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Current-driven magnetic rearrangements in spin-polarized point contacts
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A method for investigating the dynamics of atomic magnetic moments in current-carrying magnetic point
contacts under bias is presented. This combines the nonequilibrium Green’s function (NEGF) method for
evaluating the current and the charge density with a description of the dynamics of the magnetization in terms
of quasistatic thermally activated transitions between stationary configurations. This method is then imple-
mented in a tight-binding (TB) model with parameters chosen to simulate the main features of the electronic
structures of magnetic transition metals. We investigate the domain wall (DW) migration in magnetic mono-
atomic chains sandwiched between magnetic leads, and for realistic parameters find that collinear arrangement
of the magnetic moments of the chain is always favorable. Several stationary magnetic configurations are
identified, corresponding to a different number of Bloch walls in the chain and to a different current. The
relative stability of these configurations depends on the geometrical details of the junction and on the bias;
however, we predict transitions between different configurations with activation barriers of the order of a few
tens of meV. Since different magnetic configurations are associated with different resistances, this suggests an
intrinsic random telegraph noise at microwave frequencies in the /-V curves of magnetic atomic point contacts

at room temperature. Finally, we investigate whether or not current-induced torques are conservative.
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I. INTRODUCTION

Most of the intriguing properties of ferromagnetic
nanoscale atomic structures arise from the close interplay
between magnetic phenomena and electronic transport. As
the magnetization can be controlled on a length scale smaller
than the spin-diffusion length of the conduction electrons,’
the spin scattering is affecting the overall resistance of an
atomic ferromagnetic device. This is the principle behind the
giant magnetoresistance effect (GMR).>? Remarkably, the
opposite effect is also possible, i.e., the electronic current, as
proposed by Slonczewski,* can transfer spin and alter the
magnetic configuration of the underlying ferromagnetic
structure. Magnetization switching, caused by spin-polarized
currents, has been observed experimentally in point contact
measurements>® and in nanopillars.’

It is clear that the modeling of these atomic-scale ferro-
magnetic devices requires the combined description of elec-
tronic transport and of the magnetization dynamics at the
atomic level. For this purpose we have developed a general
scheme for evaluating spin-polarized currents and associated
current-induced torques, which allows us to investigate the
magnetization dynamics and the transport of magnetic point
contacts under bias. Our problem and our method mimic
closely, in philosophy, electromigration problems (thermally
activated current-driven structural rearrangements), where
now the direction of the local magnetic moments takes the
place of the atomic positions as “reaction coordinate.”

Although our scheme is general and is conceptually trans-
ferable to first-principles Hamiltonians (for instance, within
density functional theory), here we apply the method to a
simple self-consistent tight-binding (TB) model. This has the
benefit of being reasonably realistic while keeping the com-
putational overheads to a minimum.
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The paper is organized as follows: in Secs. I A and II B
we introduce our method, describe the model, and sketch out
the techniques used for the calculations. Then, in Sec. II C,
we discuss our approach to the interplay between spin-
polarized transport and the magnetic configuration, applied
to a particular atomic structure. In Sec. III we report a set of
results, which explore the stability and the activation barriers
for transitions between various magnetic arrangements under
bias, as well as the effect of the model parameters on the
physical properties of the system. Finally, we carry out a
numerical test to see whether or not the torques in these
opene-boundary nonequilibrium systems are conservative.

II. THE METHOD
A. General idea

Our scheme for studying current-induced dynamical ef-
fects of the magnetization in atomic-sized nanostructures is a
generalization of the combined quantum-classical dynamical
methods used in electromigration problems.® Here we treat
the magnetic degrees of freedom as classical variables and
the conduction electrons as a quantum system. This is appro-
priate when the magnetic moment (MM) arises from some
deep orbital levels, such as in the case of rare earth ferro-
magnets, but it may appear questionable for magnetic transi-
tion metals (Fe, Co, and Ni), where the d electrons respon-
sible for the moment also take part in the conduction.’
However, since the Coulomb energy is orders of magnitude
larger than any energies connected with the electron flow, it
is safe to assume that only the direction of the local atomic
MM is affected by the current, not its magnitude. This effec-
tively is an adiabatic approximation, in the spirit of the Born-
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Oppenheimer approximation for the nuclear dynamics,
where now the orientation of the local MMs is a slow vari-
able compared with the internal electron-electron interac-
tions that set the magnitude of the MMs.!%!! The Hamil-
tonian for the combined conduction-electron/MM system can
be then written in general as

H{¢}) =H. + Vi({}), (1)

where we have isolated the “free” electron Hamiltonian H,
from the term V,,({¢}), describing all the magnetic interac-
tions. In this framework the local moments are uniquely
specified by a set of angles {¢} with respect to a given di-
rection.

