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In the present article, glasses are considered, for which THz frequency vibrational anomalies include both an
experimentally observed boson peak and, above it, a “high-frequency” sound with well-defined acousticlike
excitations. The phenomena are strongly related to an Ioffe-Regel crossover from a weak inelastic scattering of
interacting acoustic and soft-mode �nonacoustic� vibrational excitations to a strong scattering and to an asso-
ciated hybridization of both types of excitations. A theoretical soft-mode-dynamics model of the anomalies,
actually containing a single material parameter, is presented, which is complete in the sense that it takes into
account both the Ioffe-Regel crossover and a recently found “vibrational instability” effect due to elastic
interactions between soft-mode vibrations. The basic vibrational density of states and the reduced density of
states are calculated. The results appear to show that the qualitative features and scale estimations of the
experimentally studied inelastic scattering intensities in the glasses under discussion can be described by the
present complete soft-mode-dynamics model. The latter is compared with other recent theoretical models of the
boson peak in glasses.
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I. INTRODUCTION

One of the general and well-known vibrational dynamic
anomalies of glasses, at low frequencies ���D, is the boson
peak �BP�, a peak experimentally observed in inelastic pho-
ton �Raman, x-ray� and neutron-scattering intensities with
the following qualitative and scale properties ��D is an effec-
tive Debye frequency�. The BP is found at a THz scale fre-
quency shift, �=�BP��BP /2��1 THz�0.1�D, and is
asymmetric and broad with an effective half-width �BP
��BP, while its temperature �T� dependence is described by
a boson factor.1 Then, in general, the origin of BP in a glass,
for both the photon-inelastic-scattering and neutron-inelastic-
scattering processes, is commonly assumed to be related to
“scatterers” being harmonic low-frequency vibrational exci-
tations. In the present article, the general theoretical soft-
mode model of vibrational excitations of glasses �Sec. II,
e.g., see Ref. 2� is applied to those probably including SiO2,
for which the THz frequency scale vibrational dynamic
anomalies observed experimentally in the inelastic scattering
spectra include both the BP and, above it, a correlated high-
frequency sound �HFS� with well-defined acousticlike exci-
tations observed at least in x-ray and neutron scattering.3

Qualitative and scalewise properties of vibrational excita-
tions found in the theoretical model presented are compared
in what follows �Sec. IV� with experimental data for scatter-
ing intensities by applying well-known phenomenological
relationships hardly dependent on specific features of mod-
els. Moreover, the dynamic �and thermal� anomalies of
glasses occur at low frequencies ��� /2���M �2–3 THz
���D�10 THz, the Debye frequency� and/or T�TM
�100–150 K ��TD�, being, in general, related to extra,
non-Debye excitations of low frequencies, h��h�M
��1–2�	10−2 eV ��h�D�.1,3 Unlike the anomalies at very
low T�Tm�1 K and �
�m�0.1 THz determined by non-
vibrational tunneling excitations,1 the anomalies at moder-
ately low T , Tm
T�TM �100–150 K, are assumed to be

due to extra vibrational excitations of moderately low ener-
gies h� , h�m�0.1 meV
h�
h�M.

It does not seem that a consistent microscopic approach
and a quantitative theory of the BP in glasses are available at
present �see Ref. 4�. However, three different theoretical
models—the mode-coupling model,5,6 the soft-mode-
dynamics �SMD� model7 and the Euclidean random matrices
approach8—have recently been proposed for describing the
vibrational dynamic anomalies, as well as the associated
thermal anomalies,9 in the glasses under consideration �for a
qualitative comparison of the models see Sec. V�. All these
models can be considered as “mean-field” models,4 in the
sense that each contains both microscopic model and phe-
nomenological approximations, with a quantitative analysis
based on real calculations, which together give rise to a
qualitative �and probably a scalewise�, rather than a quanti-
tative description of the phenomena and their origins. The
mentioned models appear to imply, in a sense, that the dy-
namic anomalies of a glass are associated with the existence
of nonacoustic harmonic vibrational excitations interacting
with the acoustic phonons of low frequencies. Unlike the
models in Refs. 5, 6, and 8, in the original soft-mode-
dynamics model of a glass,7 the nonacoustic excitations are
identified as harmonic vibrational excitations of atomic soft-
mode “defects” �soft modes, in what follows�. Moreover, the
origin of the correlated BP and HFS is explicitly attributed to
the phenomenon of the so-called Ioffe-Regel crossover from
a standard weak-inelastic scattering of the phonons to an
essentially different strong scattering, giving rise to a strong
hybridization of acoustic phonons with harmonic vibrational
soft-mode excitations. Another difference is that only in the
soft-mode model nonvibrational tunneling excitations, deter-
mining the anomalies at very low T and �, and nonacoustic
vibrational excitations of moderately low energies are
strongly correlated due to their common soft-mode origin.

The original concept of an Ioffe-Regel crossover �IRC�10

from a weak scattering of acoustic phonons of wavelength
�ac, with a mean-free path lac��ac, to a strong scattering at
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lac��ac at which the wave vector became no longer a good
quantum number, was introduced for an elastic scattering
from a static disorder in a crystal containing defects �or an
amorphous solid�. At present, however, an IRC can be con-
sidered as a general phenomenon for excitations for which a
weak scattering is described by standard perturbation-
theoretical expansions in the small parameter �ac / lac�1,
with terms ��ac / lac�n �n=0,1 ,2 . . . �, while the crossover to
a strong scattering corresponds to �ac / lac�1, so the expan-
sion parameter is no longer small and the standard perturba-
tion theory becomes irrelevant. In fact, a disordered system
may contain both a static disorder and a “dynamic” disorder
due to defects with proper �e.g., harmonic� vibrations, like
those with “resonant” low-frequency harmonic vibrations in
disordered crystals11,12 or soft-mode defects in glasses. Thus,
an IRC can occur at �ac / lac�1 for either elastic or inelastic
scattering.

The purpose of this article is to describe the complete
soft-mode-dynamics model of the vibrational THz frequency
scale anomalies and to reveal the underlying essential
phenomenon—the IRC for inelastic scattering—in the
glasses. The model is complete in the sense that it includes
both the original soft-mode-dynamics model for the corre-
lated BP and HFS, which account for the phenomenon of
strong hybridization of acoustic phonons with vibrational
soft-mode excitations in the IRC,7 and the recently found
effect of vibrational instability of low-frequency soft modes
due to elastic interactions of the soft modes with each
other.13 The physical assumptions introduced earlier in the
general theoretical soft-mode model �e.g., see Ref. 2� for
understanding the origin of the soft modes are explained in
Sec. II. In Sec. II, a brief review is also given of the soft-
mode model of glasses and of the related original soft-mode-
dynamics model, as well as of the model of the vibrational
instability effect. The complete model of the vibrational THz
frequency scale anomalies in the glasses and its defining re-
lationships and basic statements are presented in Sec. III.
Section IV presents and discusses the main results of this
model and their comparisons with appropriate experimental
scattering data and shows that the basic physics of the model
is essentially related to the IRC for inelastic scattering of
acoustic phonons from the soft-mode vibrations while the
vibrational instability effect may contribute to quantitative
aspects less important in the theory under discussion. Section
V suggests some conclusions concerning the vibrational THz
frequency dynamic anomalies and gives a comparison of the
soft-mode-dynamics model with the other two, recent
models5,8 and also with recent alternative models14 of the BP
accounting for �acoustic� phonons in a random static field of
a disordered system and an IRC for elastic scattering. The
comparison appears to give rise to a prediction of two “limit”
types of the dynamic anomalies �and, in this sense, of
glasses�.

