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Results of polarized neutron small angle scattering in MnSi, a cubic itinerant magnet, near Tc=28.8 K are
presented and analyzed. The diffuse scattering intensity looks like half-moons oriented along the incident
neutron polarization. The sum of the intensities for two opposite polarizations form an anisotropic ring with
weak spots, which below Tc transform into the Bragg peaks originating from the helical structure. These results
are in semiquantitative agreement with the mean-field calculations based on the Bak-Jensen model that takes
into account the hierarchy of the interactions: the exchange interaction, the isotropic Dzyaloshinskii-Moriya
�DM� interaction and the weak anisotropic exchange �AE� interaction. The DM interaction is responsible for
the scattering intensity concentrated in the half-moons. The AE interaction provides the anisotropy so that the
correlation length diverges along �111� only. The corresponding critical exponent is �=0.62�1�. The exponent
of the Bragg intensity due to the helical structure at T�Tc is 2�=0.44�1� where � is the exponent of the helix
magnetization.
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I. INTRODUCTION

Incommensurate ordering and chirality in strongly corre-
lated magnetic materials have recently gained much atten-
tion. In this regard noncentrosymmetric cubic MnSi is play-
ing a particular role because it is one of the very few systems
with very peculiar properties. Its magnetic structure is the
left-handed spiral oriented along �111� axes with a period
d�18 nm resulting from the Dzyaloshinskii-Moriya interac-
tion �DMI� due to noncentrosymmetric crystal structure
P213.1,2 This single-handed degree of freedom facilitates the
interpretation of experiments significantly. In addition atten-
tion is focused on MnSi because it is a model system for
itinerant ferromagnetism characterized by paramagnetic mo-
ments that are much larger than the ordered moment below
the transition.3 Therefore one may conclude that MnSi is
close to the quantum critical point.4 Last but not least, the
recent discovery of non-Fermi-liquid5 and a possible liquid-
crystal-like state6 above a pressure pc�14.6 kbar have
sparked a significant interest in the magnetic properties of
MnSi.

As a result of the chiral symmetry of the order parameter
a universality class of the second order transition with criti-
cal exponents was proposed7 and confirmed recently by po-
larized neutron scattering in triangular lattice antiferromag-
net CsMnBr3.8,9 Inelastic neutron scattering experiments near
TC �Ref. 10� have shown that critical dynamics in MnSi is
strongly affected by the chirality of the magnetic fluctuations
leading to a critical exponent � that is rather close to the
expected chiral symmetry.7

In this paper we present results of the small-angle polar-
ized neutron scattering study of critical fluctuations in MnSi
at ambient pressure. We demonstrate that the magnetic criti-
cal scattering is arranged on the spheres around the nuclear
Bragg peaks. However very close to TC the cubic anisotropy

plays a significant role. As a result the correlation length
diverges along �111� directions only. This situation re-
sembles closely the similar observation near the critical pres-
sure but in the last case the correlation length was not
measured.6 We give the explanation of these phenomena
based on the Bak-Jensen model,11 which takes into account
the conventional exchange interaction, the DM interaction
and the anisotropic exchange �AE� interaction. This model is
qualitatively correct both near TC and at critical pressure pc
as it catches the main symmetry features of the problem.

II. MEASUREMENTS

The used sample was a disk with 20 mm diameter and 2
mm thickness cut from a single crystal of MnSi grown at
Ames Laboratory. Its structural mosaic of 0.22° was deter-
mined with the neutron spectrometer “Reflex” at FZ Jülich
�Germany�. The small-angle polarized neutron scattering
�SAPNS� experiments were performed at the SANS-2 facil-
ity of the FRG-1 research reactor in Geesthacht �Germany�.
The beam of polarized neutrons �Pi=0.95� was used with a
wavelength �=0.58 nm, which is above d spacing of MnSi,
so only magnetic scattering can be observed. The wavelength
spread and the beam divergence were �� /�=0.1 and 2.5
mrad, respectively. The scattered neutrons were detected
with a position sensitive detector with 128�128 pixels and a
spatial resolution of 4.4 mm. A q-range from 6�10−2 to
1 nm−1 was explored. The incident beam was directed along

�11̄0�, so that the vectors parallel to �111� and �111̄� were in
the scattering plane and perpendicular to the beam. The

guide magnetic field of 1 mT was in this plane along �112̄�,
i.e., perpendicular to �111�. The temperature was measured
with accuracy better than 0.05 K.