We may now write down the generalized forces (in this
case, torques) conjugate to the classical variables {¢}:

oH({})
d¢

where | W) is a state vector of the electronic system. Equation
(2) has the appearance of the usual Hellmann-Feynman theo-
rem for stationary states. However, it is valid in general dy-
namical situations, for systems driven arbitrarily far from
equilibrium.'>13

Equations (1) and (2), combined with an appropriate
method for calculating the nonequilibrium electron state vec-
tor |‘If>, and therefore the current, are the basis for our
method for describing the interplay between transport and
magnetic properties. In this work, we seek to map out the
activation energy barriers for magnetic rearrangements, in
order to determine the preferential magnetic configurations
of the system and to study transitions between them. We
achieve that as follows. First, we seek the stable configura-
tions. We evaluate the nonequilibrium state vector [¥), in a
one-electron picture, for a given initial MM configuration
{¢"} by solving the scattering problem associated with the
Hamiltonian H({¢"}). Then, by using Eq. (2) the torques for
that configuration are calculated. Static iterative relaxation of
the torques, which involves recalculating the self-consistent
current-carrying electronic structure and the torques, is car-
ried out as follows:

{#"={¢""}+ a1, 3)

where {¢"} and T"~! are, respectively, the MM configuration
and the torques on the nth iteration. A positive value of «
guarantees that the 7=0 solution corresponds to a stable
magnetic configuration {®}.

Once the stable magnetic configurations are found, we
can calculate the activation energy barriers for thermally ac-
tivated transitions between two different configurations
{@initiall apd {Pfinall We then choose one of the classical
dynamical variables ¢; as the reaction coordinate and rotate
it from its initial value d)}““‘al to its final value d)fm“l. At every
step on the way the torques acting on all other MMs are kept
relaxed to zero. The work done by the classical degrees of
freedom during this quasistatic transition is then obtained by
integrating the torque on the reaction coordinate ¢; over the
migration path. The work done over the full transition is

T=— (V| W), 2)
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where q)jz{d)l((vbj) > ¢2(¢1) 5eees d)]’ cees ¢N(¢1)} is the mag-
netic configuration, for a given ¢;, defined by the condition
T;=0 for every i #.

B. Transport method

The Keldysh nonequilibrium Green’s function (NEGF)
method is used here for describing the transport.'*!> We ex-
pand the Hamiltonian H({¢}) and the one-electron wave
functions in a localized atomic orbital basis set, and we de-
compose our system into two current (or voltage) probes
sandwiching a central region. For an open current-carrying
system H can be written as

H=H| +Hy+Hc+ H ¢+ Hgc, (6)

where we have introduced the Hamiltonian for the left-
(right-) hand side probe H;=H; ({¢}) [Hr=Hr({®})], that
for a central scattering region Ho=H-({#}), and the coupling
matrix between the left (right) contact and the scattering re-
gion H, -=H; «({¢}) [Hrc=Hrc({#})]. The latter are indeed
spin-polarized operators, i.e., H=X_,H?, but for the sake of
simplicity of the expression we skip the spin index o in the
following formulas, thus referring to either of the spin com-
ponents.

The NEGF method allows us to map this, in principle
infinite problem (Hi and H; are infinite matrices), on an
auxiliary finite problem. The key observation is that one can
describe the effects of the current/voltage probes over the
scattering region by means of their corresponding self-
energies %; and Xg. These are non-Hermitian matrices,
which contain all information about the electronic structure
of the probes and their occupation. They can be written as

3= HECgLHLC’ 2p= HchRHIzc, (7)

where we have defined the surface Green’s function (GF) for
the left- (right-) hand-side probe gg(gy). Hence the “effective
Hamiltonian” of the scattering region in the presence of the
current/voltage electrodes is written as

Heff:HC+EL+ER' (8)

Note that this is a finite non-Hermitian matrix. Consequently,
the number of electrons in the scattering region is not con-
served.

