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First, second, and third nearest-neighbor pair mixing potentials for equiatomic FePt alloys were calculated
from first principles by the Connolly-Williams method within the canonical cluster expansion formalism. It
was demonstrated that these Connolly-Williams potentials �based on completely ordered states� and the cor-
responding Korringa-Kohn-Rostoker coherent potential approximation �KKR-CPA� potentials �based on com-
pletely disordered states� can be brought into very close correspondence to each other simply by increasing the
magnitude of the strain-induced interactions added to the KKR-CPA potential. Using the mixing potentials
obtained in this manner, the dependence of equilibrium L10 ordering on temperature was studied for bulk and
for �approximately� spherical nanoparticles ranging in size from 2.5 to 6 nm. The order parameter was calcu-
lated using Monte Carlo simulations and the analytical ring approximation. The calculated order-disorder
temperature for bulk �1495–1514 K� was in relatively good agreement �4% error� with the experimental value
�1572 K�. For nanoparticles of finite size, the �long-range� order parameter changed continuously from unity to
zero with increasing temperature. Rather than a discontinuity indicative of a phase transition, we obtained an
inflection point in the order as a function of temperature. This inflection point occurred at a temperature below
the bulk phase transition temperature and decreased as the particle size decreased. Our calculations predict that
3.5-nm-diam particles in configurational equilibrium at 600 °C �a typical annealing temperature for promoting
L10 ordering� have an L10 order parameter of approximately 0.84 �compared to a maximum possible value
equal to unity�. According to our investigations, the experimental absence of �relatively� high L10 order in
3.5-nm-diam nanoparticles annealed at 600 °C or below is primarily a problem of kinetics rather than
equilibrium.

DOI: 10.1103/PhysRevB.72.134205 PACS number�s�: 61.46.�w, 75.50.Tt, 64.70.Nd, 61.66.Dk

I. INTRODUCTION

Self-assembled, monodispersed FePt nanoparticles are be-
ing intensively investigated for possible future application as
an ultrahigh-density magnetic storage medium. In order to be
useful as a storage medium, however, these particles, be-
cause of their extremely small volume V, must have suffi-
ciently high magnetic anisotropy Ku to withstand thermal
fluctuations of the direction of magnetization. This requires
values of the thermal stability factor �KuV� / �kBT� of approxi-
mately 50. The particles are usually produced by a “hot
soap” process that yields a disordered fcc solid solution alloy
�e.g., Ref. 1�. Such particles are not useful for information
storage in the as-made state because they are paramagnetic at
room temperature due to their low magnetic anisotropy.

Typically, the particles are annealed at a temperature T
�600 °C in order to induce an ordered L10 phase.2,3 The
layered L10 phase4 is known from studies of bulk alloys to
have an extremely high magnetic anisotropy �Ku�7
�107 erg/cm3�. This value of magnetic anisotropy would
provide a sufficiently large thermal stability factor to make
3.5-nm-diam particles viable for information storage.

Unfortunately, it appears to be difficult to achieve a high
degree of long-range atomic order in FePt nanoparticles with
�4 nm diameter by annealing at T�600 °C �e.g., Ref. 2�.
One can consider two possible reasons for the fact that it has
not been possible to obtain well ordered small particles.
First, the observed order may be low because the particle is
not in its equilibrium state due to the slow kinetics at low

temperatures. Alternatively, the equilibrium order itself may
be low even at relatively low temperatures because of the
small size of nanoparticles. The latter explanation was sug-
gested in Ref. 2. There, the order-disorder phase transition
temperature was estimated to decrease with decrease of par-
ticle size. For particle sizes less than 1.5 nm in diameter, the
phase transition temperature was found to be below the typi-
cal annealing temperature �T�600 °C�. Therefore, particles
of diameter less than 1.5 nm were predicted to have no long
range order in their equilibrium state at 600 °C. This expla-
nation is in qualitative agreement with experiment. The dif-
ference between the experimental �4 nm� and theoretical �1.5
nm� critical size for disappearance of L10 order at 600 °C
was attributed to the neglect of nanoparticle surface effects.

From our point of view, however, the results obtained in
Ref. 2 require verification because of the limitations of the
theoretical models used in that study. Namely, the inter-
atomic potentials in alloys usually are much more compli-
cated and long-ranged than the nearest-neighbor Lennard-
Jones model that was used. In addition, the order-disorder
phase transition temperature was estimated in Ref. 2 by com-
paring the free energies of completely ordered and com-
pletely disordered states, whereas in reality, the ordered state
approaches �with increasing temperature� the phase transition
point being not completely ordered. Also, the disordered
state would be expected to approach the phase transition
�with decreasing temperature�, not with a completely random
atomic distribution, but with an atomic distribution that has
substantial short-range order. Moreover, it is known5 that
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there is no formal phase transition in a finite system.
The aim of the present paper is to determine the reason

for the low value observed experimentally for the L10 order
parameter in small nanoparticles at typical annealing tem-
peratures through the use of theoretical models that do not
have the above-described limitations.6

Presently, there are two main approaches for calculating
effective atomic interactions �called mixing potentials in this
paper� that determine the configurational behavior of atoms
in an alloy. One is the Connolly-Williams method,7–9 which
is based on a first-principles calculation of the energies of a
number of completely ordered structures. The second ap-
proach is based on the coherent potential approximation
�CPA� for the completely disordered state �e.g., Ref. 10�. In
the present paper we utilize and compare both approaches.
The first-principles calculations that we performed in order
to implement the Connolly-Williams method were carried
out in the generalized gradient approximation to density-
functional theory, using the VASP program package.11 To ob-
tain mixing potentials from the CPA we used data obtained
within the Korringa-Kohn-Rostoker coherent potential
approximation12–15 �KKR-CPA� in Ref. 16.

To study the temperature, concentration, and size depen-
dences of equilibrium long-range order in FePt bulk and
nanoparticles we used Monte Carlo simulations �utilizing the
Metropolis algorithm17� and the analytical ring
approximation.18 The details of the models used in our study
are described below in the corresponding sections. In our
opinion, the most important limitation of our model is the
use in nanoparticles of potentials derived for the bulk. Some
of the effects of this assumption are described in Sec. IX.

II. LATTICE GAS MODEL AND CLUSTER
EXPANSION

We consider an Fe-Pt alloy in the framework of the two-
component A-B lattice gas model �e.g., A=Pt,B=Fe�. In this
model,19 two types of atoms are distributed over the sites of
a rigid crystal lattice. The atoms are allowed to be situated
only at the crystal lattice sites, and each site can be occupied
by only one atom. The atoms interact through the lattice
potentials and can exchange their positions according to
Gibbs statistics. The lattice gas model is the most commonly
used model for describing substitutional ordering in alloys
�e.g., Refs. 10 and 20�.

The configurational state of the lattice gas considered here
can be defined by the set of configurational variables CR

� :

CR
� = �1, if the site R is occupied by an �-type atom,

0, otherwise,
�
�1�

where �=A , B, and R is the site radius vector. Because each
site contains only one atom, we have

CR
A + CR

B = 1 ⇒ CR
B = 1 − CR

A . �2�

Thus any configurational state of the two-component lattice
gas model �i.e., any particular distribution of atoms over the
sites� can be determined by CR

A variables only.

The energy of any state can be expanded as �e.g., Sec. II
in Ref. 21�

E = E0 + �
�,R

ER
�CR

� +
1

2 �
�1,�2

�
R1,R2

ER1,R2

�1,�2 CR1

�1CR2

�2 , �3�

where E0 , ER
� , and ER1,R2

�1,�2 are the coefficients of the energy
expansion. ER1,R2

�1,�2 can be considered as pair interactions be-
tween two atoms of types �1 and �2 situated at R1 and R2
sites, respectively. Expression �3� is usually called a cluster
expansion.22 In Eq. �3�, the terms proportional to the powers
of CR

� higher than second power are not taken into account.
Terms corresponding to nonpair atomic interactions were
found to be small in equiatomic FePt alloys �see the discus-
sion in Sec. III�, so we excluded them from the beginning.

By the use of Eq. �2�, one can exclude CR
B from Eq. �3�

and get

E = V�0� + �
R1

VR1

�1�CR1

A +
1

2 �
R1,R2

VR1,R2

�2� CR1

A CR2

A , �4�

where V�i� �i=0,1 ,2� we call mixing potentials �other names
are “interchange energies” and “effective cluster interac-
tions”�:

VR1

�1� = ER1

A − ER1

B + �
R2

�ER1,R2

A,B − ER1,R2

B,B 	 , �5�

VR1,R2

�2� = ER1,R2

A,A − 2ER1,R2

A,B + ER1,R2

B,B , �6�

V�0� is the energy of lattice gas with B atoms only. The
knowledge of the mixing potentials is important because
they determine the energetics of the lattice gas. A number of
methods have been elaborated for calculation of the mixing
potentials.

III. CONNOLLY-WILLIAMS METHOD

Within the Connolly-Williams method,7–9 the mixing po-
tentials are assumed to have the symmetry of the disordered
state—i.e., to be configurationally independent. Thus, VR

�1� is
independent of R and the pair mixing potential VR1,R2

�2� de-
pends only on the difference R1−R2:

VR
�1� = V�1�, VR1,R2

�2� = VR1−R2

�2� . �7�

The pair mixing potential VR
�2� can be represented by its val-

ues Vs
�2� for different coordination shells:

Vs
�2� 
 VRs

�2�, �8�

where Rs is the radius vector connecting any given site with
another site that belongs to the sth coordination shell with
respect to that given site. Generally, we define a coordination
shell for a given site to be all of the sites that interact with a
given site with the same value of the pair mixing potential.