Maps of the SAPNS intensities below and above
Tc=28.82�2� for two neutron polarizations along �“up”� and
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opposite �“down”� the guide field are shown in Fig. 1. Below
Tc four Bragg peaks with k=0.39 nm−1 and with different
intensities are visible. They are the reflections from the do-

mains oriented along �111� and �111̄�. This is possible due to
the large magnetic mosaic, as in the ideal case the Bragg
condition would be only fulfilled for one reflection. In our

geometry it is the �111̄� peak. The peaks at k= �111� and

k= �1̄1̄1̄� are polarization independent, as k is perpendicular

to Pi � �112̄�. Reflections with k= �111̄� and k= �1̄1̄1� depend
on Pi as expected for helices with the Dzyaloshinskii vector
along q. The intensity between the peaks �half-moons� is
induced by the critical fluctuations. Above Tc, there are such
half-moons only. In sum they compose a ring with the maxi-
mal intensity at q�k. There are weak spots on these half
moons corresponding to the former Bragg peaks. The inten-
sity along the ring at q=k and T=Tc+0.3 K is shown in Fig.
2. The maxima of the measured intensity corresponds to the
weak spots observed on the ring along the �111� in Fig. 1�b�.
As will be shown below the longitudinal q-scan of the scat-
tering intensity at T�TC is well described by the Lorentzian.
No contamination of the Bragg peaks, described by the
Gaussian, is observed at T�TC. Thus, we found that the
critical scattering is maximal along �111� axes and is re-
stricted along other directions which shows the importance
of the anisotropic exchange interaction above Tc. To describe
these experimental findings the following theory was devel-
oped.

III. MEAN-FIELD THEORY

A theoretical description of the paramagnetic fluctuations
in cubic system with the Dzyaloshinskii-Moriya interaction

�DMI� starts, according to Ref. 11, with the bilinear part of
the free energy density of the form

W�q� = 	B

2
�q2 + 	0

2�
�� + iD���q
Sq
�S−q

�

+
F

2
�qx

2�Sq
x �2 + qy

2�Sq
y �2 + qz

2�Sq
z �2� , �1�

where the first, second, and third term correspond to the iso-
tropic exchange, the DM interaction, and the AE interaction,
respectively. 	0

2=C�T−Tc0� and Tc0 are nonrenormalized
square of the inverse correlation length and the transition
temperature, respectively. As is well known the DM interac-
tion and AE interaction are of first and second order in the
spin-orbit interaction. Thus, we have B�Da�F, where a is
the lattice constant. In the exchange approximation for the
magnetic susceptibility we have the well-known expression
���

�0� =�0
��, and �0=T / �B�q2+	0
2�� and using Eq. �1� for the

susceptibility tensor we get

����q� = �0�q�
�� + �0�q�K���q�����q� , �2�

where the tensor K=KA+KS. Its antisymmetric part
K��

A =−i�D /T�q���. For the symmetric part we have
Kxx

S =−�F /B�qx
2, etc.

The solution of Eq. �2� has the form

��� =
�0

Det
�
�� −

2ikqD/�D�
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2 q̂��� − 	 2kq

q2 + 	0
2
2
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�3�

where q̂=q /q, k= �D� /B=2� /d and d is the length of the
spiral. Here, in the numerator we omitted small terms of the
order Fqx,y,z

2 / �B�q2+	0
2�� and

FIG. 1. �Color online� Maps of the SAPNS intensities for the

polarization Pi parallel to the �112̄� direction, along the guide field
�left� and opposite to it �right�, T=Tc−0.1 K �a�, T=Tc+0.2 K �b�.