II. SOFT-MODE-DYNAMICS MODEL OF LOW-
FREQUENCY VIBRATIONAL ANOMALIES:

INDEPENDENT SOFT MODES. INTERACTIONS
BETWEEN SOFT MODES

The general theoretical soft-mode model of dynamic and
thermal anomalies of glasses is an analytical mean-field

theory, which in the simplest approximation of independent
�not interacting with each other� soft modes has been pro-
posed in Ref. 15, developed in Ref. 16, and later discussed
and extended in a series of papers �e.g., see Ref. 17�. The
main concept of the model was that two types of low-energy
atomic motions and related excitations—namely of �i� propa-
gating acoustic phonons of low frequencies ���D, involving
the vast majority of atoms, and �ii� soft-mode excitations
related to a minority of atoms of a relatively low concentra-
tion csm��1� in special local configurations of a random
atomic network—coexisted and interacted with each other,
determining the anomalies of the low-energy dynamics of
glasses. As usual, the acoustic phonons of long wavelength,
�ac�a1, in a macroscopic solid system �e.g., a glass� are
identified as Debye excitations of an appropriate elastic con-
tinuum, neglecting the specific atomic structure �a1 is the
average atomic spacing�. On the other hand, the soft-mode
excitations are resonant or quasilocal states characteristic of
vibrational defect-related excitations of low frequencies
around those of the acoustic phonons11,12 �see also Refs. 18
and 19�; in the Anderson classification,20 these states are
nonlocalized or extended ones, although not propagating
wavelike states.

The basic point of the soft-mode model concerning the
physical origin of the soft modes was as follows: In a glass,
one could expect the occurrence of large and rare anisotropic
spatial fluctuations �defects� of local atomic configuration
parameters �bond angles, dihedral angles, etc.� from average
values in medium-range order structures with typical effec-
tive atomic spring constants k�k0�10 eV/Å2. Such local
fluctuations, which were characterized by small effective
spring constants k�xsm��ksm�k0, just turned out to be essen-
tial in the glass low-energy atomic dynamics. Indeed, it was
shown in the soft-mode model that the most probable motion
of atoms in such a local defect was going on along a single
soft mode xsm �dimensionless in atomic length a0=1 Å� in an
effective, practically quartic, anharmonic local potential
Vsm�xsm��w��sm xsm

2 +�sm xsm
3 +xsm

4 �. Here �sm and �sm are the
basic random �dimensionless� “softness” ��sm�0� and
asymmetry ��sm�0� parameters in a tail of a proper broad
distribution density F��sm ,�sm� at ���sm� ,�sm

2 	�1 and k�k0

�e.g., for k�k0��sm��, while w stands for the lowest vibra-
tional excitation energy, w�1 meV �e.g., see some reviews
in Ref. 2�. Although, in general, the effective mass �sm of a
soft mode is a random parameter, its distribution density ap-
pears to be narrow so the parameter may be replaced by its
average value �sm��3–5��av, with �av being an average
atomic mass.

It was shown in this theory that the soft-mode excitations
were anharmonic, nonvibrational, tunneling states for very
low-excitation energies h��
h�m�w at �m�0.1 THz,
while they were vibrational excitations at moderately low
energies, w
h���h�sm��h�D�; for soft-mode frequencies,
the typical upper limit �sm�0.1�D. Moreover, the majority of
the vibrational excitations, in particular the THz frequency
scale vibrational ones under consideration, were shown to be
practically harmonic at �m
����sm, with Vsm�xsm�
�w�smxsm

2 at 0
�sm�1. According to some experimental
data, macroscopic disordered systems—in which no glassy
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dynamic anomalies at very low temperatures and, thus, no
tunneling states are observed—do not exhibit a BP in their
scattering spectra.21 This finding appears to show a strong
correlation between the tunneling dynamics and harmonic
vibrational excitations and, thus, supports the relevance of
the soft-mode model for understanding the origin of the low-
frequency dynamic and low-temperature thermal vibrational
anomalies in glasses.

The interaction energy Vac-sm�xsm� of acoustic vibrations
of a standard small elastic strain eac��1� with a soft mode
can be approximated in the most simple way by a direct
harmonic coupling Vac-sm�xsm���xsmeac. It is argued in the
soft-mode model2,17 that the random �scalar, for the sake of
simplicity� coupling parameter � is subject to a narrow dis-
tribution function, so it may be well approximated by the
related average value of a typical scale estimated as ���
�1 eV��h�D�. It is also estimated in the general soft-mode
model that a typical low-atomic concentration of the soft
modes is appreciable, csm�10−2, and suggested for indepen-
dent soft-mode defects that the “bare” harmonic vibrational
excitations are characterized by a power-law density of states
�DOS� gsm

�0�����=Csm�0
−1��� /�0�� normalized to unity with the

constant Csmcsm
−1. The DOS increases with the increase of

the vibration frequency � and contains two material param-
eters, namely, the typical soft-mode frequency, �0�1 THz or
�0�0.1�D��sm and the exponent � varies in the range
2���4 depending on the shape of the soft-mode distribu-
tion density F��sm ,�sm� �e.g., see Ref. 2�.

Recently, a mean-field model of soft-mode vibrational ex-
citations and their DOS has been proposed,13 which ac-
counted for a renormalization of the bare quasilocal har-
monic excitations of low frequency, ����c due to their
�anharmonic� elastic interactions of energy V12= I12xsm

�1�xsm
�2�

with much more numerous vibrations of higher frequencies
����c. Here, �I12��Jr12

−3 for a random distance r12 in a pair
of soft modes with an effective strength parameter J and the
frequency parameter �c was assumed to be substantially
lower than the Debye one, �c��D �the many-body problem
was approximated by the one for pairs of interacting soft-
mode vibrations�. The anharmonic interactions gave rise to
structural relaxations and finally to reconstructed harmonic
soft-mode oscillators of which the renormalized reduced
DOS was calculated. The problem for a pair with bare fre-
quencies �1� and �2�, effective soft-mode masses �sm

�1���sm

��sm
�2�, and the elastic interaction energy V12 was readily

solved, giving rise to renormalized eigenfrequencies ���� �2

= � 1
2

�
��1�
2+�2�

2�����1�
2−�2�

2�2+4I12
2 
�sm1�sm2�−1� which, as

well as the parameter �c, are random variables with some
suggested distribution densities. Then, a vibrational �har-
monic� instability occurs in the usual sense that �−�

2
0 when
�I12�� Ic��1��2���sm1�sm2. It is worth mentioning in this con-
nection the major result of the general soft-mode theoretical
model �e.g., see Ref. 2�: unstable harmonic motion modes
exist in a disordered structure due to relatively large and rare
structure fluctuations, and the stabilization of these modes is
due to quartic anharmonicities. In the mean-field theory un-
der consideration, the quartic anharmonicities are also taken
into account for stabilizing the unstable harmonic soft
modes. The frequency DOS of stabilized modes of low fre-

quencies �s���c, at �s�
2�0, was found to be linear, g��s��

��s�, if the distribution of the random parameter I12 is
smooth. Furthermore, interactions between the stabilized
low-frequency soft-mode oscillators have approximately
been taken into account and found to give rise to renormal-
ized frequencies �r� of the resulting stable harmonic vibra-
tions. The expression of the reduced DOS for the renormal-
ized vibrations of low frequencies �r���c calculated in this
vibrational instability model has been found to contain a
single material parameter, a characteristic vibration fre-
quency �* determined by the effective strength parameter of
the pair interactions

g*��r��/�r�
2  �1/�*3���r�/�

*�2
0

1 dz


1 + ��r�/�
*�6z2�3 − 2z2��

.

�1�

With increasing �r�, the reduced DOS g*��r�� /�r�
2 was found

to increase like �r�
2 at lower �r�
�b, while to decrease like

��r��
−1 at higher �r���b, so that the reduced DOS exhibited a

broad peak at �r�=�b�1.1�* �see Fig. 1 of Ref. 13� in which
it was also assumed that a BP could be identified with this
broad peak, i.e., �BP=�b. However, the related basic vibra-
tional DOS J*��r�

2�=g*��r�� /2�r� exhibits a plateaulike behav-
ior instead of a peak �see Sec. IV�, while the frequency DOS
g��� monotonously increases with increasing � �with only
their slopes changing at �=�*�, at least up to frequencies
���0, a typical frequency of independent soft-mode vibra-
tions. Taking into account the above, a conclusion is made in
Sec. IV that Eq. �1� is hardly sufficient for a complete de-
scription of the BP and associated vibrational anomalies in
the glasses under consideration.

