-field theory.
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E

JS2 =
1

2�
np

cos��n − �p� + �
n

cos��n − �0� − E0, �44�

where the first sum runs over all inner sites and the sum in
the second term goes over the boundary sites that belongs to
the structure. The energy was calculated relative to the
ground-state energy E0, an amount of JS2 per exchange
bond, for spins aligned with an uniform angle �0 within the
xy plane. The energy found as a function of �2, taken from
the fitting, is linear right up to a maximal value �max corre-
sponding to ��r�0�=	 that well agrees with the continuum
model �Fig. 5�b��.

2. Pair of logarithmic sources

It is interesting to confirm the results found above by
analysis an assembly of such kind of logarithmic sources.
According to the continuum model, the simplest formation is
a configuration including two sources of strength � and −�

� =
�

2
ln

�x − x1�2 + �y − y1�2

R1
2 −

�

2
ln

�x − x2�2 + �y − y2�2

R2
2

= �0 +
�

2
ln

�x − x1�2 + �y − y1�2

�x − x2�2 + �y − y2�2 , �45�

where �0=� ln�R2 /R1�. The energy of the pair

E = 2	�2JS2 ln d �46�

is finite and have no dependence on system size.
We use a square system of size 2N+1 with two sources

placed symmetrically near its center which has the coordi-
nates �N ,N�. We found in the numerical studies that only
distance between the sources and their mutual orientation on
a lattice affect the values of energy and �. We present here
our results obtained from simulations when the sources are
placed at positions �N−d /2 ,N� and �N+d /2 ,N�, where d is a
distance between them. Alternatively, if the sources were
placed at different positions away from the system center a
boundary energy that changes significantly with the pair po-
sitions would result. To avoid this complication, it is much
simpler to fix the source positions at the system center.

We investigate how the strength of source � could depend
on the pair distance d and on a difference between the core
spin angles ��=��r20�−��r10� and how the analytical pre-
dictions for the energy �E��2, E� ln d� are modified on a
lattice. The calculation required a larger system than for the
previous case in order to produce stable configuration in a
finite scale. We checked the finite size effects by simulating
21�21 to 1001�1001 square lattices. In addition, in the
calculations presented here we control a restoring of homo-
geneous arrangement at system edges. The analytical solu-
tion �45� involves two independent parameters, i.e., the
strength � and the distance d. In numerical simulations a
number of independent quantities involved in the calculation
is the same. The first parameter is determined by the differ-
ence �� and the second one is given explicitly via the source
positions.

It is of importance to determine an optimal size of the
system to avoid impractically long simulations for large

enough lattice. In the Table I some of the data, answering the
purpose, is collected. The binding energies, the strength of
source � and a relaxed background arrangement �0 are sum-
marized there. As a starting configuration we take two spins
at the distance d=4 turned almost oppositely to another mag-
netic moments. We run then iteration procedure to obtain
equilibrium configuration. Fitting to the known solution �45�
allows the determination of the needful quantities. One see
that the background arrangement �0 does not approach the
exact value 	 /2 when decreasing the size of the lattice
�L�101�. Size effects are noticed for the strength of source
� which becomes greater for small lattices. Increasing the L
from 201 to 301 does not have an effect on � no �0. As a rule
of thumb, we hold the finite-size effects are negligible when
L�50d.

To compare the analytical expression �45� with a target
in-plane arrangement �Fig. 6� we choose a scan along a path
in the �0,1� direction of the lattice, beginning with the point
of one of the source. Similar results could be obtained along
other scan directions, but with a worse consistence with the
analytical predictions, since the region, where the continuum
model is expected to be valid, is not isotropic. A fit of data
points according to Eqs. �45� and �46� provides estimates for
the parameter � and the energy E.

The dependence � on �� was examined for several d
values. We found that the observed dependence is distin-
guished for small �d=2–4� and large �d�6� pair distances.

For sufficiently small distances �d�4� the pair presents
an unit formation and cannot be treated adequately by the
continuum model. A typical result for the energy obtained for
a square lattice of size L=141 is shown in Fig. 7. The pa-
rameter � found as a function of �� is shown in Fig. 7�a�.
One sees that the dependence exhibits a clear periodical be-
havior. Due to the fact, the dependence E��2� calculated with
the same data and plotted in Fig. 7�b� turns out to be nonlin-
ear and many valued.