Within the Connolly-Williams method, the energies Ei �i
=1,2 ,… ,N�� of some N� structures �i.e., long-range-ordered
periodic atomic distributions sometimes called
superstructures—for example, L10� are calculated by first-
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principles methods. Writing Eq. �4� for each of those N�

structures, one can get the following system of linear equa-
tions:

��i = V�1�ci + �
s=1

Ns

SisVs
�2�,

i = 1,2,…,N�,
� �9�

where

�i =
Ei − V�0�

Ni
A + Ni

B , �10�

Ni
A and Ni

B are the total numbers of A and B atoms in the ith
structure, respectively, Sij are the structural coefficients, and
ci is the concentration of A atoms:

ci = Ni
A/�Ni

A + Ni
B� . �11�

The energy V�0� of a pure B crystal is also calculated by
first-principles methods. So the problem is to find Ns+1 un-
known mixing potentials V�1� and Vs

�2� �s=1,2 ,… ,Ns� that
give the best fit �through Eq. �9�	 to the energies �i �i
=1,2 ,… ,N�� calculated by the first-principles methods.

Usually, the choice of the structures to be used is random
with a predisposition towards the well-known ones that are
more easily calculated. It is preferable that the structures be
experimentally observable for the alloy under consideration
and that they correspond to the ground state or at least a
low-energy state �e.g., Refs. 7 and 8�. However, since all
configurations are possible for Eqs. �4� and �9�, any conve-
nient structure can be used for the determination of the mix-
ing potentials.

So, in contrast to the usual procedure, our criterion for the
choice of the structures is only that they be linearly indepen-
dent. By linear independence we mean that the main deter-
minant of the system �9�—i.e., the determinant of the matrix
�1,j�ci−Sij�+Sij—is not zero �i , j=1,2 ,… ,N� ;� is the Kro-
necker delta�. Among the linearly independent structures we
chose those with fewer than 20 atoms per unit cell in order to
reduce the cost of the first-principles calculations. Note that
if all of the structures have the same composition �see be-
low�, there is only one ground state �if it is not degenerate�
and the usual procedure of using only �or mainly� the ground
states within the Connolly-Williams method is inapplicable.
One may hypothesize that the use of nonground states should
expand the applicability of the resulting mixing potentials to
higher temperatures.

In the present paper we mainly �except Figs. 9 and 12�
study the Fe-Pt alloy close to equiatomic composition c
=0.5. Accordingly, we chose input structures to be of the
same composition ci=0.5. The reason for doing so is the
following. If we use structures of different compositions to
find the mixing potentials, we imply that the mixing poten-
tials are exactly the same for all compositions. However, the
electronic structure of an alloy system generally depends
strongly on composition. �For example, at low temperatures
the FePt alloy shows a strong dependence of magnetic prop-
erties on composition: Fe3Pt, FePt, and FePt3 are ferromag-
netic, ferromagnetic, and antiferromagnetic, respectively.�

The mixing potentials are mainly determined by the elec-
tronic structure of the alloy and, therefore, one may expect a
compositional dependence of the mixing potentials as well.
For example, such a dependence of pair mixing potential was
found numerically within KKR-CPA in Ref. 23. For such
systems with a strong compositional dependence of proper-
ties one may expect faster convergence of the Connolly-
Williams method results with respect to increase of N� and
Ns when the considered structures are of the same composi-
tion. Such an approach corresponds to the canonical cluster
expansion formalism24 and was applied, e.g., in Ref. 25.

Note that the Connolly-Williams method is usually ap-
plied using structures of different compositions assuming
compositional independence of mixing potentials �grand ca-
nonical cluster expansion formalism24�. In this approach, the
compositional dependence of alloy properties �e.g., the
asymmetry of the phase diagram with respect to c=0.5�
manifests itself through the presence of nonpair mixing
potentials.26 In our approach the composition dependence of
alloy properties arises partly from the composition depen-
dence of the mixing potentials. This approach is similar to
that used in methods based on the study of the disordered
state �e.g., CPA�. Therefore, a direct comparison of
Connolly-Williams and CPA potentials is possible �see below
Sec. V�.

The first-principles calculations were performed within
the generalized gradient approximation to density-functional
theory, using the VASP program package with mainly default
settings.11 All calculations were spin polarized. The effect of
lattice vibrations was omitted. All structures were totally re-
laxed including shape and volume relaxation of the unit cell
as well as the individual displacements of atoms within the
unit cell. The densities of k points using the Monkhorst-Pack
mesh in the corresponding full Brillouin zones were chosen
to be similar for all considered structures and approximately
equal to �8�8�8� / �2� /a�3 �a is the fcc lattice parameter�,
but the convergence of the results was checked to verify that
it was sufficient in all cases. For the calculation of �i �see Eq.
�10�	 for each structure we used the quantity V�0� �energy of
pure Fe� calculated separately using the same parameters
�both unit cell and VASP parameters� as for the corresponding
structure. We believe that this approach diminished the error
of the difference Ei−V�0� �and correspondingly of �i� com-
pared to the error of Ei and V�0� themselves, due to the sys-
tematic cancellation of errors.

The L10 structure was included among the structures con-
sidered. In this case, after atom position relaxation, we ob-
tained 3.852 Å and 3.757 Å for the a and c lattice parameters
of the corresponding tetragonal lattice, respectively �c /a
=0.975�. For comparison the experimental values are 3.847
Å and 3.715 Å �c /a=0.966�.27 In addition, our calculated
results showed the L10 ferromagnetic structure to be more
stable �i.e., has lower energy� than the antiferromagnetic one
in accordance with experiment. We believe that this good
correspondence between theoretical and experimental results
confirms the adequacy of our VASP first-principles calcula-
tions.

The results of the application of our Connolly-Williams
method to FePt are presented in Figs. 1–4 and Table. I. In
Fig. 2, in analogy with Ref. 28, we present the dependences
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of cross-validation8 �CV� and least-squares fitting �LSF� er-
rors

�CV�2 = �23�−1�
i=1

23

��i
VASP − �i

CWi�2, �12�

�LSF�2 = �23�−1�
i=1

23

��i
VASP − �i

CW�2, �13�

as well as of the phase transition temperature on Ns. In
Eqs. �12� and �13�, �i

VASP �i=1, 2, …,23� correspond to the
values obtained within the VASP code for 23 linearly inde-
pendent structures �see Appendix �; �i

CW are obtained for
those structures using the mixing potentials obtained by the
Connolly-Williams method at N�=23; �i

CWi are obtained for
those structures using the mixing potentials obtained by the
Connolly-Williams method at N�=22 when ith structure is
excluded from fitting. Such a CV error characterizes the pre-
dictive power of these Connolly-Williams potentials within
the set of 23 structures.8

In Fig. 3, the convergence of the results obtained by the
Connolly-Williams method at Ns=3 is verified with respect
to an increase in the number, N�, of structures taken into
account within the method. Up to 23 linearly independent
structures �see the Appendix� were considered. Note that to
achieve the rapid convergence shown in Fig. 3 it was impor-
tant to begin with structures having the highest symmetries.
The use of linearly independent structures guarantees that the
good convergence �starting from N��8� is not caused by a
simple similarity of structures.

In Fig. 4 we compare the values of �i−V�1�ci �see Eqs. �9�
and �10�	 for each of the 23 linearly independent structures
�see the Appendix�. The figure shows the values calculated
both directly from first principles and by the use of the mix-
ing potentials obtained by the Connolly-Williams method at
Ns=3,N�=23. The absolute differences between those two
energies characterize the accuracy of Connolly-Williams fit-
ting in the case of each structure. An LSF error of 10.59 meV
was obtained. In order to check the predictive power of these
Connolly-Williams potentials outside the set of 23 structures,
we also calculated the energies of 5 additional structures.
This set of 5 structures includes all distinguishable �but not
identical to the previous 23 ones� equiatomic structures
based on two-cubic unit cells in the fcc crystal lattice �see the
Appendix�. The LSF errors of the Connolly-Williams poten-
tial for the 5 additional structures and for all 28 structures
were obtained to be 12.51 meV and 10.96 meV, respectively.
It is important that if we calculate the Connolly-Williams
potentials using all 28 structures �N�=28� we obtain almost
the same LSF errors of the energy fitting for the first 23, last
5 and all 28 structures: 10.89 meV, 12.27 meV, and 11.15
meV, respectively. Thus, one may conclude that the compara-
tively lower accuracy of fitting for the last 5 structures is not
caused by not including them into the fitting set. Such a high
predictive power confirms our choice of using only linearly

FIG. 1. The values of pair mixing potential Vs
�2� for nine coor-

dination shells �s=1,2,…9� corresponding to the KKR-CPA method
�KKR-CPA� and KKR-CPA plus strain-induced interactions
�KKR-CPA+SI� at L=−0.0294,−0.0925 �see Sec. V� as well as to
the Connolly-Williams method �CW� at Ns=3,N�=23 �see Sec. III�.
The distance is measured in fcc lattice parameter units.

FIG. 2. The values of cross-validation �CV� and least-squares
fitting �LSF� errors �see Eqs. �12� and �13�	 as well as of the phase
transition temperature T0 �within the ring approximation �Ref. 18�	
calculated as a function of the number of pair mixing potential
values Ns taking into account within the Connolly-Williams method
�N�=23�. Dashed line corresponds to the experimental value
�Ref. 48�.
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independent �see above� structures in the Connolly-Williams
method, because the last 5 structures in Fig. 4 are linearly
dependent �but not identical� to the first 23 structures. One
may suppose that the use of additional linearly dependent
structures in the Connolly-Williams method would simply
impose extra weight factors for some of the initial structures.

The good convergence as a function of N� shown in Fig.
3, the high predictive power within and outside the set of 23
structures, the small CV and LSF errors of the Connolly-
Williams fitting shown in Figs. 2–4, and the position of the
local minimum29 of CV error as a function of the number of
fitting parameters in Fig. 2 suggest that the neglect of non-
pair mixing potentials and of pair mixing potentials outside
three coordination shells �i.e., Ns=3� �Ref. 30� as well as
consideration of N�=23 linearly independent structures is
sufficient to obtain adequate results within the Connolly-
Williams method for the case considered here. The small
difference between the experimental bulk order-disorder
phase transition temperature and that obtained using these
mixing potentials31,32 �see Fig. 2 and below Table III in Sec.
VII� provides indirect evidence of adequacy of the potentials
for equiatomic Fe-Pt. Direct evidence is provided by the
study of the cross-validation error �Fig. 2�, least-squares fit-
ting error �Figs. 2 and 4�, and the convergence achieved in
Fig. 3. In Fig. 1 and Table I the pair mixing potential values
obtained by the Connolly-Williams method at Ns=3,N�=23
�four fitting parameters� are shown. Uniform weight factors
were used in the fitting. We obtained also V�1�=1.394 eV.