Based on the general soft-mode model, the theoretical
SMD model of the vibrational THz frequency dynamic vi-
brational anomalies in the glasses under discussion7 is an
analytical mean-field theory that approximates the glass for
essential long-wave acoustic phonons by a three-dimensional
�3D� isotropic elastic continuum containing randomly
immersed independent localized defects, atomic soft modes
which are characterized by low THz scale frequencies
�����sm��D� of harmonic vibrations. For the sake of sim-
plicity, the scalar approximation is also used in this model,
which does not distinguish longitudinal and transverse
acoustic phonons. The purpose of the model was to calculate
and discuss the resulting basic single-excitation DOS of har-
monic vibrational excitations in a macroscopic-3D-
disordered system of acoustic phonons which interact with
independent harmonic soft-mode oscillators in the original
SMD model. The problem under discussion in the SMD
model is similar to that of the theory of vibrational spectra in
a macroscopic-disordered-3D-crystalline lattice containing a
finite atomic concentration cd of randomly located quasilocal
defects, or defects with quasilocal vibrational excitations; the
concentration is low in the usual sense, cd�1, but can be
“high” in a sense defined below.18,19 Then, the SMD model
can be developed as an appropriate extension of this theory
to the abovementioned elastic continuum with immersed ran-
domly located soft modes. The problem is not only to derive
the dispersion law of the frequency spectrum for given real-
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izations of the random harmonic system depending on the
defect �e.g., soft mode� random parameters, but even more to
find the basic macroscopic spectral properties �averaged over
all realizations, i.e., macroscopic ensembles of random de-
fect locations� which do not depend on random microscopic
fluctuations.

The fundamental result of the theory18,19 is that macro-
scopic spectral properties like the basic vibrational DOS
J��=�2�=g��� /2� and the related frequency DOS g��� are
so-called self-averaging properties, being measurable macro-
scopic characteristics of the systems, which can practically
be calculated by averaging the respective microscopic char-
acteristics over all realizations. The calculations of the self-
averaging DOS can be performed only for “long-wave”
acoustic phonons, of which wavelengths overlap large num-
bers ��1� of defects in mesoscopic subvolumes character-
ized on average by spatial homogeneity. The range of valid-
ity of the theory is determined by the criterion of “long-
wave” acoustic excitations: the typical wavelength �ac��0�
=s0�0

−1�Rav=a1cd
−1/3 �Rav is the mean separation of the de-

fects, a1 denotes the mean atomic separation, e.g., a1�3 Å�.
For often-studied defects �e.g., heavy-isotope ones� in a
crystalline lattice, the resulting spectra of the vibrational ex-
citations are explicitly found to be essentially different in
two diverse ranges of cd, “low” cd�c0 and high cd ,c0
�cd ��1�. The characteristic value c0 of cd can be defined
from the equation Rav�c0�=�ac��0�, so that c0= ��0 /�D�3; here
�D=s0a1

−1 and s0 is a typical �average� sound velocity. More-
over, the limit case of high concentrations just defines the
range of validity of the theory that holds true for any kind of
quasilocal defects, in particular, for the soft-mode defects.
For the latter, the limit case of high concentrations is the only
important one, because the typical low-atomic soft-mode
concentration is csm�10−2�c0�10−3 at the typical fre-
quency �0�0.1�D. Since the bare soft-mode vibrational ex-
citations are characterized by a direct harmonic interaction
with acoustic phonons, an inelastic �resonant� scattering of
acoustic phonons from the soft-mode vibrational excitations
occurs at �ac�q�=s0q /2����; q stands for an acoustic wave
vector magnitude, q�qD�2��D /s0.

For the SMD model under discussion, as well as for the
vibrational dynamics in disordered lattices, the basic vibra-
tional DOS J���=�−1 Im Tr Gav��� normalized to unity in
what follows, and Gav��� can be found by calculating the
time �t� Fourier transform of Gav�r−r� ; t���G�r ,r� ; t��, the
system’s single-excitation Green’s function �for the con-
tinuum points r ,r�� averaged over all realizations, which is
related in a standard way to the space-time correlators of the
averaged acoustic and soft-mode displacements �uac ,xsm�.
For the latter, the equations of motion, as usual, can be es-
tablished from the respective Lagrangian L=Kac+Ksm−Vac
−Vsm−Vac-sm by applying the standard expressions of acous-
tic and �harmonic� soft-mode kinetic �Kac ,Ksm� and potential
�Vac ,Vsm� energies and of the acoustic-soft-mode interaction
energy �Vac-sm�. In the limit case of high cd=csm�c0, the
Green’s function approach can be applied for analytical cal-
culations of J��� as a power series in a small parameter,
��Rav

3 �csm��ac
−3��0�=c0 /csm�1, in which the basic contribu-

tion to the calculated quantities is determined by the lowest-

order finite term. As usual, the approach is considered to be
a well-founded consistent perturbation-theoretical one valid
for c0�csm�1, of which the accuracy is controlled by small
corrections relative to the main term, as � or smaller.

The defining equations of the theoretical SMD model un-
der consideration contain both the equations of motion for
the acoustic and soft-mode displacements �uac ,xsm� and the
general relationship for the basic vibrational DOS, J���. The
equations of motion can be obtained, following the approxi-
mate Green’s function method.18,19 In particular, one has to
replace the sum �R�xsm�R�eac�R�, describing in the effective
Hamiltonian the interactions of randomly located �R� soft
modes �in the continuum� with acoustic phonons, by the ap-
propriate term csm�xsmeac that results from averaging expres-
sions containing such a sum over the spatially homogeneous
subvolumes. Then, the equations of motion are �retaining the
main terms in the small parameter �� as follows:

�
�2uac

�t2 � �s0
2�R

2 uac + csm�
�xsm

�R
, �2�

�sm
�2xsm

�t2 � − �sm��2xsm − �eac, �3�

where � is the average mass density of the elastic continuum
and eac��1� is the scalar elastic strain. The basic vibrational
DOS J��� can be calculated by applying its general formula

Eq. �6�� and the spectrum of eigenvalues of the vibrational
excitations resulting from the equations of motion. As noted
above in this section, in the original SMD model, the impor-
tant distributions of values of the parameters for the soft-
mode oscillators actually are reduced to the DOS Jsm

�0�����
=gsm

�0����� /2��.
The vibrational spectrum is found in a standard way from

Eqs. �2� and �3� for well-defined wavelike vibrational exci-
tations �xsm�r , t� ,uac�r , t�	 exp�i�qr−2��t�	 with wave
vectors q and small frequency half-widths �exc��exc. The
spectrum is a polariton like two-branch one with the disper-
sion law ��q ,����� j

2�q ,���, j=1,2, at a given value of the
bare soft-mode parameter �����2:

��q;��� = � j�q,��� = � 1
2���� + s2q2/4�2 + ���1 + �− 1� j

	
1 − �−2��s2q2��� + s2q2/4�2 + ��−2�1/2	 , �4�

at q��q�=2� /�ac. Here, ��csmQ2�� and a typical Q2, e.g.,
Q2=�2��avs0

2�sm�0
2a0

2�−1�10 for a typical soft-mode cou-
pling parameter, �2�1 eV, and �avs0

2�10 eV, �sm�0
2a0

2

�0.01 eV, a0=1 Å. The branches are separated by a narrow
gap of a width �, �=�2,min−�1,max�0.1�0, at �2,min=��
��0, �1,max=���1−csmQ2 /�0�1/2, and �0��0

2 
see Fig. 1 in
Ref. 7�a��. This is the most remarkable feature of the derived
spectrum of excitations as hybridized acoustic and soft-mode
vibrational ones. If the acoustic-soft-mode coupling param-
eter �=0, the gap disappears ��=0� and two separate
branches occur for noninteracting soft-mode vibrational ex-
citations, �=��, and acoustic phonons, ��s0q /2�. For fre-
quencies relatively far from the gap, the dispersion relations
� j

