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An on-lattice kinetic Monte Carlo model of vacancy aggregation in crystalline silicon is parametrized using
direct regression to evolution data from nonequilibrium molecular dynamics simulations. The approach by-
passes the need to manually compute an energy barrier for each possible transition and leads to an excellent,
robust representation of the molecular dynamics data. We show that the resulting lattice kinetic Monte Carlo
model correctly captures the behavior of the real, continuous space system by properly accounting for con-
tinuous space entropic effects, which are often neglected in lattice-based models of atomistic processes. These
contributions are particularly important at the high temperatures relevant to many steps in semiconductor
materials processing.
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I. INTRODUCTION

The kinetic Monte Carlo �KMC� method has been applied
extensively in various forms to the study of microstructural
evolution in crystalline materials such as metals and semi-
conductors. While molecular dynamics �MD� offers a greater
degree of resolution, and only requires an interatomic force
field as input, it is limited in terms of the system scales that
can be addressed �nanoseconds and nanometers�. KMC, on
the other hand, coarse-grains the details of atomic vibration
�the principal time-scale limitation in MD�, but retains much
of the microscopic morphological information. The principal
drawback in KMC is that mechanistic information must be
supplied externally,1 as in the case of continuum scale mod-
eling.

There are two main classes of explicit-atom KMC
simulations—on-lattice and off-lattice. In the former, all spe-
cies are restricted to move and interact on a fixed lattice,
while in the latter all coordinates are possible. On-lattice
KMC �LKMC� offers significant computational advantages
because it is much simpler to specify the allowable event
database. However, the fixed lattice restriction can lead to
serious errors when the microstructural evolution under con-
sideration does not strictly adhere to the lattice. In some
cases, this possibility is obvious, such as in the case of inter-
stitial atom diffusion and aggregation, where the interstitial
atoms are, by definition, not on lattice sites. In others, it is
not possible to predict whether an on-lattice representation is
appropriate without more detailed calculations.

The required inputs for on-lattice KMC simulations of
aggregation phenomena, which are the focus of this paper,
are rates for the various allowable events, such as diffusion,
reaction, and clustering. There are several approaches for
specifying the rate process database in a lattice KMC simu-
lation. These include �1� full enumeration of all possible
transitions, �2� specifying a fixed set of possible events, and
�3� using the change in the number of bonds �which are
generally defined as the energy of interaction between spe-
cies on neighboring lattice sites� that result from a transition.
The relative merits of each of these approaches have been

discussed by Adams et al.,2 and the literature contains many
examples of each �e.g., see Refs. 3–5�.

The interaction distance between particles in a KMC
simulation is a particularly important parameter. For ex-
ample, La Magna et al.6 used a bond-counting model for
vacancy aggregation in Si, which includes interactions up to
the second-nearest-neighbor distance. Fichthorn and
Scheffler7 employed discrete Fourier transform �DFT� calcu-
lations to compute pairwise interactions as a function of dis-
tance up to the 13th nearest-neighbor �NN� shell in Ag is-
lands on Pt �111�. The number of rates that must be specified
for a complete description of a system can be large, particu-
larly in cases where long-range interactions exist between
particles and multiple chemical species are present. In gen-
eral, increasing the number of rate processes considered in-
creases the potential accuracy of the KMC simulation, but
also increases the number of parameters that must be speci-
fied, and concomitantly the computational expense of the
algorithm. Reducing, or coarse-graining, the allowable event
set is difficult to validate without detailed comparisons to
more accurate calculations or experimental data.

The aims of this paper are twofold. The first is to present
an alternative approach to on-lattice KMC rate parametriza-
tion, which is usually performed using the laborious process
of computing energy barriers for every event in the database.
In the present work, KMC rates are determined by direct
regression to molecular dynamics evolution data. While MD
can only access short times, we argue that for certain pro-
cesses such as the vacancy aggregation studied here, the ac-
cessible time scale is sufficient to extract the important rates.
The second aim is to highlight some basic issues related to
the description of intrinsically continuous-space phenomena
onto on-lattice representations. In particular, we highlight
how entropic effects, which are often neglected in lattice
KMC models, are captured in the rate parametrization ap-
proach discussed here.

In the present work, we use nonequilibrium vacancy clus-
tering in crystalline silicon to demonstrate these very general
concepts. This particular system choice is based on the fact
that vacancy aggregation is a technologically important pro-
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cess that has been characterized in detail with experiments8,9

and detailed continuum models,10–12 and also because
accurate empirical interatomic potentials are readily avail-
able.13–15 Vacancy aggregation is also often assumed to be a
prototypical “on-lattice system,” an assumption that we show
here to be invalid, particularly at elevated temperature. It is
expected that the overall approach presented in this paper
should be applicable to any system that is dominated by
processes that can be captured on the molecular dynamics
time scale.

