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It has long been a puzzle that the Raman optical modes shift to lower frequency �or termed optical mode
softening or redshift� associated with the creation of Raman acoustic modes that shift to higher energy �or
called acoustic hardening or blueshift� upon a nanosolid being formed and its size being reduced. Understand-
ings of the mechanism behind the size-induced Raman shifts have been quite controversial. On the basis of the
bond-order–length–strength �BOLS� correlation mechanism �Phys. Rev. B 69, 045105 �2004��, we show that
the optical softening arises from atomic cohesive energy weakening of atoms in the surface skins, whereas the
acoustic mode hardening is predominated by intergrain interactions. Agreement between predictions and ob-
servations has been realized for Ag, Si, CdS, InP, TiO2, CeO2, and SnO2 nanostructures with elucidation of
vibration frequencies of the corresponding isolated dimers from fitting the optical softening.
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I. INTRODUCTION

Atomic vibration is of high interest because the behavior
of phonons influences directly the electrical and optical prop-
erties in solid materials and devices.1 For instance, electron-
phonon couplings play a significant role in photoabsorption
and photoemission. Phonon scattering forms an important
component in thermal and electrical transport dynamics. It
has long been surprising that with structural miniaturization
down to nanometer scale the optical Raman modes shift
down to lower frequency2 �or called optical mode softening�
accompanied by the generation of low-frequency Raman
�LFR� acoustic modes at wave numbers of a few or a few
tens cm−1. The LFR peak shifts up �or called acoustic mode
hardening� towards higher frequency upon the solid size be-
ing reduced.3,4 Generally, the size-dependent Raman shifts
follow a scaling relation2,4

��Kj� − ���� = Af/Kj
�,

where Af and � are adjustable parameters for data fitting. Kj,
the dimensionless form of size, is the number of atoms with
diameter d lined along the radius �Rj� of a spherical dot. For
optical redshift, Af �0; for the LFR acoustic blueshift, Af
�0. The index � varies from 1.0 to 2.0, depending on the
mode of vibration and varying from source to source.5 For
the Si optical mode �=1.08–2.0, ����=520 cm−1 corre-
sponds to a wavelength of 2�104 nm. The LFR mode dis-
appears for large particles because ����=0.

The underlying mechanism behind the Raman shift is un-
der debate with numerous theories. Theoretical studies of the
Raman shift are often based on a continuum dielectric
mechanism.6,7 Sophisticated calculations have been carried
out using models of the correlation length,8 bulk phonon
dispersion,9 and lattice-dynamic matrix,10,11 associated with
the microscopic valence force field,4 phonon confinement,12

and bond polarization mechanism.2

The mechanism of quadrupolar vibration taking the indi-
vidual nanoparticle as a whole was assumed to be respon-

sible for the LFR acoustic modes. The phonon energies are
size dependent and vary with the materials of the host ma-
trix. The LFR scattering from silver nanoclusters embedded
in porous alumina �Ref. 13� and SiO2 �Ref. 14� was sug-
gested to arise from the quadrupolar vibration modes that are
enhanced by the excitation of the surface plasmas of the
encapsulated Ag particles. The selection of modes by LFR
scattering is suggested to arise from the stronger plasmon-
phonon coupling for these modes. For an Ag particle smaller
than 4 nm, the size dependence of the frequency peak can be
explained using Lamb’s theory,15 which gives vibrational fre-
quencies of a homogeneous elastic body with a spherical
form. Zi, Zhang, and Xie11 calculated the Raman scattering
from acoustic phonons in Si nanocrystals by a lattice-
dynamical model.10 The polarized and depolarized low-
frequency Raman peaks were ascribed as confined LA-like
and TA-like acoustic phonons, respectively. They found that
the effects of the matrix are important, which will lead to a
redshift for both polarized and depolarized Raman peaks.
Their approaches improve the fit to the measurement com-
pared with calculations using Lamb’s model.15 On the other
hand, lattice strain was suggested to be another possible
mechanism for the LFR blueshift as size-dependent compres-
sive strain is present as has been observed from CdSxSe1−x
nanocrystals embedded in a borosilicate �B2O3−SiO2� glass
matrix.16 It was explained that the lattice strain enhances the
surface stress when the crystal size is reduced. The observed
blueshift of acoustic phonon energies was suggested to be a
consequence of the compressive stress that overcomes the
redshift caused by phonon confinement. Liang et al.17 have
proposed a model for the Raman blueshift by relating the
frequency shift to the bond length and bond strength, which
are functions of the entropy, latent heat of fusion, and critical
temperature for solid-liquid transitions.