Independent calculations within the KKR-CPA and the
lattice-statics method also suggest that the atomic interaction
tail outside the fourth coordination shell is weak �see below
Sec. V�, despite the “k→0 nonanalyticity”7,33,34 of the Fou-

rier transform of the corresponding pair mixing potential.
In Ref. 35, the Connolly-Williams method with structures

of different concentrations was applied to FePt. Consider-
ation was not limited to the ground-state structures. One “hy-
pothetical” phase L11 was considered. The interchange
model was restricted to two coordination shells of atomic
pair interactions neglecting nonpair interactions. Only six
structures were considered, making the number of unknown
potential parameters equal to the number of input parameters
�energies of structures�. The convergence of the results ob-
tained by the Connolly-Williams method with respect to an
increase in number of considered structures was not checked.
Consideration of Fig. 3 indicates that for such a small num-
ber of structures convergence may not be achieved because
of errors in the energy calculation. For all structures, the
relaxation of the unit cell volume was performed in a way
that neglected possible unit cell shape relaxation �resulting,
e.g., in its tetragonality� as well as neglecting the individual
displacements of atoms within the unit cell. Using potentials
calculated in this way, the phase transition temperature for
equiatomic FePt bulk alloy was found to be 2070 K, which is
much higher than the experimental one �1573 K.

In Ref. 36, the ratio V2
�2� /V1

�2�=−0.729 was derived
through the use of first-principles calculations. This is
different from the value V2

�2� /V1
�2�=−0.45 obtained by the

Connolly-Williams method used in the present paper. It is

FIG. 3. The values of pair mixing potential Vs
�2� for three coor-

dination shells �s=1,2,3� obtained by the Connolly-Williams
method at fixed Ns=3 but for different numbers N� of structures �all
of equiatomic composition c=0.5� taken into account within the
method.

FIG. 4. The values of �i−V�1�ci �see Eqs. �9� and �10�	 for 28
equiatomic �ci=0.5� structures calculated both directly from first
principles and by the use of the mixing potentials obtained by the
Connolly-Williams method �at Ns=3,N�=23�. The differences be-
tween those two energies characterize the accuracy of Connolly-
Williams fitting in the case of each structure. The first 23 structures
�see the Appendix� are linearly independent and they �and only
they� were used in the Connolly-Williams method. The last 5 struc-
tures �right side of the vertical dashed line� correspond to all dis-
tinguishable �but not identical to the previous 23 ones� equiatomic
structures based on two-cubic unit cells in the fcc crystal lattice �see
the Appendix�. Those 5 structures were not used in the Connolly-
Williams fitting, but they were considered in order to assess the
predictive power of the obtained Connolly-Williams potentials.
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difficult to determine the reason for this difference because
details of the first-principles calculations of Ref. 36 are not
reported. It is possible that the elastic contribution to the
mixing potential neglected in Ref. 36 is responsible for the
difference. In Ref. 36 the value of V1

�2�=96 meV �in our des-
ignation� was fit by reproducing the experimental bulk phase
transition temperature. This implies a value of the quantity
V2

�2� of=−70 meV. For comparison, our Connolly-Williams
potential values �see Table I� are very similar for the first
coordination shell but almost a factor of 2 smaller for the
second one. In addition, for the third shell, the Connolly-
Williams potential is nonzero. Of course, the experimental
bulk phase transition temperature is not reproduced perfectly
by our set of Connolly-Williams mixing potentials which
was obtained without fitting to experiment data �see Table III
below in Sec. VII�.

IV. L10 PARALLEL ANTIPHASE DOMAINS

For the case of the L10 structure, there is a possibility of
creating parallel antiphase domains—i.e., the regions where
the same L10 structures are shifted with respect to one an-

other by the distance a /2 along the z axis perpendicular to
the L10 layers. The antiphase domains are usually created as
a result of the nucleation and growth of the L10 structure in
different places as the initially disordered sample is cooled
below the order-disorder phase transition temperature. The
antiphase boundaries �APB’s� between the antiphase do-
mains contribute to the total energy, making the existence of
antiphase domains favorable or unfavorable depending on
the sign of the antiphase boundary energy.

It is easy to show that such parallel APB energies vanish
in the case of only nearest-neighbor interactions. Thus, first-
principles calculation of parallel APB energies is important
because it allows one to test the adequacy of the nearest-
neighbor interaction model for FePt. In addition, knowledge
of the parallel APB energy is helpful for interpretation of
Monte Carlo simulation results �see below Sec. VI� for the
order parameter obtained by averaging in real space.

In order to estimate the parallel APB energies, we calcu-
lated the values of E0 ,Ea, and E2a—i.e., the total energies of
the pure L10 structure and of two structures composed of
antiphase domains periodically repeated along the y direction
with steps a and 2a, respectively �corresponding to the struc-
tures 1–3 in Appendix�. The differences �Ea and �E2a,

�Ea = Ea − E0, �E2a = E2a − E0, �14�

can be considered as the total energies of a parallel APB in
the corresponding two cases. The results of the calculations
are presented in Table. II. Note that, besides the energies of
the parallel APB’s themselves, �Ea and �E2a also contain
some contribution from the interaction between parallel
APB’s. Such a contribution must decrease with increasing
distance between parallel APB’s. The small difference be-
tween �Ea and �E2a �see Table II� indicates that the interac-
tion between parallel APB’s in the two cases considered is
small and short ranged. It is somewhat larger in the relaxed
case in accordance with the longer range of elastic interac-
tions. The positiveness of �Ea and �E2a indicates that parallel
APB’s are not energetically favorable. The nonzero values of
�Ea and �E2a mean that the nearest-neighbor interaction

TABLE I. The values of pair mixing potential Vs
�2� for 17 coor-

dination shells �s=1,2,…,17� corresponding to the KKR-CPA
method �KKR-CPA�, strain-induced interactions �SI� at L=
−0.0294, and KKR-CPA method plus strain-induced interactions at
L=−0.0294 �KKR-CPA+SI� �see Sec. V� as well as calculated by
the �CW� Connolly-Williams method at Ns=3,N�=23 �see Sec. III�.
See also Fig. 1. The Cartesian coordinates of vector R are given in
a /2 units, where a is the fcc lattice parameter. Potential values are
in meV units.

Shell R �R� /a KKR-CPA SI KKR-CPA+SI CW

1 110 0.707 185.855 −9.879 175.976 87.69

2 200 1.000 −2.997 −2.484 −5.481 −39.46

3 211 1.225 12.413 0.326 12.739 15.85

4 220 1.414 −5.714 1.173 −4.541

5 310 1.581 1.727 −0.724 1.003

6 222 1.732 1.214 0.091 1.304

7 321 1.871 0.907 0.133 1.040

8 400 2.000 0.974 −0.053 0.921

9 411 2.121 0.147 −0.188 −0.041

330 −2.997 0.438 −2.560

10 420 2.236 −0.050 −0.209 −0.258

11 332 2.345 0.015 0.030 0.045

12 422 2.449 0.099 0.060 0.160

13 431 2.550 −0.075 0.074 −0.001

510 0.030 −0.058 −0.028

14 521 2.739 −0.006 −0.073 −0.079

15 440 2.828 −0.042 0.163 0.121

16 433 2.915 0.008 0.019 0.027

530 −0.008 −0.058 −0.066

17 442 3.000 −0.007 0.023 0.016

600 0.000 −0.037 −0.037

TABLE II. The energies �Ea and �E2a of parallel APBs in the
L10 structure in the cases of a and 2a distance between parallel
APBs, respectively. The values shown are per two atoms in one
APB �in eV units� and were calculated by first principles using the
VASP program package �Ref. 11�. In the relaxed case, we minimized
the total energy with respect to the variation of the size and shape of
the unit cell as well as the local displacements of atoms within the
unit cell. In the unrelaxed case, the atoms were assumed to occupy
the sites of a rigid fcc lattice with the lattice parameters assumed to
be the same as in the relaxed case, neglecting all the local displace-
ments of atoms within the unit cell.

Unrelaxed Relaxed

�Ea 0.223 0.213

�E2a 0.213 0.198

�Ea−�E2a 9.80�10−3 1.59�10−2
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model is not adequate for a description of FePt alloy in ac-
cordance with results obtained in Sec. III.

V. KKR-CPA AND STRAIN-INDUCED INTERACTIONS

Elsewhere,14,15 detailed procedures have been described
for calculating effective atomic interactions �pair mixing po-
tentials� within the KKR-CPA methodology.12,13 KKR-CPA-
based effective atomic interactions are determined from the
response of the electronic structure of the high-temperature,
disordered alloy to small-amplitude concentration waves.
The results obtained within KKR-CPA in Ref. 16 in the case
of Fe0.5Pt0.5 paramagnetic37 alloy are presented in Fig. 1 and
Table. I.

From Fig. 1 and Table I one may conclude that the
Connolly-Williams and KKR-CPA potentials �both corre-
sponding to equiatomic concentration c=0.5� are similar but
not identical. In both, only the three first coordination shells
are substantially different from zero. The signs of the poten-
tial values for the first three coordination shells are the same
within both methods. However, the absolute value of the
Connolly-Williams potential for the first coordination shell is
considerably smaller than that of the KKR-CPA. For the sec-
ond shell, the situation is opposite. One may attribute the
difference between the Connolly-Williams and KKR-CPA
potentials to the different structural and magnetic states used
for the calculations: completely ordered ferromagnetic for
the former and completely disordered paramagnetic for the
latter.

For verification of the correspondence of both potentials
to the real FePt alloy we calculated the bulk order-disorder
phase transition temperature �within the ring approximation
and by a Monte Carlo simulation� using both of the calcu-
lated mixing potentials. Then we compared the obtained val-
ues with the corresponding experimental one. The results are
presented in Table III. One can see that Connolly-Williams
and KKR-CPA potentials underestimate and overestimate the
experimental phase transition temperature, respectively, by
almost the same difference.