By contrast, for the large distances �d�10� the agreement
between the analytical model and the numerical simulations
�L=701� is good enough. In Fig. 8�a� we show � as a func-
tion of ��. The dependence is almost linear and this behavior
is similarly observed for one logarithmic source. The energy
of the pair as a function of �2 also supports the agreement, E
is directly proportional to �2 until ���	 �Fig. 8�b��.

3. Nodal solutions of the Heisenberg model

The patterns which we have so far studied have been con-
fined in the xy plane. A particularly interesting and complex

TABLE I. Data of numerical simulations for pair of logarithmic
sources.

Size E /JS2 � �0

21�21 15.9945 0.203 1.562

51�51 15.9984 0.127 1.569

31�31 15.9973 0.160 1.567

101�101 15.9988 0.108 1.5703

201�201 15.9989 0.1005 1.5707

301�301 15.9989 0.1005 1.5707
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case is when the structure takes an out-of-plane form. Here
we report numerical simulations of nodal states. The lattice is
taken as in Fig. 3, however, in the initial configuration the
pinned spin in the center has an out-of-plane component. The
numerical procedure recurs those used for one logarithmic
source and generates both a set �cos �ij , sin �ij� and
�cos �ij , sin �ij�. This allows us to extract from these simula-
tions parameters involved in analytical expressions such as
those derived in Sec. I.

Given a set of angles found numerically, we should sum-
marize the data by fitting it to the model �18� that depends on
the adjustable parameters �0, c, �, and R, and the fit supplies
the appropriate coefficients. To carry out the comparison we
follow two steps. From Eqs. �18� we obtain

�c2 − 1 cos �0 cos �ij + �c2 − 1 sin �0 sin �ij = tan �ij .

�47�

Fitting Eq. �47� to the resulting spin structure by the least-
square method, we obtain c and �0. The rest parameters �
and R are then adjusted to data for cos �. We estimate

�ij = tan−1�c tan
� ln� rij

R
�� + �0�

with �, R, c, and �0 and compare �ij with numerical data
points �Fig. 9�. One sees that the agreement is rather good.

A set of numerical simulations was performed using

different initial conditions for boundary S�b
= �sin �b cos �b , sin �b sin �b , cos �b� spins and the central

pinned spin S�c= �sin �c cos �c , sin �c sin �c , cos �c�. We also
used the expressions �18� as fitting formulas. These fits give
us values for the strength � and the energy E listed in Table
II. We found a significant signature: the � value is deter-

mined only by the angle �bc=cos−1�S�bS�c� for any direction

S�c. To check this assertion we repeat calculations of Sec.
III B 1 for the pure in-plane case with the starting deviations
��r�0�=�bc. A fit of data points according to Eqs. �35� and
�44� gives the estimates for strength of source � and the

FIG. 6. Starting configuration used to get a pair of logarithmic
sources �a� and relaxed configuration obtained in the iteration pro-
cedure with an accuracy �10−7 �b�. In the starting configuration the
in-plane angles of the selected sites are set equal to 	 /2+�� /2 and
	 /2−�� /2 and they are hold fixed during the iteration scheme
�Eqs. �33� and �34��. The spins at the edges of the system have been
included into the iteration procedure too and they have no constraint
from outside, that is a free boundary condition holds. For all other
spins, the in-plane angles are supposed to be 	 /2.

FIG. 7. Parameter � as a function of �� �a� and energy E as a
function of �2 �b� for a small-distance pair �d=4�. The pair presents
an unit formation and cannot be treated adequately by the con-
tinuum model.
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energy E �last two columns in the Table II� which are close
to the out-of-plane values. In addition, these simulations con-
firm the analytical results for the energy: E��2 and E does
not depend on c. From these features we could conclude that
a pinned spin in the center is a reason of appearance of
logarithmic solutions both in XY and Heisenberg models.