FIG. 2. Dependence of the scattering intensity �dots� and the
cubic invariant �solid line� on the angle � seen from the �110�
direction. The strong maximum of the intensity at ��325° corre-

sponds to the most intensive Bragg peak below TC in the �111̄�
direction.
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here we retain only one term proportional to the small ratio
F /B as it has cubic symmetry that breaks the full rotational
symmetry of the problem. It is responsible for the orientation
of the critical fluctuations with respect to the cubic axes.
Using these equations we can write
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where 	1
2=	0

2−k2=C�T−Tc1� and Tc1=Tc0−k2 /C. As the ra-

tio �F� /B is very small the last term in the expression for Z is
important very close to Tc only. As a result for 	1

2� �F� /B
critical fluctuations are maximal at the sphere q=k and uni-
formly distributed at its surface. However very close to Tc,
when 	1

2� �F� /B the last term determines the form of the
critical fluctuations.

The expression �q̂4�= q̂x
4+ q̂y

4+ q̂z
4 is a cubic invariant. It has

two extrema equal to 1 and 1/3 for q along the edges and the
diagonals of the cubic unit cell, respectively. As a result for
F�0 we have a transition to a state with the helix axes along
the edges �FeGe �Ref. 16�� and for F�0 along the diagonals
�MnSi �Ref. 1��. In the last case we get

Z = ��q + k�2 + 	2���q − k�2 + 	2 +
k2�F�
2B

	�q̂4� −
1

3

 ,

�6�

where 	2=	1
2+k2�F� / �6B�. Here, in the first factor and in the

last term we neglected a small difference between 	1
2 and 	2

and set q=k, respectively. In this approximation for the scat-
tering of polarized neutrons using standard methods �see, for
example, Ref. 12� we obtain

d�

d�
=

�rf�q��2T

�B�q + k�2 + 	2�
k2 + q2 + 	2 − 2kqPi

�q − k�2 + 	2 + ��F�k2/�2B����q̂4� − 1/3�
, �7�

where r=5.410�10−13 cm, f�q� is the magnetic form factor
of the unit cell, Pi is the neutron polarization, and we have
taken into account that D is negative, as the helix is the
left-handed one.1

Equations �5�–�7� were derived in the mean-field approxi-
mation but they catch the main features following from the
symmetry of the problem: �i� The dependence of the cross
section on the polarization is a result of the DMI in complete
agreement with the general theory.12 In the case of MnSi the
Dzyaloshinskii vector is directed along q and the chiral part
of the cross section is proportional to cos � where � is the
angle between Pi and q so the scattering almost vanish if
�=0�. �ii� Not very close to Tc the maximum of the scatter-
ing intensity lies on the sphere q=k. Both �i� and �ii� are in
full agreement with the results shown in Fig. 1. �iii� Due to
the AE interaction the scattering near Tc is anisotropic and is
maximal along diagonals, which are easy directions. It
should be noted that qualitatively the last two features were
mentioned by Brazovskii,13 who predicted the first order
transition if one neglects the AE interaction. It is convenient
to determine the so-called polarization of the scattering as14

Ps =
��Pi� − ��− Pi�
��Pi� + ��− Pi�

= −
2kqPi cos �

q2 + k2 + 	2 . �8�

IV. RESULTS AND DISCUSSION

For comparison with the above developed theory we
added in Fig. 2 the cubic invariant Inv= �q̂4�−1/3. The cor-
relation between the positions of the maxima of the mea-
sured intensity �dots� and the minima of the calculated Inv
�solid lines� are clearly observed demonstrating the impor-
tance of the anisotropic exchange interaction near Tc. Simul-
taneously we observed that within the error bars Ps�cos �
in agreement with Eq. �8�.