The redshifts of optical modes have been suggested to be
activated by surface disorder,18 surface stress,19,20 and pho-
non quantum confinement,21,22 as well as surface chemical
passivation.23 The phonon confinement model attributes the
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redshift of the Raman line to the relaxation of the wave-
vector selection rule �	q=0� for the excitation of the
Raman-active phonons due to their localization. The relax-
ation of the selection rule arises from the finite crystalline
size and the diameter distribution of nanosolid in the films.
When the size is decreased, the rule of momentum conserva-
tion will be relaxed and the Raman-active modes will not be
limited at the center of the Brillouin zone.19 A Gaussian-type
phonon confinement model22 indicates that strong phonon
damping is present whereas calculations24 using the correla-
tion functions of the local dielectric constant ignore the role
of phonon damping in the nanosolid. The large surface-to-
volume ratio of a nanodot strongly affects the optical prop-
erties because of the introduction of surface polarization and
surface states.25 Using a phenomenological Gaussian enve-
lope function of phonon amplitudes, Tanaka et al.26 showed
that the size dependence of the optic redshift originated from
the relaxation of the 	q=0 selection rule based on the pho-
non confinement argument with negative phonon dispersion.
The phonon energies for all the glasses are reduced, and the
values of the phonon energies of CdSe nanodots are found to
be quite different for various glass host matrices. A sophisti-
cated analytical model of Hwang et al.5 indicates that the
effect of lattice strain must be considered in explaining the
optical redshift for CdSe nanodots embedded in different
glass matrices. For a free surface, it has been derived that the
redshift follows the relation

	��Kj�
����

= BKj
−2. �1�

The value of B in Eq. �1� is a competition between the pho-
non negative dispersion and the size-dependent surface ten-
sion. Thus, a positive value of B indicates that the phonon
negative dispersion exceeds the size-dependent surface ten-
sion and consequently causes the redshift of phonon fre-
quency and vice versa. In case of a balance of the two
effects—i.e., B=0—the size dependence disappears. How-
ever, there are still some difficulties in using this equation
because of some uncertainties of the parameters involved, as
remarked on by Hwang et al.5

It is noted that currently available models for the optical
redshift are based on assumptions that the materials are ho-
mogeneous and isotropic, which is valid only in the long-
wavelength limit. When the size of the nanosolid is in the
range of a few nanometers the continuum dielectric models
exhibit limitations. Therefore, the models discussed could
hardly reproduce with satisfactory the Raman frequency
shifts, in particular at the lower end of the size limit. Further-
more, it is yet unclear how the quantum confinement and
surface strain dictate the Raman shift of both the optical and
acoustic modes. The objective of this work is to show that
derivatives of the recent bond-order–length–strength �BOLS�
correlation mechanism27–29 could reproduce the size-induced
Raman shifts, leading to a deeper and consistent insight into
the mechanism behind with elucidation of the vibration fre-
quency of the corresponding dimers, which is beyond the
scope of other sophisticated models.