C. Spiral vortex

In the present section we continue with simulations of a
spiral vortex, and begin with the XY case. It is meaningful to
investigate whether the approach described earlier keeps its
validity for simulations of an ideal vortex. To perform nu-
merical simulations we consider a square lattice of even size
2N�2N shown in Fig. 10�a� and place the vortex core in the
center of the dual lattice. Then, we start with an initial con-
figuration with q�0 and impose free boundary condition.
After 5000 iterations we reach a relaxed configuration shown
in Fig. 10�b�. On a lattice, the in-plane vortex angles �ij lose
the perfect circular symmetry of this formula, and obtain
modifications largest near the vortex core with the coordi-

nates �ĩ0 , j̃0�. To check a validity of the solutions

FIG. 8. Dependencies ����� �a� and E��2� �b� for a large-
distance pair �d=10�. The agreement between the analytical model
and the numerical simulation is good enough.

FIG. 9. Comparison of cos � obtained from numerical simula-
tion �black points� to the analytical expression cos �
=cos	arctan�1.140 tan�−0.307 ln r+2.544��−	 /2
 given by the
continuum theory �solid line�. Core spin angles are ��r0�=1.5 and
��r0�=0.5.

TABLE II. Data of numerical simulations for nodal states.

��=�c−�b ��=�c−	 /2 �bc E /JS2 c �0 R � � �plane� E �plane�

1.5 0.5 1.509 1.513 1.140 −
	

2 21.54 −0.317 −0.318 1.513

1.5 −0.5 1.509 1.513 1.140 −
	

2 21.54 −0.317 −0.318 1.513

0.5 1.0 1.077 0.744 3.399
	

2 29.62 −0.227 −0.228 0.714

2.5 1.5 1.627 1.758 23.58
	

2 21.69 −0.340 −0.340 1.757

0 1.509 1.509 1.513 � — 21.54 −0.317 −0.318 1.513
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cos �ij =
i − ĩ0

��i − ĩ0�2 + �j − j̃0�2
, sin �ij =

j − j̃0

��i − ĩ0�2 + �j − j̃0�2

�48�

we control a fulfillment of a discrete lattice nonlinear
Laplace equation

�
n

sin��p − �n� = 0,

where n runs over the nearest neighbors of the pth site, with
an accuracy of order 10−2 in the center and 10−5 at the out-
skirts.

As a next step, we perform numerical simulations for a
spiral vortex determined by the most common expression for
the harmonic function

a�x,y� = q arctan
y − ỹ0

x − x̃0

+ � ln
��x − x0�2 + �y − y0�2

R
.

Here we briefly review how this procedure has been orga-
nized. Assuming the vortex is placed at some position cen-
tered in a plaquette and a logarithmic source position coin-
cides with one of the lattice sites the parameters
x̃0 , ỹ0 �x0 ,y0� are chosen in the dual �direct� lattice. First, we
consider an initial vortex configuration, where one of the
spins nearest to the vortex is considered as a site of logarith-
mic source. The in-plane angle of this core site is not
changed by the iteration procedure, and a fixed boundary
condition holds. Farther from the core the relaxed spin
angles must well be described by the continuum formula
��x ,y�=q�+� ln�r /R�, then we expect the spin configura-
tion

�ij = q arctan
j − N + 1/2

i − N + 1/2
+ � ln

��i − x0�2 + �j − y0�2

R

would be seen to develop.
We investigate system of size 101�101. The starting de-

viation ��r�0� of the core spin in the uniform background
results in the relaxed configuration with � and the energy E
�Fig. 11�a��. Most importantly, we observe a logarithmic de-
pendence of the in-plane angles �ij for scans �used further in
the fitting to determine � values� along paths in definite di-
rections �Fig. 11�b�� while scans along another directions
shows the opposite feature �Fig. 11�c��. This procedure has
been repeated at several different positions of the fixed spin
�x0 ,y0� and the results are shown in Table III, where in the
last column we show the � values derived from the calcu-
lated energy E.

This is done by using the expression E=Elog+Evort, where

Elog = 	JS2�2 ln
L

a
, Evort = 	JS2q2 ln

L

a
,

for the spiral vortex energy in the continuum approximation
which is suggested to be valid. The value for Evort /JS2

=16.58 is taken from the simulations of the ideal vortex.
With this general expression, where Evort /Elog=q2 /�2, it is
easy to find � which will be given by ��energy�
=��E−Evort� /Evort. The following features are evident from
Table III.