Figure 3 shows the temperature dependence of the �111�
Bragg peak and the maximal intensity of the critical fluctua-
tions along the easy �111� and hard �001� directions. In the
last case critical fluctuations below Tc are clearly seen. The
temperature dependence of the polarization Ps as determined
by Eq. �8� is shown too. The q scans along the easy direction
across the ring for the intensity �squares� and the polarization
�circles� Ps are shown in Fig. 4. It is seen that Eqs. �7� and
�8� �solid lines� describe the data well.

We present a theoretical description of the critical fluctua-
tions in the mean-field approximation that correctly tackles
the symmetry of the problem but cannot describe the tem-
perature dependence of the relevant quantities. If one ne-
glects the AE interaction the theory predicts a first order
transition.13 However, apparently, our data are consistent
with a second order transition. Hence, we tried to improve
Eq. �7� by replacing the mean-field expression for 	2 by
	2=C1�2�, where �= �T−Tc� /Tc and � is the exponent for the
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correlation length for the easy direction. At the same time we
introduce the critical exponent for the cubic anisotropy � by
replacing the cubic invariant Inv= �q̂4�−1/3 by �Inv��, simi-
lar to that in the uniaxial case.15 Corresponding results are
shown in Fig. 5 with �=0.62�1� and �=0.22�5�. The fit of
the Bragg intensity with IB= I0�−��2�, where � is the critical
exponent of the helix magnetization, gives �=0.22�1� �solid
line in Fig. 3�. The value of � is surprisingly low for the 3D
magnetic system but it is close to that found in the frustrated
CsMnBr3 compound, which belongs to the chiral class of
universality.8,9

It should be noted that beyond the mean field theory the
critical behavior must have two crossovers. At q�k one can
neglect both the DMI and the AE interactions as in itinerant
ferromagnets. Then for k�q and �k−q�2� ��F� /B�k2 the Bra-
sovskii theory, neglecting AE interaction, should be appli-
cable. Furthermore, for small �q−k�2 and very close to the

transition one can neglect the �q−k�2 terms in Eqs. �6� and
�7� and we will get a behavior determined by the singular
properties of 1 / Inv, which goes to infinity as q approaches
the cubic diagonals. So if q→k, an additional renormaliza-
tion group analysis must be done.

We have estimated the parameters B, D and D of the
theory. B may be given as �a2Tc�50 meV Å2. This estima-
tion is close to the spin-wave stiffness B�52 meV Å2

measured in the neutron scattering experiment.17 Further,
the helix wave vector k=D /B=0.039 Å−1 for the critical
range and therefore D=1.9 meV Å and Da�8 meV Å2.
Finally, according to Eq. �6� the inverse correlation length in
the hard direction is determined by 	2=k2�F� / �2B�. From
Fig. 5�a� we get 	�100��0.008 Å−1 and �F�=4 meV Å2.
Hence the hierarchy B�Da�F holds at least in rough
approximation.

The above results must be compared with the recent in-
vestigations of the critical scattering in MnSi at low T and
high pressure near the quantum phase transition �QPT�. In
both cases the maximal scattering intensity lies on a sphere
q=k, which is the results of the DMI. The Brazovskii
theory,13 however, is not applicable to the quantum phase
transition. The mean-field theory given above is applicable in
the high pressure case if one sets 	0

2=A�p− pc0�, where A is a
constant and pc0 is the nonrenormalized critical pressure. The
observed transition is of the first order,5,6 whereas we ob-
serve apparently a second order one. Moreover, near Tc and

FIG. 3. The temperature dependence of the Bragg intensity and
maximal intensities of the critical scattering in the easy ��111�� and
hard ��001�� directions �both in different arb. units�. The polariza-
tion Ps defined by Eq. �8� changes with T at T�Tc and it is constant
for Bragg reflections at T�Tc.

FIG. 4. The q scans across the ring in easy direction for the
intensity and Ps at Tc+0.3 K. The solid lines are the best fit results
of Eqs. �7� and �8� with k=0.39 nm−1 and 	=0.055 nm−1.