II. PRINCIPLE

A. Vibration modes

Raman scattering is known to arise from the radiating
dipole moment induced in a system by the electric field of
incident electromagnetic radiation. The laws of momentum
and energy conservation govern the interaction between a
phonon and the incident photon. When we consider a solid
containing numerous Bravais unit cells and each cell con-
tains n atoms, there will be 3n modes of vibrations. Among
the 3n modes there will be three acoustic modes, LA, TA1,
and TA2 and 3�n−1� optical modes LO and TO. The acoustic
modes represent the in-phase motion of the mass center of
the unit cell or the entire solid as a whole. The long-range
Coulomb interaction is responsible for the intercluster inter-
action. Therefore, the acoustic LFR mode should arise from
the vibration of the entire nanosolid interacting with the host
matrix or with other neighboring clusters. Therefore, it is
expected that the LTR mode approaches zero if the particle
size is infinitely large, as one can observe. The optical modes
arise from the relative motion of the individual atoms in a
complex unit cell. For elemental solids with a simple crystal
structure such as the fcc of Ag, only acoustic modes present.
Silicon or diamond is an interlock of two fcc unit cells that
contain in each cell two atoms in nonequivalent positions;
there will be three acoustic modes and three optical modes.

B. Size-dependent optical frequency shift

1. BOLS correlation

The BOLS correlation mechanism27–30 relates the size de-
pendence of nanostructures to the effect of bond order loss
on the interatomic bonding and its consequence on binding
energy density per unit volume and the cohesive energy per
discrete atom in the nanostructures. Involvement of inter-
atomic interactions differentiates the performance of a solid
from that of an isolated atom, and the variation of the portion
of surface atoms could tune the nanosolid properties in many
aspects. The BOLS correlation mechanism indicates that the
bond order loss of a surface atom causes the remaining bonds
of the lower-coordinated atoms to contract spontaneously
�di=cid� associated with bond strength gain or atomic trap-
ping potential well suppression �Ei=ci

−mEb�, where d is the
bond length and Ei is the single bond energy. The subscript i
and b denotes atoms in a specific ith atomic layer and the
bulk one, respectively. The i is counted from the outermost
atomic layer to the center of the solid. The bond contraction
coefficient ci=2/ �1+exp��12−zi� / �8zi��� is a function of
atomic coordination, which fits ideally the correlation of
bond-order–bond-length of Goldschmidt, Pauling, and
Feibelman.31 The index m recognizes the nature of the bond
involved.

As consequences of the BOLS correlation, densification
happens to the charge, mass, and energy in the relaxed re-
gion. Energy density enhancement contributes to the crystal
potential and hence the Hamiltonian of an electron �the sum
of the kinetic energy, intra-atomic trapping potential, and in-
teratomic potential energy for the specific electron� in the
solid and the associated properties such as the band and
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band-gap widths, core-level shift, Stokes shift �electron-
phonon interaction�, and dielectric suppression. On the other
hand, the competition between bond-order loss and the asso-
ciated bond-strength gain contributes to the atomic cohesive
energy �the sum of bond energy over all the coordinates of an
atom� that dictates the thermal and mechanical properties of
the solid such as phase stability, self-assembly growth, and
activation energy for atomic vibration, diffusion, and dislo-
cation in a solid. Refer to Refs. 27–30 �and references
therein� for a detailed description of the BOLS correlation
and its applications.

2. Lattice vibration frequency

The total energy E causing lattice vibration consists of the
component of short-range interactions ES and the component
of long-range Coulomb interactions EC �Ref. 4�:

E = ES + EC. �2�

The long-range part corresponds to the LFR mode and
represents the weak interaction between nanosolids. The
short-range energy ES arises from the nearest bonding atoms,
which is composed of two parts. One is the lattice thermal
vibration EV�T� and the other is the interatomic binding en-
ergy at 0 K, Eb�r�. The ES for a dimer can be expressed as a
Taylor’s series27

ES�r,T� = �
n
0

� dnu�r�
n ! drn	

r=d

�r − d�n = u�d� + 0

+ 
 d2u�r�
2 ! dr2


d

�r − d�2 + 
 d3u�r�
3 ! dr3


d

�r − d�3

= Eb�d� + EV�T� . �3�

The term with index n=0 corresponds to the minimal bind-
ing energy at T=0 K, and u(d)=Eb�d��0 is the binding en-
ergy at T=0 K. The term n=1 is the force ��u�r� /�r�d=0� at
equilibrium, and the terms with n
2 correspond to the ther-
mal vibration energy EV�T�. By definition, the thermal vibra-
tion energy of a single bond is approximated as32