Within the KKR-CPA calculation, the nuclei were con-
strained to occupy ideal fcc crystal lattice positions so the

effect of inhomogeneous static atomic displacements is ne-
glected. �The homogeneous ones are taken into account by
minimizing the alloy’s total energy with respect to the lattice
parameter of the underlying lattice.� The inhomogeneous
static atomic displacements are expected to be small for FePt
alloy because of the small tetragonality obtained
experimentally27 and theoretically �see, e.g., above Sec. III�.
For verification, we calculated the corresponding strain-
induced contribution to the pair mixing potential indepen-
dently within the Khachaturyan33 semiphenomenological
theory based on the microscopic Matsubara-
Kanzaki-Krivoglaz34,38,39 lattice-statics method. This ap-
proach allows us to take into account the anisotropy and
discrete �atomic� structure of a crystal lattice in contrast with
the macroscopic continuum theory of elasticity.

To calculate the strain-induced interactions, we used the
expression derived in Ref. 40 for the Fourier transform of the
dynamical matrix. Platinum and iron were chosen as solvent
and solute, respectively. The pair mixing potential is inde-
pendent of this choice since it is symmetrical with respect to
interchange of A and B; see Eq. �6�. For the calculations, we
used the following numerical values: the mass of a Pt atom
M =32.40�10−26 kg; the lattice parameter a0=3.92 Å; pho-
non frequencies, longitudinal �L=2��5.80 and transverse
�T=2��3.84 �all in Trad s−1�;41 elastic constants of Pt,
C11=3.580,C12=2.536,C44=0.774 �all in 1012 dyn/cm2�.42

The coefficient L of linear dependence of alloy lattice param-
eter a on the Fe concentration c,

a = a0�1 + L c�, L = � 1

a0

�a

�c
�

c=0
, �15�

was calculated as L=−0.0294.43 The concentration interval
used for the calculation of L was chosen so that the Vegard
rule is well fulfilled since it is a necessary condition of ap-
plicability of the Matsubara-Kanzaki-Krivoglaz lattice-
statics method.33,34,38,39

The corresponding results for the strain-induced interac-
tions are presented in Fig. 1 and Table. I. From them it fol-
lows that the strain-induced contribution to the pair mixing
potentials is comparatively small as we expected. The addi-
tion of this contribution to the KKR-CPA potential decreases
the corresponding phase transition temperature so that it is
very close to the experimental one �see Table III�.

From Fig. 1 and Table I one can also see that the addition
of the strain-induced contribution to the KKR-CPA pair mix-
ing potential moves it toward the Connolly-Williams poten-
tial values. To emphasize this effect, we increased the abso-
lute value of the coefficient L from 0.0294 to 0.0925 �thus
artificially increasing the strain-induced interactions� in order
to bring the KKR-CPA plus strain-induced potential as close
to the Connolly-Williams one as possible. The same ten-
dency is observed in the Fourier transforms of the corre-
sponding pair mixing potentials �see Fig. 5�. One may con-
clude that the mixing potential calculated for the disordered
state �KKR-CPA� can be brought into close agreement with
the mixing potential based on the completely ordered states
�Connolly-Williams method� simply by increasing the mag-
nitude of the strain-induced interactions �which is propor-
tional to L2�. Perhaps such an increase of the strain-induced

TABLE III. The values of bulk order-disorder phase transition
temperature measured experimentally �Experiment� �Ref. 48� and
obtained by the use of mixing potentials Vs

�2� corresponding to the
KKR-CPA method �KKR-CPA�, KKR-CPA method plus strain-
induced interactions at L=−0.0294,−0.0925 �KKR-CPA+SI�, and
Connolly-Williams method �CW�; see Table. I. The theoretical val-
ues were calculated within the ring approximation �ring� and by
Monte Carlo simulations �MC�.

Vs
�2� T0 �K�

Experiment 1572

CW 1495 �ring�, 1514 �MC�
KKR-CPA 1610 �ring�

KKR-CPA+SI �L=−0.0294� 1552 �ring�
KKR-CPA+SI �L=−0.0925� 997 �ring�
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interactions roughly describes the dependence of mixing po-
tential on the order parameter �configurational excitations of
the electronic structure25,45�. It should be noticed that in other
alloys for which a difference between paramagnetic and fer-
romagnetic potentials is large �such as Co0.25Pt0.75—see Ref.
37, one may expect that bringing the Connolly-Williams and
KKR-CPA potentials into close agreement will be problem-
atic.

Note from Table III that the phase transition temperature
corresponding to the KKR-CPA potential plus the artificially
increased strain-induced interactions is much lower than the
experimental one. This may be explained by the roughness of
our approach. Namely, by bringing the KKR-CPA Vk

�2� to the
Connolly-Williams one in the vicinity of G point �where the
difference between them is largest�, we may cause too large
an error in Vk

�2� in the vicinity of the X point, which is mainly
responsible for the phase transition because of minimum of
Vk

�2� there �see Fig. 5�.46

From Fig. 1 and Table I it follows that the strain-induced
potential is of short range despite the “k→0
nonanalyticity”7,33,34 of its Fourier transform. One may con-
sider this fact as an additional proof of correctness of our
application of the Connolly-Williams method in Sec. III us-
ing the short-range pair mixing potential.

Below, in our Monte Carlo simulation of finite small sys-
tems, we exclusively used mixing potentials obtained by the
Connolly-Williams method. We did so because the most in-
teresting temperature region �for the aim of the present pa-
per� corresponds to the highly ordered �both chemically and

magnetically� state �T	600 °C�. For this reason, we expect
that the Connolly-Williams potentials which are based on the
completely ordered states should work better in that region
than the KKR-CPA potentials which are based on the com-
pletely disordered state. It is true, however, that the upper
part of the temperature range of interest to us is somewhat
above the Curie temperature �710 K�. In this part both the
Connolly-Williams and KKR-CPA approaches are problem-
atic overestimating and underestimating short-range mag-
netic order, respectively. In addition, the KKR-CPA has is-
sues related to the atomic sphere approximation and its
treatment of strains.

In Ref. 47 the values of pair mixing potentials for the FePt
bulk alloy were obtained within the tight binding linear or-
bital method. For c=0.5, the values for the second- and
fourth-coordination-shell mixing potentials are close to the
corresponding KKR-CPA ones from Ref. 16 but they are
approximately a factor of 2 smaller for the first and third
shells. Order-disorder transition temperatures of 662, 816,
and 435 K were obtained by us for c=0.25, c=0.50, and c
=0.75, respectively, using these potentials within the ring
approximation.18 These transition temperatures are much
lower than the experimental ones �1087, 1572, and 1622 K,
respectively�.48 The corresponding transition temperatures
calculated in Ref. 47 are not so different from the experimen-
tal ones because the mean-field approximation, which usu-
ally overestimates the transition temperature,20 was used.
The magnitude of the discrepancy with experiment was un-
derestimated also because an old value for the transition tem-
perature at c=0.75 from Ref. 49 was used for comparison.

VI. MONTE CARLO SIMULATION

For the Monte Carlo simulations we utilized the standard
Metropolis algorithm.17 We applied free and periodic bound-
ary conditions for the cases of spherical nanoparticles50 and
parallelepipeds, respectively.

To obtain a rapid approach to the equilibrium state, which
is the subject of this paper, the starting configuration for each
temperature was chosen to be the completely ordered one.
We also used simplified kinetics in our Monte Carlo simula-
tion. Namely, we allowed any two randomly chosen atoms
�not only nearest neighbors� to exchange their positions with-
out an additional diffusion barrier.

The absence of a monotonic change of mean values of all
quantities being calculated in the Monte Carlo simulation
was chosen as a criterion for the achievement of an equilib-
rium state. To fulfill such a criterion, it was generally neces-
sary to perform 1000–20 000 Monte Carlo steps �i.e., the
interchange of two atoms chosen at random� per site. After
the equilibrium state was achieved, each calculated quantity
was averaged for subsequent Monte Carlo steps. When the
oscillation amplitudes of such averages �considered as a
function of the number of Monte Carlo steps performed� be-
came less than 5% �of the absolute value of the correspond-
ing average� during the last 10% of steps �from the total
number of steps carried out at an equilibrium state�, the val-
ues of the averages calculated at the last Monte Carlo step
were accepted as equilibrium ones.

FIG. 5. The dependences of the Fourier transform Vk
�2�

=�RVR
�2� exp�ik ·R� of pair mixing potential VR

�2� on the wave vector
along the high-symmetry directions �Ref. 44� within the corre-
sponding first Brillouin zone. The three cases correspond to �1� the
pair mixing potentials obtained by the Connolly-Williams �CW�
method at Ns=3,N�=23 �see Sec. III� as well as obtained within the
KKR-CPA plus strain-induced interactions �KKR-CPA+SI� at L=
−0.0294 and L=−0.0925 �see Sec. V�. The big bold point and tri-
angle correspond to Vk=0

�2� in two cases of taking into account the
strain-induced interactions, when the Fourier transform demon-
strates nonanalyticity �Refs. 33, 34, 38, and 39�.
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We define the equilibrium L10 order parameter 
̄ as the
statistical average of the maximum value among three abso-
lute values of “directional” order parameters 
x ,
y, and 
z:


̄ = �
�MC, 
 = max��
x�, �
y�, �
z�� , �16�

where 
i �i=x ,y ,z� is defined as the difference between the
Fe atom concentrations at odd and even crystal planes per-
pendicular to the ith direction and �¯�MC is the statistical
average over the Monte Carlo steps. We chose this definition
of 
 because of the equivalence by symmetry of the x , y,
and z directions of L10 order. In addition, one can obtain an
equivalent structure �at c=0.5� by changing the sign of 
i,
which results in the exchange of Fe and Pt atoms producing
a configuration that is equivalent by symmetry to the original
one. During Monte Carlo simulations, we observed fluctua-
tions that cause transformations between these equivalent
states �i.e., fluctuations in the sign and direction of 
; see
Figs. 6 and 7�. This is in addition to the usual statistical
fluctuations within one such state. The L10 order parameter

̄, defined in Eq. �16� takes into account the fluctuation-
induced transformations between the equivalent states. Note
that because of the above-discussed symmetry equivalence,
we obtain �
i�MC=0 for any i=x ,y ,z at any temperature,
when the statistical average is taken over a sufficiently large
number of Monte Carlo steps. Note that in Ref. 36 an order
parameter similar to Eq. �16� was introduced for the same
reasons.