�1� The farther the fixed spin from a vortex center the
closer an additional energy E−Evort �second column� to value
found for a fixed spin in the uniform background. The region
of continuum theoretical description decreases that is in
agreement with the simulations for two opposite logarithmic
sources already reported in Sec. III B 2.

�2� The strength � depends both on ��r�0� value and a
position of the fixed spin. The closer latter to a vortex center
the less � at fixed ��r�0� value. Far from the vortex source the
parameter � becomes exactly equal to value found for one
logarithmic source with the same lattice size and starting
deviation ��r�0�.

FIG. 10. Starting configuration for a simulation of vortex struc-
tures on a lattice of size �2N ,2N� �a�. The center with coordinates
�N−1/2, N−1/2� is denoted by black circle. Relaxed configuration
obtained after 5000 iterations �b�. The estimation of energy E /JS2

for system of size 100�100 by using numerical codes �ij �Eq.
�44�� is 16.58 vs 17.72 given by the continuum theory.
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�3� The prediction of continuum theory E���2+q2� is
full reproduced by simulations for any logarithmic source
and vortex positions. The lowest energy value is obtained for
the smallest distance between the vortex center and the fixed
spin.

D. Space spiral vortex

We begin with the case �=0. To obtain this kind of spin
structures we solved Eqs. �27�, �28�, and �31� by first setting

the angles to their continuum values �20� and then iteratively
setting each spin components to point along the direction of
the effective field due to its neighbors. However, an attempt
to obtain the space vortex by this way on the full square or
disk fails. For these systems the iteration procedure either
converges to a Skyrmion structure �free boundary condi-
tions� or does not converge at all when the boundary spins
held fixed. The reason is the iteration procedure relaxes to a
minimal energy state. Since the feature of a starting configu-
ration employed in numerical calculations is a nonzero an-
gular momentum, this configuration may evolve either into
the Skyrmion-like or into the space vortexlike structures.
However, the former has a gain in energy in comparison with
the last one. To avoid this difficulty we consider a simple
way in which the Skyrmion structure loses the advantage.
Noting that an essential contribution to the vortex energy
comes from the spins within a small-radius core we takes the
computional region in the form of ring with the inner radius
R1 and the external radius R2. This results in small differ-
ences of the discrete solution from the continuum result �20�.

We found the energy for the different parameters c as
shown in Table IV for the ring of size R1=50.5 and R2
=105.5 with free boundary conditions. In full agreement
with the continuum theory these energies have no depen-
dence on c values. In Table V we listed the space vortex
energy as a function of the inner radius R1 at fixed R2
=100.5. We see that agreement between the numerical and
the continuum theory result E=	JS2 ln�R2 /R1� is nice for
the whole range of radius 10.5�R1�50.5. We may conclude
that in the system without a finite-radius core the space vor-
tex will have the lowest energy among solutions with a non-
zero angular momentum. This assertion is supported by di-
rect analytical consideration.38

Now we turn to the space spiral vortex with ��0. To
obtain this configuration spins belonging to both boundaries
of the ring are held fixed. The constants �0�R1� and �0�R2�
should be taken different �“twisted” boundary conditions�.

FIG. 11. Relaxed spiral-vortex configuration with the energy
E /JS2=16.6994. Pinned �N ,N�-spin is denoted by the dotted circle
�a�. Dependencies of the in-plane angles �ij along the �−1,−1� �b�
and �1,−1� �c� directions with logarithmic and nonlogarithmic be-
havior, respectively.

TABLE III. Data of numerical simulations for spiral vortex.

�x0 ,y0� �E−Evortex� /JS2 � ��� �energy�

�N ,N� 0.114 −0.084 0.0828

�N+5,N� 0.554 −0.179 0.183

�N+10,N� 0.562 −0.182 0.184

�N+15,N� 0.568 −0.189 0.185

TABLE IV. Data of numerical simulations for space vortex.

c E

1.0 2.107

1.5 2.107

3.5 2.107

TABLE V. Space vortex energy as a function of the inner radius
R1.