EV�T� = 
 d2u�r�
2 ! dr2


d

�r − d�2 + 
 d3u�r�
3 ! dr3


d

�r − d�3

� ��2�r − d�2/2 + 0��r − d�n�2�  kv�r − d�2/2,

�4�

where r−d=x is the magnitude of lattice vibration, which
reaches a maximum of 3% of the bond length at the tempera-
ture of melting.32 � is the reduced mass of the dimer of
concern. Here kv=��2�Eb /d2 is the force constant for lat-
tice vibration with an angular frequency of �. The high-order
contribution �for n�2� is negligibly small if the temperature
of the measurement is not sufficiently high such as near the
melting point.

For a single bond, the kv is strengthened because of the
bond-order-loss-induced bond contraction and bond strength
gain.27–30 For a single atom, we have to count the contribu-
tions from all neighboring bonds. For a lower-coordinated
atom the resultant kv could be lower because of the bond

order loss. Considering the vibration amplitude xd, it is
convenient and reasonable to take the mean contribution
from each coordinate to the force constant and to the mag-
nitude of dislocation as the first-order approximation:

k1 = k2 = . . . = kz = �i�
2

and

x1 = x2 = . . . = xz = �r − d�/z .

Therefore the total energy of a certain atom with z coordi-
nates is the sum over all coordinates,

ES�d,T� = �
z
�Eb +

��2

2
� r − d

z
	2

+ ¯�
= zEb + 
 zd2u�r�

2 ! dr2 

d

�r − d�2 + ¯ . �5�

This relation leads to an expression for the phonon frequency
as a function of bond energy and atomic CN, and bond
length,

� = z�
d2u�r�
�dr2 


d
�1/2

�
zEb

1/2

d
. �6�

3. Size dependence

A physically detectable quantity that depends on the
atomic cohesive energy or the Hamiltonian for a nanosolid
can be expressed as Q�Kj� in a shell structure:

Q�Kj� = Nq0 + �
i�3

Ni�qi − q0� ,

Q�Kj� − Q���
Q���

= �
i�3

�ij
	qi

q0
,

where

�ij =
Ni

N
=

Vi

V
 �1, Kj � 3,

�ci

Kj
, otherwise, � �7�

where Q���=Nq0 is for a bulk solid. q0 and qS correspond to
the Q value per atomic volume inside the bulk and in the
surface region, respectively. �i is the portion of atoms in the
ith atomic layer over the total number of atoms of the entire
solid of different shapes ��=1, 2, 3 correspond to a thin
plate, a rod, and a spherical dot, respectively�. Combining
Eqs. �6� and �7� gives the size-dependent optic redshift
�where Q���=����−��1��

��Kj� − ����
���� − ��1�

= �
i�3

�i� �i

�b
− 1�

= �
i�3

�i� zi

zb
ci

−�m/2+1� − 1� = 	p � 0,

where

z1 = 4�1 − 0.75/Kf� �spherical� ,
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z2 = 6, z3 = 12. �8�

��1� is the vibrational frequency of an isolated dimer, which
is the reference point for the optical redshift upon nanosolid

and bulk formation. The index i is counted up to 3 from the
outmost atomic layer to the center of the solid as no atomic
CN imperfection is justified at i�3.

III. RESULTS AND DISCUSSION

A. Optical modes and dimer vibration

In experiment, one can only measure ���� and ��Kj� in
Eq. �8�. However, with the known m value derived from the
measurement of other quantities such as the melting point or
core-level energy,27–30 one can determine ��1� or the bulk
shift ����−��1� by matching the measured data of the size
dependence data to the theoretical predicted line:

	��Kj� = �− A�

Kj
� �measurement� ,

	R����� − ��1�� �theory� .
� �9�

Hence, the frequency shift from the dimer bond vibration to
the bulk value, ����−��1��−A� / �	RKj

��, can be obtained.
The matching of the prediction with the measurement indi-
cates that k�1, because 	R�Kj

−1.
Figure 1 shows that the BOLS predictions match exceed-

ingly well with the theoretically calculated or the experimen-
tally measured optical redshift of a number of samples,
which justifies in turn the validity of the approximation in
Eq. �4� that the contribution of the high-order contribution is
negligible. The derived information about the corresponding
dimer vibration is given in Table I.