Usually during Monte Carlo simulation we observed one
of the “directional” order parameters to be much larger than
other two �see, e.g., Figs. 6 and 7�. This means that the
presence of perpendicular antiphase domains is not favor-
able. Examination of the atomic arrangements within the
Monte Carlo simulation showed no evidence of parallel an-
tiphase boundaries such as those discussed in Sec. IV. The

absence of antiphase domains confirms the validity of our
definition of the equilibrium L10 order parameter in Eq. �16�.

Note that even with our simplified kinetics �see above
Sec. VI�, we observed a slowing down problem in approach-
ing the equilibrium ordered state at low temperatures. For
example, in Fig. 7 one can see that, for a long time, the
nanoparticle can be in a metastable state with order param-
eter ��0.6� lower than that ��0.8� in the equilibrium state.

VII. BULK PHASE TRANSITION

To obtain an additional verification of the calculated val-
ues of mixing potential, we calculated the order-disorder
phase transition temperature in the bulk FePt equiatomic al-
loy using these values. To do so, we calculated the tempera-
ture dependence of the FePt equilibrium L10 order parameter
within the analytical ring approximation18 for bulk as well as
by Monte Carlo simulations for parallelepiped samples con-
taining N=203 , 403, and 603 atoms and for spherical nano-
particles with 6.0 nm diameter at �or near� equiatomic com-
position c=0.5. The results are presented in Fig. 8.

From Fig. 8 one may conclude the following. The ring
approximation �which exactly corresponds to bulk—i.e., to
an infinite sample� clearly shows a phase transition tempera-
ture at which the order parameter 
̄ drops to zero. Strictly
speaking, in all the cases considered here of finite size
samples �sphere and parallelepipeds� there is no phase tran-
sition in accordance with a general theorem.5 The order pa-
rameter 
̄ continuously changes from unity to zero with in-
creasing temperature, and instead of a phase transition we
obtain an inflection point in the 
̄�T� curve. In the case of the
parallelepiped with 603=216 000 atoms, the inflection point
is very similar to the phase transition. Comparing the three
curves for parallelepipeds of different sizes one can imagine
that the inflection point transforms into a phase transition in

FIG. 6. The dependence of the FePt L10 order parameters on
Monte Carlo steps during averaging in the equilibrium state during
simulation of a spherical nanoparticle with diameter d=3.0 nm �see
Table IV� at temperature T=1100 K. 
x ,
y, and 
z are the “direc-
tional” order parameters �see text�: 
 is defined in Eq. �16�.

FIG. 7. The same as in Fig. 6 but for the “directional” order
parameters as the spherical nanoparticle with diameter d=3.0 nm
�see Table IV� approaches its equilibrium state at temperature T
=800 K.
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the limit of infinite-size. The position of the inflection point
is often used to approximate the bulk phase transition point
in Monte Carlo simulations of finite-size samples.

According to our calculations, the inflection point corre-
sponding to the largest parallelepiped simulation can be con-
sidered to be a good estimate for the phase transition within
the Monte Carlo method. We plotted the temperature of the
inflection point, TN, as a function of N−1/2 and observed the
limiting value as N−1/2→0. This extrapolation of TN to N
→� hardly differs from the temperature of the inflection
point for N=603.

From Fig. 8 it follows that Monte Carlo simulation for
parallelepipeds with periodic boundary conditions �“no sur-
face”� is much more appropriate to the bulk behavior than
Monte Carlo simulation for the spherical nanoparticle with
free boundary conditions. The number of particles N=203

=8000 in the smallest parallelepiped considered is very close
to the number N=8007 of particles in the spherical nanopar-
ticle �see below Table IV�. This large difference in Monte
Carlo simulation between parallelepiped and sphere is

caused by the difference in shape and boundary conditions.
The temperatures, 1495 K and 1514 K, estimated for the

phase transition within the analytical ring approximation18

and Monte Carlo simulation, respectively, are in close corre-
spondence to the experimental48 1572 K. This 4% error dem-
onstrates the adequacy of the mixing potential values at c
=0.5 calculated from first principles �i.e., without a fitting to
experimental data�.

In order to test the applicability of these values over the
entire concentration interval, we calculated the order-
disorder phase transition temperature as a function of con-
centration within the analytical ring approximation18 using
the mixing potential calculated for c=0.5. The corresponding
results together with experimental ones are presented in Fig.
9 �see also Fig. 10�. From this figure one may conclude that
the equiatomic mixing potential is only valid in the vicinity
of c=0.5. Outside this vicinity it is necessary to use different
mixing potentials. The asymmetry of experimental phase dia-
gram with respect to c=0.5 implies that the mixing potentials
should be concentration dependent and/or nonpair.26 Accord-
ing to our canonical cluster expansion formalism,24 within
the Connolly-Williams method one should calculate the mix-
ing potentials at any given concentration using structures
with the same �or close� compositions. Within the KKR-
CPA, the concentration dependence of mixing potentials is
obtained naturally.

VIII. NANOPARTICLE SIMULATION

The mixing potentials calculated in Sec. III by the
Connolly-Williams method were used for Monte Carlo simu-
lations of the temperature dependence of the equilibrium L10
order parameter of spherical FePt nanoparticles with diam-
eters of 5.94, 3.5, 3.0, and 2.5 nm. In all cases the composi-
tions are close to c=0.5. The characteristics of those nano-
particles are listed in Table IV.

Note that the starting configuration for all cases consid-
ered was chosen to be a completely ordered one with an L10
order parameter of unity. The deviations of concentration
from equiatomic c=0.5 are due to the finite sizes and spheri-
cal shape of the nanoparticles.

The results of the simulations are presented in Fig. 11. For
spherical nanoparticles, the tendencies in the behavior of or-
der parameter are the same as in case of parallelepipeds �see
above Sec. VII�. Namely, in case of finite-size particles, in-
stead of a phase transition point �see bulk curve�, there is an

FIG. 8. The temperature dependence of the FePt equilibrium
L10 order parameter 
̄ obtained within the analytical ring approxi-
mation �Ref. 18� for bulk �“bulk”� as well as by Monte Carlo simu-
lations for parallelepiped �“ppd”� samples containing N=203 , 403,
and 603 atoms and the spherical �“sph”� nanoparticle with d
=5.94 nm diameter �see Table IV� at �or near� equiatomic concen-
tration c=0.5.

TABLE IV. The characteristics of spherical nanoparticles used in Monte Carlo simulation: d, diameter;
d /a, ratio of diameter to lattice parameter; N , NFe, and NPt, the numbers of sites, iron, and platinum atoms in
the sample, respectively; c=NFe/NPt, concentration; 
̄ and D, the value and dispersion �due to the thermo-
dynamic fluctuations� of order parameter at 600 °C �see Fig. 11�; cmax, the value of concentration for which
the concentrational dependence of L10 equilibrium order parameter achieves maximum �see Fig. 12�.

d �nm� d /a N NFe NPt c 
̄ D cmax

5.94 15.63 8007 4007 4000 0.500 0.863 0.007 0.52

3.50 9.21 1601 825 776 0.515 0.839 0.021 0.53

3.00 7.89 1055 519 536 0.492 0.746 0.033

2.50 6.58 603 299 304 0.496 0.704 0.045 0.56
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inflection point. The smaller the particle size, the smoother
the 
̄�T� curve, the less order parameter at low temperatures
�below and somewhat above the inflection point�, and the
higher the order parameter at high temperatures �well above
the inflection point�. The inflection point temperature de-
creases with decrease of particle size. Note that in Ref. 36
the same tendencies were observed but the position of the
heat capacity maximum was interpreted as a phase transition
point. Such an interpretation should be very approximate in
case of small finite systems because there is no formal phase
transition in a finite system.5 The same tendencies as in Fig.
11 were observed in Monte Carlo simulations of Cu3Au
nanoparticles in Ref. 51.

Our calculations predict, for example, that 3.5-nm-diam
particles in configurational equilibrium at 600 °C would have
an order parameter 
̄=0.84 compared to a maximum pos-
sible value of unity �see Table IV and Fig. 11�. Therefore,
annealing at 600 °C will not yield perfect order for 3.5-nm-
diam particles. Approximately 17% of the atoms will be on
the wrong sublattices, even in equilibrium. The correspond-
ing dispersion of 
 due to the thermodynamic fluctuations is

comparatively small �e.g., 2.5% for d=3.5, T=600 °C see
Table IV�.

The “tail” of the order parameter at high temperatures in
Fig. 11 is a consequence of thermodynamic fluctuations of
the order parameter. The asymptotic behavior of the disper-
sion of such fluctuations can be estimated as �1/�N �N is
the number of atoms�.52 So the value of the high-temperature
tail of the order parameter increases with decreasing particle
size. Note that we define the order parameter as in Eq. �16�,
taking into account the fact that two configurations with dif-
ferent signs of the order parameter are physically identical.

Experimentally, nanoparticles are created with some dis-
persion in the concentration. Therefore it is important to
know the concentration dependence of the order parameter.
We studied this dependency for the cases of bulk and spheri-
cal nanoparticles of different diameters at fixed temperature
T=600 °C. The corresponding results are presented in Fig.
12. At each concentration we present the equilibrium order
parameter value so that near concentrations c=0.5 and c
=0.25,0.75 the curves correspond to L10 and L12 order pa-
rameters, respectively.

From Fig. 12 it follows that for small FePt nanoparticles
we observe an asymmetry in the concentration dependence
of the order parameter with respect to equiatomic c=0.5.
This asymmetry is a consequence of the finite size of nano-
particles. It should be emphasized that for the calculation of
order parameters in Fig. 12 at each concentration we used the
same pair mixing potentials as at c=0.5 that results in a
symmetric order parameter for case of bulk. The concentra-
tion dependence of mixing potentials and/or appearance of
non pair mixing potentials at c�0.5 can make the bulk curve

FIG. 9. Bulk configurational T-c phase diagram obtained within
the analytical ring approximation �Ref. 18� using mixing potentials
calculated by the Connolly-Williams method at c=0.5. Lines corre-
spond to phase transitions from disorder to L10 or L12 structures
with decreasing temperature. Stars correspond to the phase transi-
tions observed experimentally �Ref. 48� �see also Fig. 10�.