R1 E �lattice� E=	JS2 ln
R2

R1

10.5 7.05 7.10

20.5 4.93 5.00

30.5 3.68 3.75

40.5 2.80 2.86

50.5 2.11 2.16
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Figure 12 presents the results of the modeling for R1=50.5,
R2=105.5 and �0�R2�=�0�R1�+	 /4 resulting in a spiral vor-
tex structure with the energy E=2.37JS2.

Recently, the statics and dynamics of flat circular mag-
netic nanostructures with an in-plane magnetic vortex con-
figuration has been investigated within the framework of the
Landau-Lifshitz-Gilbert equation putting particular emphasis
on the polarization of the vortex center and on the in-plane
vorticity.40 Studying fast switching process induced by out-
of-plane field pulses, the authors was no longer dealing with

a vortex state, but rather with a spiral �see Fig. 12 in Ref.
40�. They found also that in nanorings with an inner radius
R1 and an outer radius R2 the stability of the vortex state is
enhanced, and concerning the switching of the vorticity, the
nanorings have similar properties as circular ones, i.e., with
R1=0.

In summary, we have studied a class of spiral vortex-type
solutions in a 2D Heisenberg ferromagnet and performed nu-
merical simulations for various spiral vortex configurations
using fixed twisted boundary conditions and pinned core
spins �“superinstanton” boundary conditions�. These simula-
tions show a reasonable agreement with the continuum-
approximation results. Based on the investigation we may
identify among the nonlinear excitations the modes with cir-
cular nodes �“nodal” solutions37� and modes with azimuthal
nodes of magnetization Mz �space spiral vortex� that re-
sembles the classification of magnetostatic modes excited by
a magnetic-field pulses and observed recently in micron-
sized ferromagnetic disks. Incidentally, only axially symmet-
ric magnetostatic modes appeared if the tipping pulse is uni-
form over the disk and all geometries are perfectly axially
symmetric. Symmetry breaking modes, instead, required,
e.g., a nonuniform tipping pulse having a sizable gradient in
the plane of the vortex or a deviation of the sample from a
perfect cylindrical shape.22 However, the frequency of non-
axially symmetric magnetostatic modes has a negative dis-
persion, i.e., it decreases with a growth of a number of azi-
muthal nodal lines. Unlike this, for the nonlinear excitations,
which are of exchange origin, a number of these lines coin-
cides with a number of spiral arms �or with the vortex topo-
logical charge q� and increases the energy. These stationary
nonlinear modes must be taken into account for yielding a
better understanding, e.g., the fast magnetic switching prop-
erties in magnetic memory materials.

ACKNOWLEDGMENTS

We would like to thank B. A. Ivanov and M. V. Sadovskii
for the useful discussions. This work was partly supported by
Grant No. NREC-005 of US CRDF �Civilian Research and
Development Foundation� and by RFBR Grant No. 03-01-
00100.

1 Nonlinearity in Condensed Matter, edited by A. R. Bishop, R.
Ecke, and S. Gubernatis �Springer, Berlin, 1993�.

2 Nonlinear Coherent Structures in Physics and Biology, edited by
K. H. Spatchek and F. G. Mertens �Plenum, New York, 1994�.

3 Fluctuation Phenomena: Disorder and Nonlinearity, edited by A.
R. Bishop, S. Jimenez, and L. Vazquez �World Scientific, Sin-
gapore, 1995�.

4 A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 �1975�.
5 S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West, and R.

Tycko, Phys. Rev. Lett. 74, 5112 �1995�.
6 S. Takeno and S. Homma, Prog. Theor. Phys. 65, 172 �1981�.
7 M. E. Gouvea, G. M. Wysin, A. R. Bishop, and F. G. Mertens,

Phys. Rev. B 39, 11 840 �1989�.

8 B. A. Ivanov and A. K. Kolezhuk, Fiz. Nizk. Temp. 21, 355
�1995�.

9 A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep.
194, 119 �1990�.

10 T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono,
Science 289, 930 �2000�.

11 R. P. Cowburn, A. O. Adeyeye, and M. E. Welland, Phys. Rev.
Lett. 81, 5414 �1998�.

12 R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland,
and D. M. Tricker, Phys. Rev. Lett. 83, 1042 �1999�.

13 R. Pulwey, M. Rahm, J. Biberger, and D. Weiss, IEEE Trans.
Magn. 37, 2076 �2001�.

14 G. Gubbiotti, G. Carlotti, F. Nizzoli, R. Zivieri, T. Okuno, and T.

FIG. 12. Space spiral vortex �c=2�: arrangement in the plane xy
�a� and the cos � profile�b�.