Now we can construct the retarded GF associated with the
scattering region plus the leads

G(E)= lim[(E+i{) -Hc -3, - 3g17, 9)
ot

and the associated (nonequilibrium) density matrix
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1 (”
p= f dE[n,(E) () + ng(E)7p(E)],  (10)
where n,(E)=G(E)['4(E)G'(E) are the partial density of
state operators for electrons originating from each lead
(A=R,L), T(E)=i[3(E)-3T(E)]/2 is the non-Hermitian
part of the self-energy, and 77x(E)= 7z(E— 4, T) are the cor-
responding Fermi distribution function for the electron res-
ervoirs with chemical potential w4 at some finite temperature
T.

Under our basic assumption of “reflectionless” leads we
can decouple the subsystems of electrons originating from
the left and the right lead and treat them as separate statisti-
cal systems with electrochemical potentials wg). In equilib-
rium pu;=ug=pm, and a finite bias V is introduced as )
=ux|e|V/2, so that the electron flow is from the left to the
right lead for V> 0. Thus the bias V is assumed not to change
the electronic structure of the leads, but only to rescale the
energy levels. In practice V is introduced as a rigid shift of
lead-Hamiltonian on-site energies

\%
HL/R*HL/RiEI, (11)

where Z is the identity matrix for the respective lead.

Self-consistency in our calculation is introduced by as-
suming that for a given magnetic configuration {¢} the
Hamiltonian H depends solely on the scattering region den-
sity matrix Ho=H¢[p]. This is equivalent to assuming that
the underlying electronic structure theory is a density-based
theory, such as Hartree-Fock or density functional theory. In
this case the set of equations (8), (9), and (10) defines the
self-consistent procedure. First one computes the scattering
region GF [Eq. (9)] for Hc[p,] evaluated at an initial density
matrix py. Then from the GF a new charge density p; is
calculated and used to construct the new Hamiltonian
Hc[pi]. This procedure is iterated until reaching self-
consistency, that is, until p,,;=p,.

Finally, from the converged GF the net current is calcu-
lated as'®1>

(V)= %E f dEL 74(E) - 7}(E)]

X T (E)G (E)TR(E)G(E)]'”, (12)

where we have summed over the spin index o.

C. The model

The techniques described in the previous sections are gen-
eral and can be applied to a large class of Hamiltonians. In
this work we focus our attention on a simplified model,
which contains the fundamental ingredients for describing a
current-carrying magnetic point contact, but at the same time
does not present massive computational overheads. The
structure we investigate is schematically represented in Fig.
1. It consists of two semi-infinite leads with a simple cubic
lattice structure and a 3 X 3-atom cross section connected
through a linear chain of three atoms. Each atom carries a

PHYSICAL REVIEW B 72, 134407 (2005)

FIG. 1. (Color online) Scheme of the point contact.

local magnetic moment, our classical quantities, arising from
the deeply localized d electrons. The magnetic configuration
of the leads is fully polarized (all MMs in a given lead point
in the same direction) and we investigate the situation where
the magnetizations of the two leads are opposite to each
other. In contrast, the three MMs of the atoms in the chain
are allowed to rotate. A given magnetic configuration of the
chain is thus described by the three angular coordinates
(¢, ba, @3) with respect to the x axis, which is set parallel to
the magnetization of the left lead, i.e., ¢=0 (¢p=m) for a
MM aligned parallel to the magnetization of the left (right)
lead. We consider rotations of MMs only in the x-y plane
thus neglecting the longitudinal angle (as in a Bloch wall).
The alternative choice would be to consider MM rotations in
the x-z plane (a Néel wall), but as far as we neglect the
magnetocrystalline anisotropy, these two models are identi-
cal.

The current is carried by electrons belonging to an s band,
which is described by means of a single-orbital (plus spin)
TB model. We neglect spin noncollinearity of the current-
carrying electrons, since the time needed to cross the con-
striction is considerably shorter than their spin-relaxation
time. The Hamiltonian of Eq. (1) is therefore explicitly writ-
ten as

H({¢}) = Z [(He)ij + (Vinl)ij]c;rcj + Vclassical({qs})v (13)
Lj

where ¢/ and c; are creation and annihilation operators for
electrons at the atomic sites i and j, respectively. The matrix
elements of the free electron part are those of a nearest-
neighbor TB model