FIG. 10. �Color online� Experimental bulk configurational T-c
phase diagram �Ref. 48�.

FIG. 11. The temperature dependence of the FePt equilibrium
L10 order parameter 
̄ obtained within the analytical ring approxi-
mation �Ref. 18� for bulk �“bulk”� using KKR-CPA plus strain-
induced interactions at L=−0.0294�CPA+SI� and Connolly-
Williams mixing potential at Ns=3,N�=23 �CW� as well as by
Monte Carlo simulation for the parallelepiped �“ppd”� sample con-
taining N=603 atoms and for spherical �“sph”� nanoparticles with
2.5, 3.0, 3.5, and 6.0 nm diameters d at equiatomic �or near equi-
atomic; see Table IV� concentration c=0.5 using Connolly-
Williams mixing potential.
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asymmetrical26 and make an additional contribution to the
asymmetry for finite particles observed in Fig. 12. One
should consider the results in Fig. 12 to be more approximate
the farther they are from c=0.5.

IX. SURFACE EFFECTS

In our study, we have used mixing potentials obtained for
infinite bulk alloys and free boundary conditions to simulate
the equilibrium configuration of finite-size particles. The
presence of the surface will change the atomic potentials in
the near-surface region compared to bulk potentials. This
change may result in surface segregation, leading, for ex-
ample, to the tendency of Fe or Pt atoms to be preferably
situated at the surface. In general, surface segregation should
decrease the total L10 order parameter in nanoparticles, be-
cause the L10 order will be reduced at the surface. The sur-
face effect on the order will depend on the ratio of depth of
surface segregation to nanoparticle size.

Analytical estimation of such surface effects is not
straightforward and will be done elsewhere.53 Here we only
describe the source of the asymmetry observed in Fig. 12.
Namely, it is observed that in the presence of a free surface
the Connolly-Williams bulk mixing potentials result in weak
segregation of Fe atoms to the surface. This causes a deple-
tion of Fe in the interior of the nanoparticle. Thus the effec-
tive concentration of Fe atoms within the nanoparticle but
outside the surface segregation region will be less than one-
half. Therefore it is necessary to add Fe atoms to the interior
of the nanoparticle to achieve equiatomic composition out-
side the segregating surface and accordingly to achieve the

maximum L10 order in that region. That is why the maxi-
mum of the L10 order parameter lies on the Fe-rich side of
equiatomic composition in Fig. 12. A similar effect �but for
the pseudo phase transition temperature in finite systems5�
was observed in Ref. 36 for the case in which a strong seg-
regation potential leading to the segregation of Pt to the sur-
face was introduced during Monte Carlo simulation. That
additional potential also results in a decrease of total order
parameter in accordance with our description above.

For nanoparticles chemically synthesized by methods
such as the “hot soap process,”1 the problem of the effect of
the surface on the interatomic exchange potentials is even
more complicated because these nanoparticles are likely to
have unknown atoms and molecules attached to their sur-
faces. It should also be noted that truncation of the mixing
potentials at a surface is an uncontrolled approximation. The
fact that our simulations yield segregation of Fe to the sur-
face should not be taken as evidence that this would happen
for a real nanoparticle. Indeed our own preliminary first-
principles calculations indicate that Pt �rather than Fe� seg-
regates to a �001� surface, a result that appears to be consis-
tent with recent unpublished work by Yang et al.36 A more
complete treatment of surface segregation in isolated nano-
particles will be published elsewhere.53

X. CONCLUSIONS AND DISCUSSION

In the present paper, the pair mixing potentials �which
determine the alloy configurational behavior� were calcu-
lated up to the third coordination shell for equiatomic FePt
alloys from first principles using the Connolly-Williams
method �Sec. III�. It was shown that the application of this
method does not necessarily lead to significant nonpair inter-
actions if all of the structures employed in the Connolly-
Williams method correspond to the same composition �ca-
nonical cluster expansion formalism24�. The mixing potential
was also calculated by adding the strain-induced part of the
interactions to mixing potentials obtained from the KKR-
CPA approach of Ref. 16 �Sec. V�. The application of the
Connolly-Williams method at fixed composition allowed the
direct comparison of these potentials with those obtained
from the KKR-CPA �plus strain-induced part�. The mixing
potentials are shown to be similar with both giving values for
the order-disorder phase transition very close to the experi-
mental one. It was demonstrated that, in the considered alloy,
the Connolly-Williams potentials �based on completely or-
dered states� and the KKR-CPA potentials �corresponding to
completely disordered state� can be brought into very close
correspondence to each other simply by increasing the mag-
nitude of the strain-induced interactions added to KKR-CPA
potential �Sec. V�.

It should be emphasized that it was not clear a priori that
either the Connolly-Williams method or the CPA approach
could be trusted for a system as complicated as FePt. Mag-
netic alloys are problematic for the Connolly-Williams
method because the mixing potentials are strongly dependent
on the magnetic state of the system. Thus the chemical order
and magnetic structure are expected to be intimately related.
On the other hand, the CPA approach is based on concentra-

FIG. 12. The concentration dependence of the FePt equilibrium
L10 and L12 order parameters in bulk �“bulk”� and spherical
�“sph”� nanoparticles with 2.5, 3.5, and 5.94 nm diameters d at
fixed temperature T=600 °C. The results for bulk and spherical
nanoparticles were obtained within the analytical ring approxima-
tion �Ref. 18� and by Monte Carlo simulations, respectively, using
mixing potentials calculated at c=0.5 within the Connolly-Williams
method.
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tion fluctuations in a hypothetical high-temperature disor-
dered state. We consider the fact that both methods are able
to approximate the order-disorder temperature well without
adjustable parameters and that the mixing potentials derived
from the two approaches are rather similar to be a remark-
able result. It demonstrates the possibility of using these po-
tentials with comparatively small error even in a region,
where our assumptions about these potentials are not valid.

It was shown by first-principles calculations that parallel
L10 antiphase boundaries are not energetically favorable
�Sec. IV�. This fact demonstrates the inapplicability of the
nearest-neighbor interaction model in accordance with
Connolly-Williams and KKR-CPA results. The absence of
parallel L10 antiphase boundaries was confirmed by Monte
Carlo simulations using the Connolly-Williams potential
�Secs. VII and VIII�.

In Secs. VII and VIII, the mixing potentials obtained by
the Connolly-Williams method were used to investigate the
dependence of equilibrium L10 ordering on temperature for
bulk and for spherical nanoparticles with diameters of 5.94,
3.5, 3.0, and 2.5 nm. These calculations used both Monte
Carlo simulations and the analytical ring approximation. The
calculated order-disorder temperature for bulk �1495–1514
K� was in relatively good agreement �4% error� with the
experimental value �1572 K�. For nanoparticles of finite size,
the �long-range� order parameter changed continuously from
unity to finite asymptotic values with increasing temperature.
The nonzero asymptotic values are a consequence of thermo-
dynamic fluctuations of the order parameter and are propor-
tional to 1/�N where N is the number of atoms in a sample.
Rather than a discontinuity indicative of a phase transition,
we obtained an inflection point �a precursor of a phase tran-
sition at large size� in the L10 order as a function of tempera-
ture. This inflection point occurred at a temperature below
the bulk phase transition temperature and which decreased as
the particle size decreased.

According to our investigations, the experimental absence
of �relatively� high order in nanoparticles below 600 °C is
primarily a kinetic problem rather than an equilibrium one.
For example, our calculations predict, that 3.5-nm-diam par-
ticles in configurational equilibrium at 600 °C �a typical an-
nealing temperature for promoting L10 ordering� have an
L10 order parameter of 0.84 �compared to a maximum pos-
sible value equal to unity�. It should be noted that to rapidly
obtain the correct equilibrium state, we used simplified ki-
netics in our Monte Carlo simulation. Namely, we allowed
any two randomly chosen atoms to exchange their positions
without an additional diffusion barrier. In a real alloy, the
main mechanism of atomic diffusion is much slower because
it consists of the exchange of the positions of atoms and
neighboring vacancies through energy barriers. Moreover, at
each temperature we started the simulation from the com-
pletely ordered state, whereas the actual nanoparticles are
initially prepared in the disordered state and the transforma-
tion from the disordered to the ordered state may be much
slower than the reverse one, especially at low temperatures.
Nevertheless, even with our simplified kinetics, we observed
a slowing-down problem in approaching the equilibrium or-
dered state at low temperatures. In real nanoparticles this
problem must be much worse. Kinetic acceleration methods

such as irradiation and/or addition of other types of atoms
may be useful in accelerating the formation of long range
order. Kang et al.54 have observed ordering on annealing at
temperatures somewhat below 400 °C by adding Ag or Au to
the particles in the synthesis step. However, it appears that
this ordering is also accompanied by agglomeration and sin-
tering of the particles. It should be emphasized that all of the
results presented in this paper correspond to equilibrium
states and are, therefore, independent of the particular kinetic
pathways that lead to these states.