BORISOV, BOSTREM, AND OVCHINNIKOV PHYSICAL REVIEW B 72, 134423 �2005�

134423-14



Shinjo, IEEE Trans. Magn. 38, 2532 �2002�.
15 A. Fernandez and C. J. Cerjan, J. Appl. Phys. 87, 1395 �2000�.
16 J. Raabe, R. Pulwey, R. Sattler, T. Schweiboeck, J. Zweck, and D.

Weiss, J. Appl. Phys. 88, 4437 �2000�.
17 A. Lebib, S. P. Li, M. Natali, and Y. Chen, J. Appl. Phys. 89,

3892 �2001�.
18 S. O. Demokritov, B. Hillebrands, and A. N. Slavin, Phys. Rep.

348, 441 �2001�.
19 S. B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr,

and H. A. Padmore, Science 304, 420 �2004�.
20 J. P. Park, P. Eames, D. M. Engebretson, J. Berezovsky, and P. A.

Crowell, Phys. Rev. B 67, 020403�R� �2003�.
21 M. Buess, R. Höllinger, T. Haug, K. Perzlmaier, U. Krey, D.

Pescia, M. R. Scheinfein, D. Weiss, and C. H. Back, Phys. Rev.
Lett. 93, 077207 �2004�.

22 M. Buess, T. Haug, M. R. Scheinfein, and C. H. Back, Phys. Rev.
Lett. 94, 127205 �2005�.

23 M. Buess, T. P. J. Knowles, R. Höllinger, T. Haug, U. Krey, D.
Weiss, D. Pescia, M. R. Scheinfein, and C. H. Back, Phys. Rev.
B 71, 104415 �2005�.

24 M. S. Gross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
�1993�.

25 F. J. Nédélec, T. Surrey, A. C. Maggs, and S. Leibler, Nature
�London� 389, 305 �1997�.

26 L. A. S. Mól, A. R. Pereira, and A. S. T. Pires, Phys. Rev. B 66,

052415 �2002�.
27 S. A. Leonel, P. Z. Coura, A. R. Pereira, L. A. S. Mo’l, and B. V.

Costa, Phys. Rev. B 67, 104426 �2003�.
28 G. M. Wysin, Phys. Rev. B 68, 184411 �2003�; 70, 094423

�2004�.
29 A. Patrascioiu and E. Seiler, Phys. Rev. Lett. 74, 1920 �1995�;

Phys. Rev. D 57, 1394 �1998�.
30 F. Niedermayer, M. Niedermaier, and P. Weisz, Phys. Rev. D 56,

2555 �1997�.
31 M. Aguado and E. Seiler, Phys. Rev. D 70, 107706 �2004�.
32 A. R. Pereira, S. A. Leonel, P. Z. Coura, and B. V. Costa, Phys.

Rev. B 71, 014403 �2005�.
33 R. Balakrishnan and A. R. Bishop, Phys. Rev. B 40, 9194 �1989�.
34 A. B. Borisov, JETP Lett. 73, 242 �2001�.
35 L. M. Pismen, Vortices in Nonlinear Fields �Clarendon Press,

Oxford, 1999�.
36 A. M. Tsvelik, Quantum Field Theory in Condensed Matter Phys-

ics �Cambridge University Press, Cambridge, 1998�.
37 I. G. Bostrem and A. S. Ovchinnikov, JETP Lett. 76, 846 �2002�.
38 A. B. Borisov, I. G. Bostrem, and A. S. Ovchinnikov, JETP Lett.

80, 846 �2004�.
39 R. F. Egorov, I. G. Bostrem, and A. S. Ovchinnikov, Phys. Lett. A

292, 325 �2002�.
40 R. Höllinger, A. Killinger, and U. Krey, J. Magn. Magn. Mater.

261, 178 �2003�.

SPIRAL VORTICES IN A TWO-DIMENSIONAL FERROMAGNET PHYSICAL REVIEW B 72, 134423 �2005�

134423-15