2�q ,��� of the well-defined excitations actually are similar
to those of acoustic excitations with a sound velocity
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s�s0�1−��0
−2�1/2�s0: �1�q ,����s0

2q2 /4�2 �standard sound
waves� at q
q0=2��0 /s0, while �2�q ,�����0

2+s2q2 /4�2 at
q0
q
qM =�M /s0 ��qD=�D /s0�, both with a small fre-
quency half-width due to the weak inelastic soft-mode-
acoustic scattering �exc
�ac=s0q /2�. In this connection, the
upper branch is similar to the abovementioned HFS with an
empirical upper limit frequency �M ��2–3��BP.3 For in-
stance, for sq
�0, �exc and the related acoustic mean-free
path lac

�in� are readily estimated in the general soft-mode
model by applying the standard scattering theory and ac-
counting for the basic bare soft-mode DOS Jsm

�0�����, �ac
�in����

��0�� /�0��
�0, and, e.g., lac
�in�������ac��0���0 /����+1

��ac��0� �e.g., see Ref. 22�.
Another major feature of the resulting spectrum of hybrid-

ized acoustic and soft-mode vibrational excitations is the oc-
currence of quite different states of THz scale frequencies
around the gap, which are not described by the equations of
motion of Eq. �2�. These states are not expected to be well-
defined excitations because their widths are large 
i.e., of the
scale of the frequencies �“ill-defined excitations”�; e.g., see
Ref. 20�, by the definition of the related Ioffe-Regel cross-
over. This can be seen from a scale estimation of lac

�in����� and
�ac

�in����� for the states around the gap edges, by extrapolating
the above estimations to ����0�1 THz,

lac
�in����� � �ac���� and �ac

�in����� � �� at �� � �IR
�in� � �0,

�5�

where �IE
�in� is the characteristic frequency �IR

�in� of the cross-
over from a weak-inelastic scattering and a weak hybridiza-
tion of both types of the bare excitations in a well-defined
wavelike excitation to a strong scattering and a strong hy-
bridization of the bare excitations in an extended ill-defined
excitation.

For calculations of the basic DOS J��� from its general
formula 
see Eq. �6��, the standard approximation based on
the � function describing the excitations energy conservation
and defined in Eq. �A1� can be applied only for the well-
defined excitations relatively far from the gap edges. How-
ever, this approximation is not expected to hold for the ill-
defined excitations, so that the � function has to be replaced
by an appropriate regular function in order to account for the
large widths of the excitations �Sec. III�. Then, both the cal-
culated basic DOS J���=g��� /2� and reduced frequency
DOS g��� /�2 
see Ref. 7�b�� exhibited a pronounced broad
peak of a similar asymmetric shape and a large half-width
�IR

�in���IR
�in���0. This peak was identified as a BP in the scat-

tering intensities 
Eq. �15�� at ���BP��IR
�in���0 with a half-

width �BP��IR
�in�. Above the BP, both J��� and g��� /�2 ex-

hibit a Debye-like behavior suggested to describe a HFS. The
calculations were performed by using the abovementioned
power-law basic DOS Jsm

�0����� for the soft-mode vibrations
�at �=1�.

III. COMPLETE SOFT-MODE-DYNAMICS MODEL OF
VIBRATIONAL ANOMALIES: BASIC RELATIONSHIPS

Let us now present the basic relationships, obtained in the
SMD model, which account also for the vibrational instabil-

ity effect 
Eq. �1�� and, in this sense, is the complete SMD
model. The latter appears to considerably improve the ana-
lytical description of the BP and HFS and, in general, of the
related vibrational anomalies in the glasses under consider-
ation. The main idea of this SMD model is that the basic
vibrational DOS J*���2�=g*���� /2��, with g*���� of Eq. �1�
for the soft-mode vibrations renormalized by their elastic in-
teractions, has to be substituted for the simplest basic soft-
mode DOS Jsm

�0����2� containing two parameters, �0 and �
�Sec. II�. The resulting SMD model has a clear advantage
over the original SMD model: the soft-mode vibrational
DOSs J*���2� and g*���� appear to contain a single material
parameter related to the characteristic excitation frequency.
The spectral characteristic calculated in the present model is
the basic vibrational DOS J��� for the spectrum of the vibra-
tion eigenvalues, �=��q�=�2�q�

J��� = 
�1�

�2�
d��Jsm����I��;��� = g���/2� , �6�

where Jsm������2� is the basic vibrational soft-mode DOS
and I�� ;��� is the kernel transforming bare soft-mode vibra-
tional excitations into resulting vibrational excitations due
to acoustic-soft-mode interactions. Moreover, in Eq. �6�,
�1���3w /h�2�0.1�0

2 is the lower limit of the integral, while
�2���0

2 ���D
2 � is its upper limit �Sec. II�. The basic soft-mode

DOS is Jsm����=Jsm
�0����� for independent soft-mode vibra-

tional excitations, while Jsm����=J*���=�r�
2� for those renor-

malized due to the elastic interactions. As well as in Sec. II,
both J��� and Jsm���� are normalized to unity, e.g., �J���d�
=�g��1/2�d��1/2�=1=�gsm

�0�����d��.
In what follows, we compare the qualitative behavior of

the measurable basic DOS J��� and reduced DOS g��� /�2 in
both the complete and original SMD models for understand-
ing the relative roles of the IRC for inelastic scattering and
the vibrational instability effect. For calculations of the trans-
formation kernel I�� ;���, the defining equations of the SMD
model, Eqs. �2�–�6�, are applied and account for the follow-
ing basic statements of the SMD model.

�i� For a given soft-mode frequency ��, the spectrum of
the wavelike excitations is determined by the basic equations
of motion 
Eqs. �2� and �3�� and consists of two branches

Eq. �4�� separated by a narrow gap of a typical width
���0�0.1�0

2. The upper branch above the gap at ����0
corresponds to propagating acousticlike excitations with
properties similar to those of the experimentally observed
HFS.

�ii� The excitations around the gap are constructed of
strongly hybridized acoustic and soft-mode vibrations
around the IRC for the inelastic scattering of the vibrations

Eq. �5��. In the IRC region 
���IR

�in���0, at lac
�in���IR

�in��
=�ac��IR

�in���, the excitations are ill-defined states of large fre-
quency width, �ac

�in���IR
�in����IR

�in���0.
�iii� The consistent analytical theory for the vibrational

states and their DOS around the IRC under discussion does
not appear to be available at present, because standard
perturbation-theoretical expansions of the scattering theory
with a small parameter, ���ac���� / lac

�in�������ac
�in����� /��
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�1, fail around the IRC, at ��1. In this sense, the defining
relationship of the SMD model in the IRC region, and be-
yond it, is Eq. �6� for the basic DOS, for which the standard
approximation I�� ;���� I0�� ;��� for the wavelike excita-
tions is described in Eq. �A1�. For numerical calculations,
the � function in I0�� ;��� has to be approximated by a “pre-
limit” regular function D
�−� j�q ;��� ;�=�1�, and the result
is weakly sensitive to a specific form of the function and to a
specific value of the small parameter �1�→+0�. Since, how-
ever, the standard approximation and the perturbation-
theoretical approach fail in the IRC region ���0

2, a phenom-
enological ansatz in accordance with the definition of the
IRC 
Eq. �5�� is introduced for calculating the basic DOS
J��� at such �. The ansatz is a Lorentzian-like function
D
�−� j�q ;��� ;�=�2� substituted for the � function with a
much larger parameter �2�1 for the half-width �IR

�in���2�0

��IR
�in���0

D
� − � j�q;���;�2� = �2�0
2/�
„� − � j�q;���…2 + �2

2�0
4� .