In Sec. VIII, it was demonstrated that for small finite
samples even for a composition-independent, pair mixing
potential one obtains an asymmetric order parameter as a
function of composition with respect to equiatomic compo-
sition. In particular, for FePt nanoparticles, if we neglect the
effect of the surface on the mixing potentials, the maximum
of the L10 order parameter as a function of composition is
shifted from c=0.5 toward the Fe-rich region. The connec-
tion of such an asymmetry with surface segregation is dis-
cussed in Sec. IX. Also in Sec. IX the importance of the
consideration of the surface segregation effect on the atomic
ordering is pointed out �such a consideration will be done
elsewhere53�.
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APPENDIX: DEFINITION OF STRUCTURES

The present appendix �Table V and subsections 1–28 be-
low�, defines the structures used in this paper. Unit-cell basis
vectors are given in Cartesian coordinates in units of the fcc
lattice parameter. The Cartesian axes are directed along the
edges of the fcc cube. The third unit-cell basis vector is
perpendicular to the first and second ones for all structures.
All of the structures have equiatomic composition c=0.5.
The atom positions in the tables are before relaxation. In
addition to numbering, we also include the structure desig-
nations that we used during our calculations. For the 1st,
2nd, and 24th structures we put also the designations known
in the literature �“L10,” “CH�40�,” and “Z2,” respectively�.55

The first 23 structures are linearly independent and were
used in the Connolly-Williams method in Sec. III. The re-
maining 5 structures are linearly dependent �but not identi-
cal� to the first 23 ones. They were considered in order to
check the predictive power of the Connolly-Williams poten-
tials.
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1. 4cub(1), L10

Unit cell basis vectors Cartesian coordinates:
�1.0,0.0,0.0�, �0.0,1.0,0.0�, �0.0,0.0,4.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.5,0.0�, �0.0,0.0,1.0�, �0.5,0.5,1.0�,

�0.0,0.0,2.0�, �0.5,0.5,2.0�, �0.0,0.0,3.0�, �0.5,0.5,3.0�.
B: �0.5,0.0,0.5�, �0.0,0.5,0.5�, �0.5,0.0,1.5�, �0.0,0.5,1.5�,

�0.5,0.0,2.5�, �0.0,0.5,2.5�, �0.5,0.0,3.5�, �0.0,0.5,3.5�.

2. 4cub(2), APB(1), CH(40)

Unit cell basis vectors Cartesian coordinates:
�1.0,0.0,0.0�, �0.0,1.0,0.0�, �0.0,0.0,4.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �0.5,0.5,1.0�, �0.0,0.5,1.5�,

�0.0,0.0,2.0�, �0.5,0.0,2.5�, �0.5,0.5,3.0�, �0.0,0.5,3.5�.

B: �0.5,0.5,0.0�, �0.0,0.5,0.5�, �0.0,0.0,1.0�, �0.5,0.0,1.5�,
�0.5,0.5,2.0�, �0.0,0.5,2.5�, �0.0,0.0,3.0�, �0.5,0.0,3.5�.

3. 4cub(3), APB(2)

Unit cell basis vectors Cartesian coordinates:
�1.0,0.0,0.0�, �0.0,1.0,0.0�, �0.0,0.0,4.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �0.0,0.0,1.0�, �0.5,0.0,1.5�,

�0.5,0.5,2.0�, �0.0,0.5,2.5�, �0.5,0.5,3.0�, �0.0,0.5,3.5�.
B: �0.5,0.5,0.0�, �0.0,0.5,0.5�, �0.5,0.5,1.0�, �0.0,0.5,1.5�,

�0.0,0.0,2.0�, �0.5,0.0,2.5�, �0.0,0.0,3.0�, �0.5,0.0,3.5�.

4. 4cub(4)

Unit cell basis vectors Cartesian coordinates:
�1.0,0.0,0.0�, �0.0,1.0,0.0�, �0.0,0.0,4.0�.

TABLE V. The characteristics of the structures used in the paper. i is the structure number, Nu.c.
AB is the total

number of atoms in the unit cell of structure, Eu.c. is the energy of structure per its unit cell �as obtained from
VASP calculations�, Vu.c.

�0� is the energy �per unit cell� of the structure with the same unit cell but with Fe atoms
only �see Sec. II�, and Sis are the structural coefficients �i=1,2… ,28, s=1,2… ,8� in the Connolly-Williams
system of equations �9�. Note that the values of �i �see Eqs. �9� and �10�	 can be determined from this table
as �i= �Eu.c.−Vu.c.

�0� � /Nu.c.
AB , where the values on the right side of this equation correspond to the ith structure.

i Nu.c.
AB Vu.c.

�0� Eu.c. Sis�Nu.c.
AB

1 16 −129.0729 −117.0299 16 24 32 48 32 32 64 24

2 −116.1764 16 16 64 16 32 0 128 24

3 −116.6366 16 20 48 32 32 16 96 16

4 −114.5503 40 20 64 32 64 16 96 16

5 −114.9625 34 20 60 32 54 16 92 18

6 −114.6047 36 20 64 32 56 16 96 16

7 16 −129.0250 −115.4097 27 14 38 24 54 8 76 24

8 −115.2592 28 14 40 16 56 8 80 24

9 18 −145.2008 −130.8012 22 23 44 42 36 28 88 23

10 −130.8094 22 23 40 42 44 28 84 23

11 −131.0869 20 23 44 42 42 28 84 23

12 10 −80.6305 −72.2655 14 9 26 12 34 8 66 9

13 8 −64.5151 −57.1224 18 8 28 12 20 8 40 4

14 −57.7453 13 6 26 10 22 12 44 8

15 6 −48.3836 −43.0543 12 5 16 8 12 8 32 5

16 12 −96.7403 −85.1600 30 14 52 24 44 16 80 10

17 −85.7956 25 12 46 20 38 16 72 10

18 12 −96.7380 −86.9505 16 10 32 16 40 16 80 10

19 12 −96.7780 −86.6918 20 10 30 18 38 8 58 14

20 8 −64.5043 −58.1203 10 8 20 12 28 8 56 4

21 20 −161.2637 −144.2564 35 18 47 24 74 8 93 26

22 −144.1195 36 18 46 22 76 6 94 26

23 16 −129.0224 −115.4658 28 14 38 22 54 8 76 20

24 8 −64.5283 −57.6927 16 8 16 8 32 0 32 12

25 −57.8895 12 10 16 16 24 8 32 12

26 −57.7018 12 8 24 8 24 0 48 12

27 −58.1095 10 10 20 16 20 8 40 12

28 −58.2748 8 10 24 16 16 8 48 12
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Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.5,0.0�, �0.5,0.0,0.5�, �0.0,0.5,0.5�,

�0.0,0.0,1.0�, �0.5,0.5,1.0�, �0.5,0.0,1.5�, �0.0,0.5,1.5�.
B: �0.0,0.0,2.0�, �0.5,0.5,2.0�, �0.5,0.0,2.5�, �0.0,0.5,2.5�,

�0.0,0.0,3.0�, �0.5,0.5,3.0�, �0.5,0.0,3.5�, �0.0,0.5,3.5�.

5. 4cub(5)

Unit cell basis vectors Cartesian coordinates:
�1.0,0.0,0.0�, �0.0,1.0,0.0�, �0.0,0.0,4.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.5,0.0�, �0.5,0.0,0.5�, �0.0,0.5,0.5�,

�0.0,0.0,1.0�, �0.5,0.5,1.0�, �0.5,0.0,1.5�, �0.0,0.0,2.0�.
B: �0.0,0.5,1.5�, �0.5,0.5,2.0�, �0.5,0.0,2.5�, �0.0,0.5,2.5�,

�0.0,0.0,3.0�, �0.5,0.5,3.0�, �0.5,0.0,3.5�, �0.0,0.5,3.5�.

6. 4cub(6)

Unit cell basis vectors Cartesian coordinates:
�1.0,0.0,0.0�, �0.0,1.0,0.0�, �0.0,0.0,4.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.5,0.0�, �0.5,0.0,0.5�, �0.0,0.5,0.5�,

�0.0,0.0,1.0�, �0.5,0.5,1.0�, �0.5,0.0,1.5�, �0.0,0.5,3.5�.
B: �0.0,0.5,1.5�, �0.0,0.0,2.0�, �0.5,0.5,2.0�, �0.5,0.0,2.5�,

�0.0,0.5,2.5�, �0.0,0.0,3.0�, �0.5,0.5,3.0�, �0.5,0.0,3.5�.

7. 4ppd1-2pl(1)

Unit cell basis vectors Cartesian coordinates:
�1.0,−1.0,0.0�, �1.0,1.0,0.0�, �0.0,0.0,2.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,−0.5,0.0�, �0.5,0.5,0.0�, �1.0,0.0,0.0�,

�0.5,0.0,0.5�, �1.0,−0.5,0.5�, �1.0,0.5,0.5�, �0.0,0.0,1.0�.
B: �1.5,0.0,0.5�, �0.5,−0.5,1.0�, �0.5,0.5,1.0�, �1.0,0.0,1.0�,

�0.5,0.0,1.5�, �1.0,−0.5,1.5�, �1.0,0.5,1.5�, �1.5,0.0,1.5�.

8. 4ppd1-2pl(2)

Unit cell basis vectors Cartesian coordinates:
�1.0,−1.0,0.0�, �1.0,1.0,0.0�, �0.0,0.0,2.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,−0.5,0.0�, �0.5,0.5,0.0�, �1.0,0.0,0.0�,

�0.5,0.0,0.5�, �1.0,−0.5,0.5�, �1.0,0.5,0.5�, �0.5,0.0,1.5�.
B: �1.5,0.0,0.5�, �0.0,0.0,1.0�, �0.5,−0.5,1.0�, �0.5,0.5,1.0�,

�1.0,0.0,1.0�, �1.0,−0.5,1.5�, �1.0,0.5,1.5�, �1.5,0.0,1.5�.

9. 9ppd1-1pl(1)

Unit cell basis vectors Cartesian coordinates:
�1.5,−1.5,0.0�, �1.5,1.5,0.0�, �0.0,0.0,1.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,−0.5,0.0�, �1.0,−1.0,0.0�,

�0.5,0.5,0.0�, �1.0,0.0,0.0�, �1.5,−0.5,0.0�, �1.0,1.0,0.0�,
�1.5,0.5,0.0�, �0.5,0.0,0.5�.

B: �2.0,0.0,0.0�, �1.0,−0.5,0.5�, �1.5,−1.0,0.5�, �1.0,0.5,
0.5�, �1.5,0.0,0.5�, �2.0,−0.5,0.5�, �1.5,1.0,0.5�, �2.0,0.5,0.5�,
�2.5,0.0,0.5�.

10. 9ppd1-1pl(2)

Unit cell basis vectors Cartesian coordinates:
�1.5,−1.5,0.0�, �1.5,1.5,0.0�, �0.0,0.0,1.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,−0.5,0.0�, �1.0,−1.0,0.0�, �0.5,0.5,

0.0�, �1.0,0.0,0.0�, �1.5,−0.5,0.0�, �1.0,1.0,0.0�, �1.5,0.5,0.0�,
�1.0,−0.5,0.5�.