FIG. 5. � dependence of the inverse correlation length for the
easy and hard directions �a�. Anisotropic contribution to 	2 equal to
k2���F� /B�Inv�� as a function of Inv= q̂4−1/3 �b�.
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pc the easy axis is directed along �111� and �110�, respec-
tively. We believe that these features of the QPT may be
connected to the change of the AE interaction under applied
pressure.

To conclude, we have a qualitative understanding of
the critical fluctuations in MnSi and related compounds
FeGe �Ref. 16� and FeCoSi �Ref. 18� but further, more de-
tailed studies, both theoretical and experimental, are
demanding.

ACKNOWLEDGMENTS

In conclusion one of the authors �S.M.� is thankful to V.
Mineev for interesting discussions. The PNPI and TU-
München teams acknowledge GKSS for hospitality. The
Russian authors thank RFBR for partial support �Grants Nos.
04-02-16342, 05-02-19889, 03-02-17340, 00-15-96814, and
SS-1671.2003.2�, “Quantum Macrophysics,” “Collective and
Quantum Effects in Condensed Matter,” and Grant “Goscon-
tract 40.012.1.1.1149.”

*Electronic address: grigor@pnpi.spb.ru
†Electronic address: maleyev@sm8283.spb.edu
‡Electronic address: robert.georgii@frm2.tum.de
1 G. Shirane, R. Cowley, C. Majkrzak, J. B. Sokoloff, B. Pagonis,

C. H. Perry, and Y. Ishikawa, Phys. Rev. B 28, 6251 �1983�; M.
Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka, J.
Phys. Soc. Jpn. 54, 2975 �1985�.

2 I. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 46, 1420 �1964� �Sov.
Phys. JETP 19, 960 �1964��.

3 D. Bloch, J. Voiron, V. Jaccarino, and J. H. Wernick, Phys. Lett.
51A 259 �1975�.

4 T. R. Kirkpatrick and D. Belitz, Phys. Rev. B 67, 024419 �2003�.
5 C. Pfleiderer, S. R. Julian, and G. G. Lonzarich, Nature �London�

414, 427 �2001�.
6 C. Pfleiderer, D Reznik, L. Pintschovius, H. von Lohneysen, M.

Garst, and A. Rosch, Nature �London� 427, 227 �2004�.
7 H. Kawamura, J. Phys.: Condens. Matter 10, 4707 �1998�.
8 T. E. Mason, B. D. Gaulin, and M. F. Collins, Phys. Rev. B 39,

586 �1989�.

9 V. P. Plakhty, J. Kulda, D. Visser, E. V. Moskvin, and J. Wosnitza,
Phys. Rev. Lett. 85, 3942 �2000�.

10 B. Roessli, P. Boni, W. E. Fisher, and Y. Endoh, Phys. Rev. Lett.
88, 237204 �2002�.

11 P. Bak and M. Jensen, J. Phys. C 13, L881 �1980�.
12 S. V. Maleyev, Physica B 297, 67 �2001�; Phys. Usp. 45, 569

�2002�; Physica B 345, 119 �2004�.
13 S. A. Brazovskii, Zh. Eksp. Teor. Fiz. 68, 175 �1975� �Sov. Phys.

JETP 41, 85 �1975��.
14 The real polarization of the scattered neutrons is given by

��q ,Pi=0�P f =−�� /�Pi �Ref. 12�.
15 E. Riedel and F. Wegner, Z. Phys. 225, 195 �1969�.
16 B. Lebech, in Recent Advances in Magnetism of Transition Metal

Compounds, edited by A. Kotani and N. Susuki �World Scien-
tific, Singapore, 1993�, p. 167.

17 Y. Ishikawa, G. Shirane, J. A. Tarvin, and M. Kohgi, Phys. Rev. B
16, 4956 �1977�.

18 K. Ishimoto, Y. Yamaguchi, J. Suzuki, M. Arai, and M. Furusaka,
Physica B 213-214, 381 �1995�.

CRITICAL FLUCTUATIONS IN MnSi NEAR TC: A… PHYSICAL REVIEW B 72, 134420 �2005�

134420-5