�7�

One can suggest from the definition of the IRC that the
coherence of the acoustic phonon plane-wave phases is es-
sentially violated in the related eigenstates approximated by
superpositions of the waves and quasilocal vibrational soft-
mode states with appropriate coefficients having rather ir-
regular phases, which cannot be calculated explicitly in the
absence of the consistent perturbation-theoretical approach.
Since, by this definition, the IRC frequency is still lower than
the “mobility” �localization� edge frequency, one can suggest
for estimations that the eigenstate in the IRC region can be
rather a nonlocalized one and characterized by a diffusive
motion and an effective diffusion coefficient Def f �Vef f

2 �ef f
−1

�than a localized state with Vef f =0�, but not a propagating
wavelike state with the sound velocity s0. Then, the group
velocity Vef f is much smaller than s0: Vef f ��Def f�ef f�1/2

��a1
2�ef f�ef f�1/2�a1�BP�3	104 cm/s�0.1s0, where the

effective frequency and width are, respectively, �ef f ��BP

�1 THz and �ef f ��IR
�in���IR

�in�.
It is convenient in what follows to calculate dimensionless

expressions describing J��� and g��� /�2 by introducing di-
mensionless variables and parameters and choosing the typi-
cal frequency �0 as the scale

u � �/�0
2 � �2/�0

2, t � ��/�0
2, � � �/�0

2 and z � �/�0
2.

�8�

The expression for the dimensionless basic DOS follows
from Eq. �A4� derived in the Appendix and can be presented
as

J�u� = �0
2J��� = Cac

��z,t�
dt dz�zJsm�t�g�z;t;��D�z − u;��

= g��u�/2�u , �9�

where J�u�=g�u1/2� /2u1/2 and Jsm�t���0
2Jsm� t�; Jsm�t�

�Jsm
�0��t�= t��−1�/2 at �=1;2 ;3 ;4 or Jsm�t��J*� t�

�� t�3/2�0
1dz
1+ � t�3z2�3−2z2��−1 ; g�z , t ;���
�z− t−�� / �z

− t��1/2
1+ t� / �z− t�2�. Moreover, D�z−u ;���� /�
�z−u�2

+�2� with �=�1�1 �e.g., �1�10−2� for the wavelike exci-
tations, whereas �=�2�1 in the IRC region, and Cac
= �3/2�uD

−3/2 at uD��D
2 �0

−2. By definition,  �1 for Jsm

�Jsm
�0�, while  ���0 /�*�2 may be considered as the single

parameter of the theory for Jsm�J*. The integration proce-
dure in J�u�, applied in Ref. 7 at Jsm�t�=Jsm

�0��t�= t��−1�/2 ��
=1�, is straightforwardly related to the integration in Eq.
�A4� and extended not only to �=2;3 ;4, but also to the
alternative renormalized bare DOS Jsm�t�=J*� t�. The re-
spective integration range ��z , t� for the double integral in
Eq. �9� consists of four two-dimensional ranges described in
Eqs. �A5� and �A6�. It appears reasonable to perform the
calculations for  varying in the range 1� �10, since plau-
sibly one may suggest in the vibration-instability model that
�w /h� ��*�0.3�c��0 at �*��c��D. Then, one can readily
obtain from Eqs. �9� and �A3�–�A6� that the dimensionless
DOS J�u� can be expressed as a sum of two double integrals,

J�u� = g��u�/2�u = 
F�u� + G�u�� , �10�

F�u� = 
t1

t2

dtJsm�t��
zmin

t1−!

dz�zD�z − u;�1�g�z,t;��

+ 
t2+�

zmax

dz�zD�z − u;�1�g�z,t;��� , �11�

at �1�1, and

G�u� = 
t1−!

t2−!

dz�zD�z − u;�2�
z+!

t2

dtJsm�t�g�z,t;��

+ 
t1+�

t2+�

dz�zD�z − u;�2�
t1

z−�

dtJsm�t�g�z,t;�� ,

�12�

at �2�1, where �u�� /�0
Besides the typical value of the soft-mode vibration fre-

quency �0�1 THz and the characteristic frequency �* in Eq.
�1�, the parameters of the basic equations and results in the
theory 
Eqs. �2�–�12��, are as follows:

�IR
�in� � �0, �IR

�in� � �0,

ti = �i��0
−2, i = 1,2,

zmin = �min�0
−2, zmax = �max�0

−2,

! = �z − t�min � 0, � = �0
−2� , �13�

where �IR
�in� is the IRC frequency �i.e., the boson-peak one�

and �IR
�in� is the peak half-width; �1,2� or �min,max are the lower

or upper limit for the respective integrals in Eqs. �10�–�12�;
� is the gap width and ! is the lower value of �t−z� for
cutting off the divergence of the integral in Eq. �12� at �t
−z�→0 �see also Appendix�.
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IV. ANOMALOUS PROPERTIES: DISCUSSION OF
RESULTS AND COMPARISON WITH EXPERIMENT AND

OTHER MODELS

In accordance with the purpose of the present article �Sec.
I�, the following principal question has to be answered: Is the
IRC for the inelastic scattering of acoustic and soft-mode
vibrations the most important phenomenon, or is the renor-
malization of the soft-mode vibrations by their elastic inter-
actions equally important, for determining the qualitative
properties of the dynamic vibrational anomalies, including
the BP position ��BP� and the scale of its width �2�BP�. The
answer can be found from the results of numerical calcula-
tions of the dimensionless reduced DOS gr�u1/2��g�u1/2� /u
and basic vibrational DOS J�u��g�u1/2� /2u1/2 as functions
of u1/2�� /�0, which are carried out from Eqs. �10�–�12� and
the MATHCAD program—OMIT. Both the original soft-mode
DOS, Jsm�t��Jsm

�0��t�= t��−1�/2 at �=2 and 3, and the renor-
malized soft-mode DOS 
Eq. �1��, Jsm�t��J*� t� at  =1 and
10 normalized to unity, are applied in the calculations, e.g.,
�J�u�du=�g�u1/2�d�u1/2�=1=�gsm����d��. The following
characteristic values of the “free” parameters are mainly ap-
plied 
see Eq. �13� and Appendix�:

t1 = 0.1, t2 = 1,

zmin = 0, zmax = 6,

�1 = 10−2, �2 = 1,

! = 0.05,

� = 0.1. �14�

The results for gr�u1/2� as a function of u1/2=� /�0 are
presented in Fig. 1 with Jsm�t� at  =1 and 10 as well as at
�=2, and show a broad asymmetric peak that, by the usual
definition, is a boson peak in the reduced scattering intensity
IR

�r���� 
Eq. �15�� at u1/2�1, i.e., � /�0�1. A weak increase of
gr�u1/2��" with increasing � at 0�"
1 �cf. the Debye
behavior at "=0� is also available above the peak in Fig. 1.
One can see from the figure that the qualitative features,
including the peak position, of gr�u1/2� are weakly sensitive
to the difference in the soft-mode DOS itself, Jsm�t�
= t��−1�/2 at different � or Jsm�t�=J*� t� at different  . The
behavior of gr�u1/2� above the BP is similar to, though rela-
tively weakly deviates from, the Debye behavior. The simi-
larity may be interpreted as a manifestation of the existence
of the high-frequency acousticlike excitations in the upper
spectral branch �j=2� of Eq. �4�, similar to the experimen-
tally observed HFS one. The origin of the deviation is not yet
quantitatively understood, though it can be assumed as partly
at least due to an appropriate weak dispersion of the HFS
velocity s2�q��2��2�q� /s0 at q0=2��0 /s0
q
qM.

The results for the basic vibrational DOS J�u� vs u1/2

�� /�0 are shown in Fig. 2 at different �=2 and 3 �qualita-
tively similar to the result in Ref. 7 at �=1� and also  =1
and 10, as well as in Fig. 3 at  =1 and different values of the
gap width, �=0.05;0.10;0.15 
i.e., of the soft-mode-acoustic
coupling parameter � in Eq. �3�� around the typical �=0.10.
As seen from Figs. 2 and 3, J�u� also exhibits a broad peak
of an asymmetric shape and a large half-width �IR

�in���IR
�in�

��0, which is qualitatively quite similar to the boson peak in
the reduced DOS and, thus, may be identified as the BP
in the scattering intensity related to the Raman dynamic
susceptibility #R� 
Eqs. �15�� at practically the same position
�=�BP��IR

�in���0. Above the peak, J�u� exhibits a Debye-
like increase with increasing � , J�u��1+", which similarly
can be considered as characteristic of the experimentally ob-

FIG. 1. The dimensionless reduced DOS described by gr�u1/2�
�in a.u.� as a function of u1/2���0

−1. Here Jsm�t�= t��−1�/2 at �=2
�curve 1�, and Jsm�t��J*� t� at  =1 �curve 2� and  =10 �curve 3�;
values of the main parameters are defined in Eq. �18�.