B: �2.0,0.0,0.0�, �0.5,0.0,0.5�, �1.5,−1.0,0.5�, �1.0,0.5,0.5�,
�1.5,0.0,0.5�, �2.0,−0.5,0.5�, �1.5,1.0,0.5�, �2.0,0.5,0.5�,
�2.5,0.0,0.5�.

11. 9ppd1-1pl(3)

Unit cell basis vectors Cartesian coordinates:
�1.5,−1.5,0.0�, �1.5,1.5,0.0�, �0.0,0.0,1.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,−0.5,0.0�, �1.0,−1.0,0.0�,

�0.5,0.5,0.0�, �1.0,0.0,0.0�, �1.5,−0.5,0.0�, �1.0,1.0,0.0�,
�1.5,0.5,0.0�, �1.5,0.0,0.5�.

B: �2.0,0.0,0.0�, �0.5,0.0,0.5�, �1.0,−0.5,0.5�, �1.5,
−1.0,0.5�, �1.0,0.5,0.5�, �2.0,−0.5,0.5�, �1.5,1.0,0.5�, �2.0,
0.5,0.5�, �2.5,0.0,0.5�.

12. 1ppd2-1pl

Unit cell basis vectors Cartesian coordinates:
�1.5,−0.5,0.0�, �0.5,1.5,0.0�, �0.0,0.0,1.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �0.5,0.5,0.0�, �1.0,0.0,0.0�,

�1.0,0.5,0.5�.
B: �0.5,1.0,0.5�, �1.0,1.0,0.0�, �1.5,0.0,0.5�, �1.5,0.5,0.0�,

�1.5,1.0,0.5�.

13. 2ppd3a-1pl(1)

Unit cell basis vectors Cartesian coordinates:
�3.0,−1.0,0.0�, �0.5,0.5,0.0�, �0.0,0.0,1.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �1.0,0.0,0.0�, �1.5,0.0,0.5�.
B: �1.5,−0.5,0.0�, �2.0,−0.5,0.5�, �2.5,−0.5,0.0�, �3.0,

−0.5,0.5�.

14. 2ppd3a-1pl(2)

Unit cell basis vectors Cartesian coordinates:
�3.0,−1.0,0.0�, �0.5,0.5,0.0�, �0.0,0.0,1.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �1.0,0.0,0.0�, �2.0,−0.5,0.5�.
B: �1.5,0.0,0.5�, �1.5,−0.5,0.0�, �2.5,−0.5,0.0�, �3.0,

−0.5,0.5�.

15. 1ppd4-1pl

Unit cell basis vectors Cartesian coordinates:
�2.0,−1.0,0.0�, �0.5,0.5,0.0�, �0.0,0.0,1.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �1.0,0.0,0.0�.
B: �1.0,−0.5,0.5�, �1.5,−0.5,0.0�, �2.0,−0.5,0.5�.
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16. 2ppd4a-1pl(1)

Unit cell basis vectors Cartesian coordinates:
�4.0,−2.0,0.0�, �0.5,0.5,0.0�, �0.0,0.0,1.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �1.0,0.0,0.0�, �1.0,−0.5,0.5�,

�1.5,−0.5,0.0�, �2.0,−0.5,0.5�.
B: �2.0,−1.0,0.0�, �2.5,−1.0,0.5�, �3.0,−1.0,0.0�, �3.0,

−1.5,0.5�, �3.5,−1.5,0.0�, �4.0,−1.5,0.5�.

17. 2ppd4a-1pl(2)

Unit cell basis vectors Cartesian coordinates:
�4.0,−2.0,0.0�, �0.5,0.5,0.0�, �0.0,0.0,1.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �1.0,0.0,0.0�, �1.0,−0.5,0.5�,

�1.5,−0.5,0.0�, �2.5,−1.0,0.5�.
B: �2.0,−0.5,0.5�, �2.0,−1.0,0.0�, �3.0,−1.0,0.0�, �3.0,

−1.5,0.5�, �3.5,−1.5,0.0�, �4.0,−1.5,0.5�.

18. 2ppd4b-1pl

Unit cell basis vectors Cartesian coordinates:
�2.0,−1.0,0.0�, �1.0,1.0,0.0�, �0.0,0.0,1.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �1.0,0.0,0.0�, �1.0,−0.5,0.5�,

�1.5,−0.5,0.0�, �2.0,−0.5,0.5�.
B: �0.5,0.5,0.0�, �1.0,0.5,0.5�, �1.5,0.5,0.0�, �1.5,0.0,0.5�,

�2.0,0.0,0.0�, �2.5,0.0,0.5�.

19. 1ppd4-2pl

Unit cell basis vectors Cartesian coordinates:
�2.0,−1.0,0.0�, �0.5,0.5,0.0�, �0.0,0.0,2.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �1.0,0.0,0.0�, �1.0,−0.5,0.5�,

�1.5,−0.5,0.0�, �0.0,0.0,1.0�.
B: �2.0,−0.5,0.5�, �0.5,0.0,1.5�, �1.0,0.0,1.0�, �1.0,

−0.5,1.5�, �1.5,−0.5,1.0�, �2.0,−0.5,1.5�.

20. 2ppd3b-1pl

Unit cell basis vectors Cartesian coordinates:
�1.5,−0.5,0.0�, �1.0,1.0,0.0�, �0.0,0.0,1.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �1.0,0.0,0.0�, �1.5,0.0,0.5�.
B: �0.5,0.5,0.0�, �1.0,0.5,0.5�, �1.5,0.5,0.0�, �2.0,0.5,0.5�.

21. 1ppd2-2pl(1)

Unit cell basis vectors Cartesian coordinates:
�1.5,−0.5,0.0�, �0.5,1.5,0.0�, �0.0,0.0,2.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �0.5,0.5,0.0�, �0.5,1.0,0.5�,

�1.0,0.0,0.0�, �1.0,0.5,0.5�, �1.0,1.0,0.0�, �1.5,0.0,0.5�,
�1.5,0.5,0.0�, �0.0,0.0,1.0�.

B: �1.5,1.0,0.5�, �0.5,0.0,1.5�, �0.5,0.5,1.0�, �0.5,1.0,1.5�,
�1.0,0.0,1.0�, �1.0,0.5,1.5�, �1.0,1.0,1.0�, �1.5,0.0,1.5�,
�1.5,0.5,1.0�, �1.5,1.0,1.5�.

22. 1ppd2-2pl(2)

Unit cell basis vectors Cartesian coordinates:
�1.5,−0.5,0.0�, �0.5,1.5,0.0�, �0.0,0.0,2.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �0.5,0.5,0.0�, �0.5,1.0,0.5�,

�1.0,0.0,0.0�, �1.0,0.5,0.5�, �1.0,1.0,0.0�, �1.5,0.0,0.5�, �1.5,
0.5,0.0�, �0.5,0.0,1.5�.

B: �1.5,1.0,0.5�, �0.0,0.0,1.0�, �0.5,0.5,1.0�, �0.5,1.0,1.5�,
�1.0,0.0,1.0�, �1.0,0.5,1.5�, �1.0,1.0,1.0�, �1.5,0.0,1.5�, �1.5,
0.5,1.0�, �1.5,1.0,1.5�.

23. 2ppd3-3c-2pl

Unit cell basis vectors Cartesian coordinates:
�3.5,−0.5,0.0�, �0.5,0.5,0.0�, �0.0,0.0,2.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �1.0,0.0,0.0�, �1.5,0.0,0.5�,

�2.0,0.0,0.0�, �2.5,0.0,0.5�, �3.0,0.0,0.0�, �0.0,0.0,1.0�.
B: �3.5,0.0,0.5�, �0.5,0.0,1.5�, �1.0,0.0,1.0�, �1.5,0.0,1.5�,

�2.0,0.0,1.0�, �2.5,0.0,1.5�, �3.0,0.0,1.0�, �3.5,0.0,1.5�.

24. 2cub(1), Z2

Unit cell basis vectors Cartesian coordinates:
�1.0,0.0,0.0�, �0.0,1.0,0.0�, �0.0,0.0,2.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.5,0.0�, �0.5,0.0,0.5�, �0.0,0.5,0.5�.
B: �0.0,0.0,1.0�, �0.5,0.5,1.0�, �0.5,0.0,1.5�, �0.0,0.5,1.5�.

25. 2cub(2)

Unit cell basis vectors Cartesian coordinates:
�1.0,0.0,0.0�, �0.0,1.0,0.0�, �0.0,0.0,2.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.5,0.0�, �0.5,0.0,0.5�, �0.5,0.0,1.5�.
B: �0.0,0.5,0.5�, �0.0,0.0,1.0�, �0.5,0.5,1.0�, �0.0,0.5,1.5�.

26. 2cub(3)

Unit cell basis vectors Cartesian coordinates:
�1.0,0.0,0.0�, �0.0,1.0,0.0�, �0.0,0.0,2.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.5,0.0�, �0.5,0.0,0.5�, �0.0,0.5,1.5�.
B: �0.0,0.5,0.5�, �0.0,0.0,1.0�, �0.5,0.5,1.0�, �0.5,0.0,1.5�.

27. 2cub(4)

Unit cell basis vectors Cartesian coordinates:
�1.0,0.0,0.0�, �0.0,1.0,0.0�, �0.0,0.0,2.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.5,0.0�, �0.5,0.0,0.5�, �0.0,0.0,1.0�.
B: �0.0,0.5,0.5�, �0.5,0.5,1.0�, �0.5,0.0,1.5�, �0.0,0.5,1.5�.

28. 2cub(5)

Unit cell basis vectors Cartesian coordinates:
�1.0,0.0,0.0�, �0.0,1.0,0.0�, �0.0,0.0,2.0�.
Atomic Cartesian coordinates:
A: �0.0,0.0,0.0�, �0.5,0.0,0.5�, �0.0,0.0,1.0�, �0.0,0.5,1.5�.
B: �0.5,0.5,0.0�, �0.0,0.5,0.5�, �0.5,0.5,1.0�, �0.5,0.0,1.5�.
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