(He)ij=[fo+ U(Pi—P?)](Sij"' Y je1> (14)

where ¢ is the on-site energy, 7 is the hopping parameter, U
is the on-site Coulomb repulsion, p0 the reference on-site
charge corresponding to the neutral free atom, and p is the
self-consistent local charge. The potential V,, of Eq. (1) has
now been separated in two parts: Vi, and Vj,eca- The inter-
action between conduction electrons and the local MMs is
contained in V;,;, which in our model reads
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(Vint)ij= _sigcos(d)i)&i" (15)

where s,-=pj —pil is the local spin polarization of the s elec-
trons at site i and J is the exchange parameter. Therefore V;
describes a Heisenberg-type interaction between the local
classical MMs and the current carrying s electrons. Finally,
the classical term V ,.a parametrizes the interaction be-
tween local MMs. Here we assume a Heisenberg spin-spin
interaction

Jaa Jaa
Velassical = — 72 S; Sj == 72 cos(¢; - ¢j)’ (16)
L] L.J

where J, is the intersite exchange integral and we have as-
sumed normalized classical spin |S;=1, in such a way that
|S;| is incorporated in the definitions of J and J,,. In sum-
mary, our model is that of s conduction electrons exchange-
coupled to local MMs, in turn described by a Heisenberg-
type energy. This is usually known as the s-d model.'®

The torque experienced by the ith local MM in the chain
is then obtained from Eq. (2) and reads

J J
Ti=- Esi sin(¢;) — %[Sin(gﬁi — i) +sin(d — )],
(17)

where i=1,2,3, and we have defined ¢,=0, ¢4= 7 since
the magnetization of the two leads is considered pinned in an
antiparallel arrangement.

In this simple model the surface GF (at a general complex
energy E) of the leads have an analytical form. In reciprocal
space for complex energy in the upper half plane [Im(E)
>0]

_—
E - elk) - \[E- e(k)] -4

29 ’
where e(k) is the energy, as a function of transverse
wave vector (in appropriate units) k=(k,,k,) with k,
=1,....,N,, k,=1,...,N, for an (NXXN},)-atom square
monoatomic slab in a nearest-neighbor orthogonal TB s-band
model,

8(E.k) = (18)

k. k,m
e(k) = € —2|y|cos| ——— | = 2|y|cos| —* ) 19
0=~ 2o ) -2l 1275 ). 19
The expression of Eq. (18) is then expanded over the real-
space basis'” and used in the matrix equation for the self-
energies. The definition of the complex square-root is given
in Ref. 18.

III. RESULTS

Here we investigate the magneto-dynamics of atomic
point contacts, and in particular of the model structure de-
scribed in Fig. 1. The TB parameters are €,=-3 ¢V,
y=—1 eV, U=12 eV, which gives a large bandwidth for the
s electrons and provides local charge neutrality as expected
in a metal. For the exchange parameters we investigate the
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range 0=J<3 eV and 0=<J,, <5 eV. However, we have
identified the values J=1 eV and J;,;=50 meV as a realistic
choice for simulating the main physics of magnetic transition
metals,'®1920 and we will refer to those values as the “real-
istic parameters.”

We start our analysis with studying DW migration in the
three-atom chain. As in Fig. 1, the magnetic moments of the
leads are in the antiparallel configuration, so that a DW
nucleates in the chain. We then investigate the displacement
of the Bloch wall from the interface between the first and the
second atom in the chain to that between the second and the
third (generated by a rotation of the magnetic moment of the
middle atom). These simulations use the realistic parameters
given above, so they can be related to point contact
experiments.?! Both the cases of spatially symmetric and
asymmetric chains are studied. Then we explore the effect of
varying the strength of the exchange parameters and identify
three different regimes. Finally, we revisit the problem of
whether or not generalized forces away from equilibrium are
conservative, then demonstrate numerically that the torques
in the present system under current flow are not conserva-
tive.

A. Domain wall migration

By performing numerical minimization of all the torques,
exerted on the MM in the constriction, with various initial
conditions, we determined that all eight collinear arrange-
ments, such as (0,0,0), (0,0,7), (0,7, ), (m,,0), etc.,
are stable zero-torque magnetic configurations and we have
studied various transitions between them (see Fig. 10). In
particular, we have investigated in detail the quasistatic mi-
gration of an abrupt DW within the atomic chain, i.e., the
transition between the (0,0, ) and (0, 7, 7r) magnetic con-
figurations, achieved by rotation of M, (which is the MM
associated with the spin S,) as described above. Physical
characteristics of this process as function of ¢, are presented
in Fig. 2. It is observed that during the rotation of M, its
neighboring MMs experience small tilts from the collinear
alignment and after a turning point fall back to their initial
state [Fig. 2(a)]. The intersite exchange coupling is not
strong enough to induce spin flips of the neighboring MM
along with the one that is rotated and even hypothetical val-
ues of J,; up to 0.4 eV do not change this picture (see Fig.
6). This observation suggests that the dynamical processes of
the MMs in the constriction can be decomposed into series
of single MM rotations. Due to the specific spatial symmetry
of the atomic geometry we have the relation

¢3(¢2) =7m—¢(m— ) (20)

and unless this symmetry is deliberately broken in our dis-
cussion we will always refer only to ¢,(¢,).