FIG. 2. The dimensionless doubled basic vibrational DOS de-
scribed by 2J�u� �in a.u.� as a function of u1/2���0

−1, normalized to
unity. Here Jsm�t��J*� t� at  =1 �curve 1� and  =10 �curve 2�,
and Jsm�t�= t��−1�/2 at �=2 �curve 3� and �=3 �curve 4�; values of
the main parameters are given in Eq. �18�.
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served HFS. The qualitative features, including the peak po-
sition, of J�u� are also weakly sensitive to the difference in
the soft-mode DOS itself, i.e., to the specific values of � or  
�at the typical value of �=0.1� in Fig. 2, as well as to specific
values of � at the given  =1 in Fig. 3. For the hypothetical
case at �=0=� 
see below Eq. �4��, the gap disappears be-
tween the two separate branches for noninteracting acoustic
phonons ���s0q /2�� and soft-mode excitations ��=���, and
the IRC does not occur. Then, in Eqs. �9�–�12�, the function
g�z , t ;�=0�=1 and D�z−u ;�� is a � function, D�z−u ;��
=��z−u�, at both �=�1→ +0 and �=�2→ +0, and the inte-
gration ranges reduce to t1� t, z� t2 and zmin�z�zmax at
!=0 �see Appendix�. The resulting basic DOS J�u� becomes
a product of the normalization integral for the soft-mode
DOS �which is unity, by definition� and the Debye DOS
JD�u� for the gapless acoustic spectrum, so that eventually
J�u�=JD�u�. This just follows from the calculations and is
shown in Fig. 3 for comparison with the other three curves.

The results discussed above allow one to answer the prin-
cipal question noted above Eq. �14� as follows. The IRC for
the inelastic scattering of acoustic and soft-mode vibrations

is here the most important phenomenon for determining the
qualitative properties and thus the general origin of the dy-
namic vibrational anomalies, including the width scale and
the frequency of the BP. At the same time, the renormaliza-
tion of the soft-mode vibrations by their elastic interactions
appears to be an effect contributing to quantitative character-
istics like the values of the BP height and width. In fact, one
can see in the figures considerable quantitative changes in
the properties of the BP in Figs. 1 and 2 for different soft-
mode DOSs at �=2 and �=3, with the strong hybridization
of acoustic and soft-mode vibrational states only important,
and at  =1 and  =10, with both the strong hybridization
and the vibrational instability effect contributing to the BP, as
well as at different values of � in Fig. 3. On the other hand,
in the HFS-like part of the curves, considerable quantitative
changes are seen in Figs. 1 and 2 at different � or  but not
in Fig. 3 in which the curves are hardly distinguishable at
different values of the gap width �. The difference between
the dependencies of the properties on � and  and of those
on � appears to be due to the fact that the gap states 
Eq. �9��
are essentially linked with the IRC �i.e., the BP�, whereas no
relation between the gap states and the HFS-like excitations
and, thus, no substantial dependence of the HFS-like part of
the curves on � are available.

Let us now compare the results of the complete SMD
model of the basic vibrational DOS J�u� and the reduced
DOS gr�u��g�u1/2� /u with experimental data for the BP and
associated effects in scattering intensities which in neutron
scattering are usually described in terms of a peak of the
reduced density of states, g����−2, of harmonic vibrational
excitations, as the coupling coefficient of neutrons with the
vibrations does not appear to depend on �. The latter does
not hold for the Raman coupling coefficient cR��� of light
with the vibrations, which may have diverse dependencies on
� for various groups of glasses. Then, generally speaking, the
BP in the Raman scattering cannot necessarily be described
as a peak of only the reduced density of states. Therefore, we
concentrate on the Raman scattering data, of which compari-
son with different theoretical models seems to be most help-
ful for finding the relevant models of vibrational dynamics in
glasses. In numerous Raman scattering experiments, the total
scattering intensity IR�� ,T�, as well as the reduced intensity
IR

�r���� and Raman dynamic susceptibility #R���� �by defini-
tion, both independent of T�, are measured particularly for �
around the BP frequency �BP. The well-known phenomeno-
logical relationships for IR�� ,T�, IR

�r����, and #R���� are as
follows:23

IR��,T� = cR���g���
1 + n��,T��/�

� #R����
1 + n��,T��

� IR
�r�����
1 + n��,T�� , �15�

IR��,T�  cR���g����−�. �16�

Here n�� ,T�= 
exp�h� /kBT�−1�−1 is a boson factor for effec-
tive scatterers, which are in this connection generally as-
sumed to be extended harmonic vibrational excitations of
THz frequency scale: ��2 for high T�h�BP /kB�TBP or

FIG. 3. The dimensionless doubled basic vibrational DOS de-
scribed by 2J�u� �in a.u.� as a function of ��� /�0

2�2, at Jsm�t�
�J*� t� at  =1. Curve 1 is obtained at �=0.05 
�2=0.5 �eV�2�,
curve 2 at �=0.1 
�2=1 �eV�2� and curve 3 at �=0.15. The dashed
curve is given for the hypothetical case at �=0=�=!. The values of
main parameters are presented in Eq. �18�; typical values of the
parameters for the gap width are: csm=5	10−2, �sm=5�av, �av
=10−22 g, �0=1012/s, s0

2=1011 �cm/s�2.
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��1 for low T�TBP. According to a recent analysis of
cR��� from scattering intensity data for different glasses in
the range between 10 and 50 cm−1 around the BP, two
groups of glasses can be distinguished.24 For the first group
�e.g., SiO2, B2O3, CKN, PC�,

cR���  
��/�BP� + B� at B � 0.5, �17�

with its high-frequency limit varying from about 2 �BP for
SiO2 and Se glasses up to about 4 �BP for PC glass. How-
ever, for the second group �e.g., As2S3, GeSe2, GeO2�,

cR���  � with B � 0. �18�

It is worth concluding that the BP in IR�� ,T� at high T is
the same as the one in IR

�r����, i.e., in the reduced DOS
g����−2, for the first group of glasses with c����const, or in
g����−1, for the second group with c2����. On the other
hand, the BP in IR�� ,T� at low T is the same as the one in
#R����, i.e, the one in g����−1 for the first group of glasses or
in g��� for the second group. In addition to numerous BP
experimental data in scattering spectra of IR

�r���� 
e.g., see
Refs. 1 and 25 and references therein�, the BP appears also to
be observed in the spectra of #R����, in a number of different
glasses like diglycidyl bisphenol A �DGEBA�, polymethyl
methacrylate �PMMA� �Ref. 26� and calcium potassium ni-
trate �CKN�, polysterene, polycarbonate,27 also with the
characteristic frequency �BP�1 THz. Actually, the BP is ob-
served in glasses not only in numerous experimental data for
the reduced scattering intensity �e.g., see Refs. 1 and 25 and
references therein�, but also in data for the Raman dynamic
susceptibility #R���� 
Eq. �15�� in a number of glasses like
DGEBA, PMMA �Ref. 26� and CKN, polysterene,
polycarbonate.27 In the present model, all the scattering in-
tensities, including #R���� and the total scattering intensity,
exhibit the broad asymmetric boson peak at �=�BP��0
�1 THz and, above it, the “wing” corresponding to the
HFS-like excitations characterized by a group velocity s
�s0. In this sense, the model gives a rather complete quali-
tative �and probably scalewise� description of the correlated
BP and HFS in the scattering spectra of the glasses under
discussion, in qualitative accordance with the experimental
data.