B. Acoustic modes and intercluster interaction

Figure 2 shows the least-squares mean-root fitting of the
size-dependent LFR frequency for different nanosolids. The
LFR frequency depends linearly on the inverse Kj,

��Kj� − ���� =
− A�

Kj
. �10�

The zero intercept at the vertical axis, ����=0, indicates that
when the Kj approaches infinity the LFR peaks disappear,
which implies that the LFR modes and their blueshifts origi-

TABLE I. Vibration frequencies of isolated dimers of various
nanosolids and their redshift upon bulk formation derived from
simulating the size-dependent redshift of Raman optical modes as
shown in Fig. 1.

Material d �nm� A�
����
�cm−1�

��1�
�cm−1�

����−��1�
�cm−1�

CdS0.65Se0.35 0.286 23.9 203.4 158.8 44.6

0.286 24.3 303 257.7 45.3

CdSe 0.294 7.76 210 195.2 14.8

CeO2 0.22 20.89 464.5 415.1 49.4

SnO2 0.202 14.11 638 602.4 35.6

InP 0.294 7.06 347 333.5 13.5

Si 0.2632 5.32 520.0 502.3 17.7

FIG. 1. Comparison of the BOLS predictions �lines for different
shapes� with theoretical and experimental observations �scattered
data� on the size-dependent optic phonon softening of a nanosolid.
�a� Data labeled Si-1 were calculated using the correlation length
model �Ref. 8�, Si-3 �dot� and Si-4 �rod� were calculated using the
bulk dispersion relation of phonons �Ref. 9�, Si-5 was calculated
from the lattice-dynamic matrix �Ref. 4�, Si-7 was calculated using
phonon confinement model �Ref. 12�, and Si-8 �rod� and Si-9 �dot�
were calculated using bond polarizability model �Ref. 2�. Data for
Si-2 �Ref. 35�, Si-6 �Ref. 36�, and Si-10 and Si-11 �Ref. 19� are
measured data. �b� CdS0.65Se0.35-1, CdS0.65Se0.35 �in glass�-
LO2, CdS0.65Se0.35-2, CdS0.65Se0.35 �in glass�-LO1 �Ref. 37�,
CdSe-1, CdSe�in B2O3SiO2�-LO, CdSe-2, CdSe�in SiO2�-LO, and
CdSe-3 CdSe�in GeO2�-LO, CdSe-4, CdSe�in GeO2�-LO �Ref. 26�,
�c� CeO2-1 �Ref. 38�, SnO2-1 �Ref. 39�, SnO2-2 �Ref. 18�, and InP
�Ref. 40� are all measurements.
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nate from vibration of the individual nanoparticle as a whole,
as represented in the quadruple vibration mechanism.13,14 It
seems not essential to involve the bond strain at the interface
to the LFR modes. Compared with the sophisticated lattice-
dynamics calculations in which the polarized and depolar-
ized scattering processes are considered,11 the current deriva-
tives treat the nanoparticle as a whole and give information
about the strength of the interparticle interaction, as summa-
rized in Table II. However, numerical agreement indicates
that all models are correct though they have been established
from different perspectives. The former is from the detailed
process of phonon scattering while the latter is from inter-
particle interaction as origin.

C. Surface atom vibration

According to Einstein’s relation, it can be derived that
��c�x�2 /2z=kBT. At a given temperature, the vibrational
amplitude and frequency of a given atom are correlated as
x�z1/2�−1, which is CN dependent. The frequency and mag-

TABLE II. Linearization of the LFR acoustic modes of various
nanosolids gives information about the strength of interparticle in-
teraction for the specific solids.