The torque T,, computed as a function of ¢, [Fig. 2(c)] at
every point on the way, is interpolated and integrated accord-
ing to Eq. (4) to determine the effective energy barrier for the
DW migration

)
W(¢z)=—f T,d¢;. (1)

0
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FIG. 2. (Color online) Typical calculation of microscopic prop-
erties during DW migration in the contact (for J=1eV,
J44=50 meV) as a function of the “reaction coordinate” ¢,: (a) the
stable angular variables ¢; and ¢;; (b) the three on-site spin polar-
izations s,-:p}—pil; (c) torque and work, performed by the MM; (d)
net current at V=0.5 V. The voltage in panels (a)—(c) is zero.

Because of the specific geometric and time-reversal sym-
metries of the system, the two states (0,0, ) and (0,7, )
are macroscopically identical at any bias. Thus the calculated
energy barrier between them is symmetric and the total work
W(1r) for the quasistatic process is zero [Fig. 2(c)]. The ac-
tivation energy for this process in our TB parametrization is
54 meV. It is found that the conductance of our system de-
pends on the alignment of the MM and in this case the net
current shows a symmetric bell-shaped dependence on ¢,
[Fig. 2(d)]. For this case (V=0.5 V), the conductance varies
from 1.76e2/h at the collinear states ¢, =0, 7 to a maximum
of 1.86€%/h, reached at ¢,=7/2.

Further, it is observed that the external bias, driving a
spin-polarized current, suppresses the response of ¢ 5 to the
motion of ¢, [Fig. 3(a)] but enhances the onsite polarizations
[Fig. 3(b)] as well as the energy barrier [Fig. 3(c)]. At any
finite temperature, this phenomenon would manifest itself as
suppression, with increasing bias, of the frequency of DW
transitions back and forth between the two stable magnetic
configurations. The net current profile is slightly sharpened
as the bias increases [Fig. 3(d)] and it also becomes more
spin-polarized due to the increased misalignment of the cor-
respondent spin-polarized bands in the two leads [Fig. 3(e)].

B. Nonuniform contact

Current-induced relaxation of the atomic positions can
break the spatial symmetry in point contacts similar to ours®
and substantially weaken the stability of these systems. To
investigate the effect of a small asymmetry in the contact
geometry on the migration barrier for the DW, we map the
displacement of the middle atom from its symmetric position
onto a small variation of hopping integrals between the
middle atom and its neighbors in the chain

Y=L+ 0), yiu=nl-9). (22)
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FIG. 3. (Color online) Effect of the external bias on the micro-
scopic properties of the contact as function of ¢,: (a) the zero-
torque positions of ¢; [¢; obeys Eq. (20)]; (b) the on-site spin
polarizations {s;= p}— p}}i=],2,3; (c) the work profile; (d) the total net
current, and (e) its polarization r;=(Iy—1))/(I;+1)).

This results in breaking the symmetry about ¢,=m/2 of
the effective energy barrier observed in all our previous cal-
culations (Fig. 4). The total work for the (0,0,m)
— (0,7, ) transition is negative, thus the internal energy of
the classical MM is increased. The degeneracy of the
(0,0,) and (0, 7, 7) state is lifted, as the spatial symmetry,
associated with a reflection plane at z=0, is no longer
present. When the hopping parameters are altered by &
=5%, as if the middle atom is slightly shifted to the left, the
(0,7, ) configuration becomes energetically preferable, al-
ternatively, 6=—5% favors the (0,0,7) state, with all the
physical properties being invariant to the transformation
{8, ot —{-0, (7~ b))} (Fig. 4).