Unlike the SMD model, the vibration instability effect
even in the reduced intensity of light gives rise to the BP
only for one group of glasses 
Eq. �17��, while not for an-
other group 
Eq. �18��, and does not lead to the observed
HFS-like excitations. Moreover, one can conclude from this
comparison that in the model with Eq. �1�, the BP does not
occur in the basic vibrational DOS J�u� and, thus, in #R����
for both groups of glasses. Then, it follows from Eqs.
�15�–�18� for Raman scattering intensities that a pronounced
BP occurs in this model only in the reduced DOS; and, thus,
in the reduced Raman scattering intensity IR

�r����
g*����−1
1+B��BP /��� for the group of glasses with B
�0.5, while it does not for the other group with B�0. How-
ever, all these conclusions are not in accordance with the
referred-to experimental data.26,27 In addition, the model with
Eq. �1� does not give rise to the pronounced high-frequency
sound wing observed above the BP in the glasses,3 rather due

to the neglect of the direct contributions of acoustic excita-
tions and their interactions with the soft-mode vibrations ac-
counted for in the SMD model. It is argued also in �Ref. 24�
that the observed universality of the frequency dependence
of the coupling coefficient in the Raman scattering intensity,
for each of the two groups of glasses, supports the idea that
the extended vibrational excitations cannot be separated into
propagating and nonpropagating ones in the BP region. This
idea seems to be in accordance also with the conclusion of
the complete SMD model that a strong hybridization of
propagating �acoustic� and nonpropagating �soft-mode� exci-
tations occurs in the IRC determining the BP.

Experimentally observed thermal anomalies of glasses,1,28

the “bump” of reduced specific heat at a characteristic
T=Tmax�TBP�h�BP /kB�50 K, as well as the “plateau” at
T�Tmax and quasilinear increase at Tmax�T
TM
�h�M /kB�100–150 K of thermal conductivity, with in-
creasing T can also be described by applying the SMD model
to the general formulae for both quantities1 in terms of the
frequency DOS g���. The results of such a procedure have
recently been presented, with an account for an earlier theory
�see �Ref. 9� and references therein�, by applying the original
SMD model. The basic results of the complete SMD model
practically remain the same for two reasons: �i� the shape of
the bump is in a rather trivial way determined by thermal
excitations �h��kBT�kBTmax� in the IRC or BP region and,
thus, is similar to the shape of the BP for the reduced DOS.
�ii� Propagating HFS thermal excitations are assumed to be
the heat carriers determining the major term, #0�T�, of the
thermal conductivity for the Boltzmann heat transport;
however, in the BP region thermal excitations are expected
to give rise to only a small correction �#�T��0 for nonlo-
calized excitations. The assumption of a small finite
correction for nonlocalized BP excitations can be justi-
fied by taking into account the estimations Vef f�0.1s0
�Sec. III�, �BP /�ac��BP�$10, and g��BP� /gac��BP��10:
�#�TBP�#0

−1�TBP���Vef f /s0�2
g��BP� /gac��BP��
	
�ac��BP� /�BP��10−2.

V. CONCLUSIONS

In the present complete SMD model, the origins of the
correlated boson peak at ���BP, of a large half-width �BP
��BP, and a high-frequency sound at ���BP are determined
by the Ioffe-Regel crossover from a weak inelastic scattering
of acoustic phonons by vibrational excitations of �interact-
ing� soft-modes to a strong scattering and a resulting strong
hybridization of both types of excitations around a character-
istic crossover frequency, identified as the BP frequency, the
�IR

�in���BP. The vibrational instability effect13 �Sec. II� due to
elastic interactions between the soft-mode vibrational excita-
tions can change quantitative aspects of the original SMD
model, but hardly its qualitative properties. Therefore, in the
soft-mode related models, the strong hybridization of
phonons with soft-mode vibrational excitations in the Ioffe-
Regel crossover for inelastic scattering appears to be the ma-
jor phenomenon determining the origin of dynamic and ther-
mal anomalies in the glasses under consideration.
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A comparison of the analytical SMD model with two
other recent models, containing both analytical approaches5,6

and simulations,8,4 appears to show qualitative similarities
between the SMD and the other models, although specific
relations between the models still have to be investigated.
The harmonic vibrational soft-mode excitations, renormal-
ized by the vibrational instability effect and considered as the
new bare excitations with a peak in their DOS, appear to
play a role similar to that of the “anomalous-oscillation” ex-
citations related to a BP in the vibrational DOS of the mode-
coupling model.5 The interactions and hybridization of the
nonacoustic excitations, either with acoustic phonons in the
SMD model or with “mesoscopic wavelength” density fluc-
tuations in the mode-coupling model, turn out to produce
similar high-frequency sound excitations in the glasses under
discussion. In the Euclidean random matrices approach,8 the
basic result is a relevant analytical description of the high-
frequency sound with qualitative properties similar to those
in the present SMD model and in the mode-coupling model.
The origin of the BP as an unavoidable dynamic property of
glasses is analyzed in another mean-field model4 and is re-
lated to the occurrence of a band for acoustic phonons and
another band for excitations, “glassons,” that also are rather
of nonacoustic nature, and to the hybridization of both types
of states with each other. At low temperatures, the glasson
band is found to develop a gap which appears to show up as
the BP in the reduced DOS g����−2. In this connection, it
seems that there is also a qualitative similarity between the
properties of glasson-phonon systems and those of soft-
mode-phonon systems noted in the statements �i�–�iii� of
Sec. III. Thus, each of these different mean-field models,
giving rise to both a BP and a HFS, may play at present its
role in understanding the phenomena. The advancements of
the present SMD model seem to be as follows. �i� The nona-
coustic excitations, interacting with the acoustic ones, are
explicitly identified as the soft-mode vibrational excitations
described in detail in the general soft-mode model �Sec. II�
and are strongly correlated with the nonvibrational tunneling
excitations that are also soft-mode excitations but of very
low energies. This correlation agrees with the empirical fact
that disordered materials, in which no glassy dynamic
anomalies at very low temperatures are observed, do not ex-
hibit a BP �Sec. II�.

�ii� The SMD model gives a simple analytical description
of the vibrational dynamic anomalies and can hint that intrin-
sically linear theories like Ref. 8 and nonlinear ones like the
anharmonic soft-mode model may be in some aspects
equivalent, at least in a mean-field approximation.

�iii� A simple extension of the SMD model describes ther-
mal anomalies �the plateau and quasilinear increase of ther-
mal conductivity with increasing temperature, etc.� of the
glasses at moderately low temperatures.

The SMD model can also be compared to recent alterna-
tive models of the boson peak, accounting for only elastic
scattering of phonons, mainly of acoustic ones, in a random
static field of a disordered system.14 In particular, in the mod-
els by Taraskin and Elliott, a “phase diagram” disorder vs
frequency for the vibrational excitations in the system �e.g., a
fcc lattice with force-constant disorder� has been derived, by
using the analytical coherent-potential approximation and

numerical solutions of the resulting equations. For most de-
grees of disorder, the boson peak in such systems is found to
occur actually at the same frequency as the Ioffe-Regel
crossover between weak and strong elastic scattering of the
propagating vibrational excitations from the static disorder at
the characteristic frequency �IR

�el���BP. However, unlike the
situation in systems with the Ioffe-Regel crossover for in-
elastic scattering, the high-frequency sound excitations do
not seem to appear above the boson peak in these models.