Sample A�

Ag-a, Ag-b 23.6±0.7

Ag-c 18.2±0.6

TiO2-a , TiO2-b 105.5±0.1

SnO2-a 93.5±5.4

CdSe-1-a 146.1±6.27

CdSe-1-b 83.8±2.8

CdSe-1-c 46.7±1.4

CdSSe-a 129.4±1.2

CdSSe-b 58.4±0.8

Si-LA 97.77

Si-TA1 45.57

Si-TA2 33.78

FIG. 2. Generation and blue-
shift of the LFR acoustic modes
where the solid dotted and dashed
lines are the corresponding results
of the least-squares fitting. �a� The
Si-a, Si-b, and Si-c were calcu-
lated from the lattice-dynamic ma-
trix by using a microscopic va-
lence force field model �Ref. 4�,
and the Si-d and Si-e are the ex-
perimental results �Ref. 3�. �b�
Ag-a �Ag in SiO2� �Ref. 41�, Ag-b
�Ag in SiO2� �Ref. 14�, and Ag-c
�Ag in alumina� �Ref. 13�. �c�
TiO2-a �Ref. 42�, TiO2-b �Ref.
42�, and SnO2-a �Ref. 18�. �d�
CdSe-a�l=0,n=2� CdSe-b�l
=2,n=1�, and CdSe-c�l=0,n=1�
�Ref. 43�. �e� CdS0.65Se0.35-a
�CdS0.65Se0.35 �in glass�-LF2� and
CdS0.65Se0.35-b �CdS0.65Se0.35 �in
glass�-LF1� �Ref. 37� are all mea-
sured data.
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nitude of vibration for an surface atom at the surface �z=4�
or a metallic monatomic chain �MC with z=2� can be de-
rived as

�1

�b
= zibc1

−�m/2+1� = �0.88−3.44/3 = 0.517 �Si,m = 4.88� ,

0.88−3/2/3 = 0.404 �metal,m = 1� ,

0.70−3/2/6 = 0.2846 �MC,m = 1� ,
�

and

x1

xb
= �z1/zb�1/2�b/�1 = �zb/z1�1/2c1

�m/2+1�

= �
�3 � 0.883.44 = 1.09 �Si� ,

�3 � 0.883/2 = 1.43 �metal� ,

�6 � 0.703/2 = 1.43 �MC� .
� �11�

The vibrational amplitude of an atom at the surface or a MC
is indeed greater than that of a bulk atom while the frequency
is lower. The magnitude and frequency are sensitive to the m
value and vary insignificantly with the curvature of a spheri-
cal dot when Kj �3. This result verifies the assumption33,34

that the vibration amplitude of a surface atom is always
greater than the bulk value and it keeps constant at all par-
ticle sizes.

IV. CONCLUSION

In summary, a combination of the BOLS correlation and
the scaling relation has enabled us to correlate the size-
created and size-hardened LFR acoustic phonons to the in-
tergrain interaction and the optic phonon softening to the
CN-imperfection-reduced cohesive energy of atoms near the
surface edge. The optic softening and acoustic hardening are
realized in a Kj

−1 fashion. Decoding the measured size depen-
dence of the Raman optical shift we have derived vibrational
information on Si, InP, CdS, CdSe, TiO2, CeO2, and SnO2
dimers and their bulk shifts, which is beyond the scope of
direct measurement. As the approach proceeds in a way from
a bond-by-bond, atom-by-atom, shell-by-shell approach, no
other constraints for the continuum medium are applied. One
striking significance is that we are able to verify the correla-
tion between the magnitude and frequency of the vibration of
the lower-coordinated atoms. Consistency between the
BOLS predictions and observations also verifies the validity
of other possible models that incorporate the size-induced
Raman shift from different perspectives. The findings gained
herewith and progress made so far by practitioners gives fur-
ther evidence of the impact of bond order loss and the essen-
tiality and validity of the BOLS correlation mechanism in
describing the behavior of low-dimensional systems.

This work is financially supported by Nanyang Techno-
logical University, Singapore, under the research program for
Bionanosystems.
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