We present the typical microscopic properties in Fig. 5.
The effective ferromagnetic coupling between the MMs is

100 T

T ® || L @]

80

60

40

W (meV)

20

FIG. 4. (Color online) Effect of an asymmetry in the hopping
integrals in the three-atom chain with 6=+0.05 on the barriers
for (0,0,7)— (0,7, ) transition at different bias: (a) V=0 V; (b)
V=1V; (c) V=2 V.
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FIG. 5. (Color online) Effect of an asymmetry in the hopping
integrals with d=+5% on the microscopic properties of the contact:
(a) and (b) angles ¢, 5 [note that the symmetry relation in this case
becomes  ¢3(¢hy, S)=m—h(T—py,—5)]; (c) the on-site spin-
polarization; (d) and (e) net current and its spin-polarization at
V=1 V. The bias on (a), (b), and (c) is V=0 V. On panel (f) are the
I-V characteristics for the {0,0,7} and {0, 7,7} states. It is also
observed that I(V, 8,{007})=1(V,=8,{0mm}).

strengthened by the enhanced electronic hopping and the on-
site polarizations of all the atoms shift almost rigidly as the
middle atom is brought toward one or the other of the leads.
The net current shows significant asymmetry from the regu-
lar bell-shaped dependence on ¢, and the more stable con-
figuration is always found to be less conducting [Fig. 5(d)].
The I-V characteristics of the previously degenerate (0,0, )
and (0,7, ) states is split into two branches, whose dis-
placement increases with voltage [Fig. 5(f)] and reaches 10%
for V=2 V. Thus we expect DW migrations within the con-
striction, in the case of small deviations from a uniform ge-
ometry, to be accompanied by random-telegraph-noise-like
variations in the net current. The interplay between the
current-induced relaxation of the magnetic and mechanical
degrees of freedom is the subject of work in progress.

C. Mapping out the parameter space

The torques defined in Eq. (17) depend explicitly on the
exchange parameters J, J,;; and the balance of these two
coupling mechanisms determines the spin dynamics in the
constriction. Figures 6(a)-6(c) describe the variation of the
equilibrium magnetic properties of the (0,0, 7)— (0,7, )
transition as the intersite exchange strength J,, is varied. The
effect of the greater J,, is increased disalignments of the two
neighboring MM ¢, 5 following the rotation of ¢, [Fig.
6(a)]. Because of this the corresponding spin-polarizations
513 (but not s,) are slightly affected [Fig. 6(b)] as a result of
the stronger coupling. The typical bell shape of the current vs
¢, is broadened as J,; increases [Fig. 6(d)] due to the fact
that stronger intersite exchange coupling tends to make the
three MMs in the contact more uniformly distributed in
angle, which makes the contact better-conducting for any ¢,.
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FIG. 6. (Color online) Effect of the strength of the intersite
coupling J,; on the microscopic properties (as in Fig. 3) in equilib-
rium (a)—(c) and net current properties at V=1 V [(d) and (e)].

The current is somewhat less polarized in the case of stron-
ger intersite coupling [Fig. 6(e)].

The graph in Fig. 7 describes the distribution of stability
patterns of the three MMs in the constriction as a function of
the exchange parameters, based on a study of the DW migra-
tion barrier. We can distinguish three different regimes de-
pending on the values of the exchange parameters: (1) mag-
netostatic regime associated with the presence of two stable
magnetic states, for which ¢,=+/2; (2) mixed regime: four
stable configurations, two in each half-plane for which
0<¢,<m/2 and w/2<¢,<m; and (3) current-driven
regime: eight stable configurations, namely all the collinear
MM alignments (0,0,0), (m,m,7), (0,0,m), (0,7,7),
(7,0,0), (m,7,0), (0,7,0), (7,0, 7) (see Fig. 10). The
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text), in a J—J,, cut of the parameter space. The boundaries be-
tween the three regimes are calculated from the properties of the
(0,0,7)— (0,7, ) transition (see inset). The dashed lines corre-
spond to voltages of 1 and 2 V.
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FIG. 8. (Color online) The biased energy barriers for the transi-
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J=1.0 eV (left) and J=2.5 eV (right), and for three values of J,;
(one in each of the ranges, discussed in the text): (a) J;,=12 meV,
(b) J44=0.25 eV; (¢) J44=0.3 eV; (d) Jz=1 eV; (e) J4=2 eV; (f)
Jdd=3 eV.

last case is confirmed by full torque relaxations at various
initial conditions. It should be noted that stability of the two
unipolarized collinear configurations is also found above the
boundary in Fig. 7, but they are then only accessible once the
system is trapped within very narrow regions of {¢} space.
Our main observation is that the collinear configurations are
the only form of stability of the magnetic chain in the contact
for a range of exchange parameters around the realistic val-
ues, defined earlier. Thus, even though our calculations in the
previous and in the next section use J =50 meV and J
=1 eV, the qualitative features of the results may be ex-
pected to hold for a range of values of J,; in the region of
tens of meV and J=0.5 eV.