As noted in earlier works, there is an essential difference
between elastic and inelastic scattering and between the re-
lated Ioffe-Regel crossovers. Elastic scattering does not
change the phase of the system wave function, and, thus,
appropriate interference effects are anticipated to give rise to
the Anderson localization above the “mobility edge” for
acoustic phonons. The Ioffe-Regel crossover at a frequency
lower than the edge generally precedes the localization of the
excitations �e.g., see Ref. 20�. On the other hand, taking into
account the Heisenberg uncertainty for energy and phase
fluctuations,29 one can suggest that inelastic scattering
changes the phase and does not necessarily give rise to the
localization. In this sense, the inelastic scattering appears to
favor extended excitation states. In fact, the Ioffe-Regel
crossover under discussion can be characterized by eigen-
states approximated by superpositions of acoustic waves and
quasilocal soft-mode states with coefficients having rather
irregular phases �Sec. IV�. Then, the coherence of the wave
phases is violated and the “localizing” interference effects
related to the hybridized acoustic and soft-mode excitations
can become weak. Thus the eigenstates in the crossover re-
gion, rather, are extended states, propagating waves outside
the boson-peak region or nonpropagating states inside it. In
this connection, the Ioffe-Regel crossover for inelastic scat-
tering can produce propagating waves, like a high-frequency
sound, even above the boson peak. Moreover, glasses with
both a boson peak and a high-frequency sound seem to be
adequately described in the models5,7,8 accounting for both
acoustic phonons and some nonacoustic excitations interact-
ing with each other, rather than in models14 accounting prob-
ably for only the phonons and the boson peak. The difference
between glasses of both types can be ascribed to the distinc-
tion in the properties of inelastic and elastic scattering of
�acoustic� phonons.

From this viewpoint, a universal feature of the boson peak
is believed to be determined by the occurrence of Ioffe-Regel
crossovers �and, probably, the nonlocalized type of the exci-
tation states, which at present appears to be established at
least in the models by Taraskin and Elliott,14 accounting for
the crossover for elastic scattering of acoustic phonons�. A
nonuniversal feature is suggested to be related to the occur-
rence of two distinct limit types of the dynamic anomalies
and, in this sense, of glasses: �I� the glasses under discussion,
for which two spectral branches of excitations separated by a
gap are essential and the Ioffe-Regel crossover for inelastic
scattering of the excitations can determine both the boson
peak and high-frequency sound in the inelastic scattering
spectra; �II� glasses for which �acoustic� phonons are most
important, so that the Ioffe-Regel crossover for their elastic
scattering can determine the boson peak. The suggestion of
the two limit types of glasses seems to be consistent with
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recent data for v-SiO2 as a glass of type I �Refs. 3 and 30�
and v-B2O3 as a glass of type II �Ref. 30�. The criterion for
the existence of glasses and vibrational anomalies of type I
appears to be the inequality

�BP � �IR
�in� � �0 
 �IR

�el����D� , �19�

while the inequality

�BP � �IR
�el� 
 �IR

�in����D� �20�

is the criterion for the existence of glasses and vibrational
anomalies of type II.

For a glass of type I, the propagating high-frequency
sound excitations are expected to occur for not too high �,
�BP
�
�M � pmax�0, with the crossover frequency �IR

�el�

��M for the high-frequency sound excitations elastically
scattered 
pmax can be here identified with the experimental
value pmax

�exp��2–3 �Ref. 3��. The hybridization of the bare
soft-mode vibrational excitations with the phonons appears
to extend the SMD theory to higher �, �0
�
�M, than
those of the bare soft-mode excitations. Moreover, a finite
frequency range �M
�
�loc is expected to occur, in which
the excitations are still extended but in nonpropagating
states; �loc denotes the mobility edge for acoustic phonons. In
this connection, a corresponding range of higher tempera-
tures T, TM
T
Tloc�h�loc /kB with TM �100–150 K, may
exist, in which another �probably less pronounced� plateau-
like behavior could be observed in the thermal conductivity.
So far it is difficult to present specific estimations of the
frequencies �IR

�in� ���0� and �IR
�el� in terms of measurable prop-

erties; thus, the type of a glass cannot be established inde-
pendently of inelastic scattering experiments.
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APPENDIX

In this appendix, the analytical expression for the basic
vibrational DOS J���, describing the spectrum of the vibra-
tion eigenvalues �=��q�=�2�q� with the dispersion law ��q�
of the spectrum, is derived by using Eqs. �10�–�12� and the
procedure developed in Ref. 7 for the case of a bare DOS
Jsm������2�=Jsm

�0�������0
−2��� /�0

2���−1�/2 at �=1 �Sec. II�
and also at �=2;3 ;4 �Sec. IV� and by extending it to other
cases with the bare DOS Jsm����=J*���� �Sec. IV�. The stan-
dard approximation of the transformation kernel I�� ;��� in
Eq. �6� for well-defined sound-wave-like excitations below
and above the IRC region, at a given ������2 or �r�

2	, is as
follows:

I��;��� � I0��;��� = �2�

a1
�3

% j=1,2 �dq��
� − � j�q;���� .

�A1�

It is taken into account that the spectrum of for the excita-
tions 
Eq. �3�� consists of two branches �j=1,2� separated by

a narrow gap. As usual for numerical calculations, the func-
tion �
�−� j�q ;���� can be here replaced by its prelimit regu-
lar approximation D�Y�

��Y� = lim
�→+0

��0
2��Y2 + �2�0

4� � D�Y� = �1�0
2��Y2 + �1

2�0
4�

� D�Y ;�1� , �A2�

the result being weakly sensitive to specific expression of
D�Y� and value of �=�1�� j�q��0

−1�0.1, e.g., �1�0.01,
with � j�q� the half-width of the eigenfrequency � j�q�. For
calculating the basic vibrational DOS in the IRC region, its
expression can readily be derived with the phenomenological
ansatz of Eq. �7� in which a much larger parameter �=�2
�1 is substituted for the parameter �. Then, the basic vibra-
tional DOS can be expressed as follows:

J��� = �a1/2��3% j=1,2
��q�

�dq�

	
�1�

�2�
d��Jsm����D
� − � j�q;���;�� , �A3�

where ��q� is the range of the allowed wave-vector values.
The integration procedure in Eq. �A3� developed in �Ref. 7�
took into account that the dispersion relationship 
Eq. �3�� is
independent of the q direction. Then one readily gets that

J��� = 4��a1/2��3% j=1,2
�1�

�2�
d��Jsm����

	D
� − � j�q;���;��
���j,���

Q��;���d� , �A4�

where Q�� ;���=q2�� ;���(�q�� ,��� /��)= �1/2s3�
���−��
−�� / ��−����1/2	 
1+�� / ��−���2� and q�� ;��� is the appro-
priate solution of the equation ��q ;���=�, while ��� ,��� de-
notes the variation range including such � and �� that
Q�� ;��� is a real and non-negative quantity, Q�� ;���&0.
Introducing the dimensionless variables and parameters 
Eq.
�8��, one can readily describe in Eq. �9� the integration range
��z , t� including ���=z�0

2 ,��= t�0
2� and t1� t� t2, as consist-

ing of four two-dimensional ranges

t1 � t � t2, zmin � z � t1 − ! ,

t2 + � � z � zmax, �A5�

t1 − ! � z � t2 − !, z + ! � t � t2,

t1 + � � z � t2 + �, t1 � t � z − � , �A.6�

where ti��i� /�0
2 �i=1,2� and �i� is defined in Eq. �6�. More-

over, the parameter ! is introduced as the lower value of �t
−z� for cutting off the divergence of the integral in Eq. �9�
and of q�� ;��� in Eq. �A4�, at �t−z�→0. The cutoff is mean-
ingful because only the long-wave approximation is relevant
for the SMD model �see Sec. III�, with �ac=2�q−1�� ;���
= �s /�0�
�t−z+���t−z�3�1/2	 
�z�'−z�2+'��−1�Rav=a1csm

−1/3.
In fact, ! is finite though small, e.g., !�0.05, at a finite
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���0� while !=0 at �=0. In numerical calculations,
typical values of the following parameters are used: �=0.1,
�0=1 THz, csm=3	10−2, and, for sound-wave-like vibra-
tions, zmin=0 and zmax=6 �e.g., zmax��22–32��BP

2 �0
−2 �see

Ref. 3 and Sec. III� at �BP��0. Moreover, the lower limit t1
for the variable t���2 /�0

2 is estimated with Eq. �6� as t1

��3w /h�0�2�0.1 �Sec. II�, while the upper limit t2 can be
estimated from the definition of the typical frequency �0 as
being the average value for the original bare DOS gsm

�0�����
 �����, e.g., from t2��0�=1. One can obtain from Eqs.
�6�–�9� and �A3�–�A6� that the dimensionless DOS J�u� can
be described by the expressions in Eqs. �10�–�12�.
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