It is observed that the bias, driving a spin-polarized cur-
rent, is able to distort the boundaries between these three
regions significantly (Fig. 7, dashed lines refer to V=1, 2 V).
The effect of the bias on the migration energy-barrier profile
has been studied for different values of the exchange param-
eters and reported for two representative cases, J=1 eV and
J=2.5¢eV (Fig. 8). The overall observation is that for
J=1.5 eV (the realistic regime) increasing bias (current) en-
forces the barrier, while for /=2.5 eV the bias suppresses
the barrier. For intermediate values of J the barrier shows a
nonmonotonic behavior with bias.

D. Current-voltage characteristics

The current-voltage characteristics of the system at all the
different stable alignments of the MM in the chain are pre-
sented in Fig. 9. All the I-V curves are symmetric about the
origin and form four separate branches as the eight possible
stable magnetic states are 4 X 2 degenerate. This is due to the
specific spatial and time-reversal symmetry of the atomic
point contact. The slopes of the /-V curves cannot be directly
related to the number of DWs in the constriction (three for
the {0,7,0} and {7,0,0}; one for {0,0,0} and {0,0,}
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FIG. 9. (Color online) The current-voltage characteristics at all
stable collinear alignments for the MM in the chain. The inset rep-
resents the correspondent spin-polarization of the net current
ky=(I;=1)/(I;+1)). It is a nonmonotonic function of the bias.

states). Nevertheless, the least steep curve does correspond to
the highest number of domain walls present within the chain.
As soon as the DW in the chain migrates toward the leads (as
in the {0, 7,0} to {m,0,0} transition) the conductance in-
creases. We conclude that microscopic magnetization rever-
sals in the constriction could be causing massive current
variations (of up to 50%) at a given bias. At a given finite
temperature this would result in a random telegraph noise in
conductance measurements and such effects have been ob-
served experimentally.”-?!2

Figure 10 represents the work for a series of 1 MM rota-
tions. The sequence of transitions goes through every stable
magnetic configuration once and returns to the initial state.
In equilibrium the depths of the wells in this graph corre-
spond to the relative energies of our system in various stable
magnetic states with respect to the initial one. Thus (0, r,0)
and (7,0, 7), which have three abrupt DWs and are the least
conducting states, are found to be the most stable among the
collinear alignments. It is observed that the external bias has

0.1 A\

W (eV)
)

-0.1
000 00 w0 w00 n0r TN Onm 00n 000

FIG. 10. (Color online) Work for successive transitions
between the eight stable magnetic configurations at different bias
V=0,1,2 V.
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a non-trivial effect on the effective energy barriers for these
transitions. The total work for the closed loop cancels out for
any bias. This, however, is not an indication of conservative-
ness of the current-induced torques [Eq. (2)] but is rather an
artifact of the specific symmetries in this certain closed path,
which includes all the states and can be decomposed into two
subloops going through identical states in opposite direc-
tions.

There are 12=(5 X 2+2) one-MM-rotation transitions be-
tween non-identical pairs of stable collinear alignments, out
of which we distinguish 5+2=7 different transitions. The
average activation barrier at equilibrium is 71 meV with a
variance of 36 meV and it depends non-monotonically on the
bias: 65.6 meV at 1 V and 68 meV at 2 V. These values for
the activation barriers suggest switching frequencies, and
hence random telegraph noise in the current, in the micro-
wave range at room temperature.

E. Are the torques conservative?

The question if, and under what conditions, forces under
steady-state current are conservative remains an open funda-
mental problem in the theory of transport.”> A thermody-
namic formulation of forces under nonequilibrium steady-
state conditions, proposed in Ref. 18, leads to the explicit
identification of a thermodynamic potential for electro-
migration.?* However, as a consequence of the infinite nature
of open-boundary systems, this potential involves a condi-
tionally convergent real-space summation. If the sequence of
terms in this summation remains invariant along a given path
in the configuration space of the system, then along that path,
current-induced generalized forces are rigorously expressible
as gradients of a scalar potential and are therefore conserva-
tive. The possibility remains open, however, that the order of
terms in the conditionally convergent sum may change, as
specific points, or manifolds, in configuration space are
traversed.”* This constitutes an effective breakdown of the
Born-Oppenheimer approximation, with the consequence
that paths that span such points are nonconservative.”*

We now carry out a numerical test to see whether or not
the torques in Eq. (17) are conservative in the present
current-carrying system. The work for a set of transitions
between collinear MM configurations, performed by rotation
of a single MM, which form a closed loop, is calculated for
different voltages. The full work for three different loops of
four consecutive transitions as a function of the applied volt-
age is presented in Fig. 11. A significant variation of the
closed-loop work with bias is observed.

In order to resolve the numerical error we have performed
a series of tests with different levels of accuracy. We recog-
nize several sources of numerical error: (1) the level of con-
vergence of the density matrix Jp; (2) the fineness of the
energy mesh for the charge density [Eq. (10)] integration SF;
(3) the level of torque relaxation 8T (4) the angular mesh for
the torque integration which results into the work. As the
torque in the current-driven regime is a very smooth function
of the reaction coordinate [Fig. 2(c)], we have found the
angular mesh fineness insignificant for the value of the inte-
gral Eq. (5). The effect of the rest of the accuracy parameters
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FIG. 11. (Color online) Dependence of closed-loop work on the
voltage.

on the closed loop work (see the loop {mmm-7m0-070-
Omrar-ararar} in Fig. 11) is summarized in Table 1.

The results in Table I suggest that the main observation of
nonzero work for a closed-loop set of transitions is not sub-
stantially affected by variations of 1-2 orders of magnitude
about the chosen level of accuracy. Thus we see that in the
present case, along the selected closed paths, we have an
explicit example of nonconservative generalized nonequilib-
rium forces.

IV. CONCLUSIONS

In conclusion, we have proposed a microscopic quantum-
classical approach for computing the current-induced torques
on the local magnetization in ferromagnetic point contacts
under bias. Our method employs an s-d model for the elec-
tronic structure and NEGF technique for describing the elec-
tronic transport. The directions of the local MMs are mapped
onto classical degrees of freedom. We apply this method to a
specific atomic structure, which consists of a monoatomic
chain, bridging over two semi-infinite leads with opposite
magnetizations, so that at least one magnetic DW is formed
within the constriction. We then investigate the stability of
various magnetic configurations, involving multiple DWs,
and the effect of bias driving a spin-polarized current, on the
energy-barrier for the DW migration. For realistic values of
exchange parameters only the collinear MM arrangements
are stable. These configurations carry different (by up to
50%) net currents, and the average activation barrier for tran-
sitions is about 65-70 meV with variance of 20—-40 meV,

TABLE 1. The work (in meV) for the loop {mmm-mm0-
070-07rar-7rarar} as a function of the accuracy parameters (in rela-
tive units). The value of the bias V is given as a subscript.

(8p,0E,8T) (%)  Wov  Wosv Wiy Wisy Wy
(100,100,100) 0.0001 -1.407 -7.454 0.601 19.81
(100,20,100) 0.0001 -1.290 -7.361 -0.036 19.79

(1,100,2) 0.0406 -1.300 -7.356 0.662 19.88
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depending on the bias. Therefore random telegraph noise in
current with significant amplitude could be related to ther-
mally activated MM rearrangements within the constriction.
We have also found that geometrical asymmetries in the
atomic structures (which could be induced by the current)?
affect the symmetry of the activation barrier for DW migra-
tion, pinning the DW to a preferential spatial position, which
corresponds to lower conductivity of the structure.

The observation that the collinear MM alignments are the
only stable magnetic states and the fact that direct intersite
interaction is not able to induce flips in the neighboring
MMs, as one MM in the chain is quasistatically rotated, en-
abled us to calculate the work for series of rearrangements of
the MMs in the constriction, involving single-MM rotations.
Thus, we address numerically the long-standing question of

PHYSICAL REVIEW B 72, 134407 (2005)

the conservativeness of the current-induced forces (torques,
in our case) in open-boundary nonequilibrium system. We
have found numerical evidence that the work for various
closed-loop paths is not zero, but varies nonmonotonically as
the system is driven away from equilibrium. Hence general-
ized current-induced forces in our present system are not
conservative, at least in the section of the configuration space
spanned by the present calculations.
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