The paper is organized as follows. In Sec. II the KMC
algorithm and bonding model for describing the possible
event database are presented. The MD-KMC regression is
described in Sec. III, along with the MD data that is used for
inferring the KMC rates. Results and discussion are pre-
sented in Sec. IV, followed by conclusions in Sec. V.

II. KMC MODEL

A. Algorithm

The overall structure of the bond-counting LKMC model
used in this study is shown in Fig. 1. The mobile species
�vacancies� first are placed uniformly throughout the lattice
and the rate matrix is initialized. At each simulation step, all
the possible events are grouped into different types according
to their rates. Each rate type, therefore, can include multiple
�different� events that possess the same rate, thereby reduc-
ing the number of unique event types in the simulation. In
Fig. 1, NR is the total number of rate types, Ni is the number
of events of type i, and P is the sum of all the rates of the
events that are possible at any given time. The standard
binary-tree search algorithm is used to pick an event type
first based on the total rate, P, and a uniform random num-
ber, U� �0,1�. Once a rate type is selected, a particular par-
ticle is randomly chosen to execute the event �from the rel-
evant subset of particles�.

Once the selected event is executed, the local configura-
tion and the rate database for vacancies that are possibly
affected by the execution of the event are updated accord-
ingly. The rate database only includes rate types that have

been accessed thus far. If a new event type is generated by
the previous move, it is added to the database. Finally, the
simulation time is updated using �t=−ln U / P �U is another
uniform random number, U� �0,1�, and the algorithm is re-
peated until the final time tend is reached.

B. KMC bonding model

The bonding model used here to describe the vacancy
cluster energies and therefore the transition rates is a gener-
alization of the model developed by La Magna et al.6 In their
model, La Magna et al. assumed that the vacancy–vacancy-
interaction distance extended up to the second-nearest-
neighbor distance �2NN�. An important feature of their
model was a screening effect that prevented interaction
“overcounting,” whereby two vacancies separated by a lat-
tice site only interact if the shared nearest neighbor �1NN�
site does not contain another vacancy. The energy of the
entire system is then given by

Eb = �
�i,j�

Eb
1

2
SiSj + �

�l,m�

Eb
2�Sk�
2

SlSm, �1�

where Eb is the energy of the system and Eb
1 and Eb

2 are the
bond energies associated with 1NN and 2NN interactions,
respectively. The Sx=i,j,k,l,m are site occupancy indices: Si=1
if site i is occupied by a vacancy, Si=0 if it is empty. The
screening physics are represented by Sk, where k is the
shared 1NN site between two 2NN vacancies: Sk=1 if a
shared 1NN interaction exists that is associated with a pair of
2NN vacancies on sites l and m, Sk=0 otherwise, so that

Eb
2�Sk� = �0 if Sk = 1

Eb
2 if Sk = 0.

	 �2�

The physical interpretation of the screening physics is dis-
cussed below. In the work of La Magna et al., the bonding
energies, Eb

1 and Eb
2, were computed by fitting to detailed

tight-Binding molecular dynamics �TBMD� calculations of
various cluster energies at a fixed temperature.16 While the
KMC predictions appear to be qualitatively reasonable, it is
difficult to say whether the model is mechanistically and
quantitatively correct, at least with respect to the TBMD
simulations that were used to parametrize the KMC param-
eters.

The need for the extended-range bonding model used in
the present study is based on the observation from MD simu-
lations that the vacancy–vacancy interaction actually extends
significantly beyond the 2NN distance. In fact, MD simula-
tions with various potentials17,18 indicate that the interaction
extends up to the 4NN distance along the �110� direction, and
somewhat less along other directions. Assuming that the
vacancy–vacancy interaction is approximately isotropic, the
interaction distance therefore can extend up to the 8NN in-
teraction shell! In our previous work,11 it was further shown
that this interaction distance was essentially independent of
the local environment, and can be assumed to be constant.

An extended-range bonding model that retains the screen-
ing concept discussed above is illustrated in Fig. 2. For any
given vacancy pair within interaction distance, the interac-

FIG. 1. Schematic representation of KMC algorithm.
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tion is screened if there exist one or more vacancies that are
closer to both than they are to each other. The screening
volume around two particles is determined by constructing a
sphere so that the particles lie on its circumference and are
connected by a diameter as shown in Fig. 3. The interaction
between vacancies A and B is screened if there are one or
more vacancies in the sphere.

The physical motivation for including screening into a
bonding model for vacancies is most easily understood by
considering that large vacancy clusters in any material, i.e.,
cavities, are characterized thermodynamically by their sur-
face area, not their volume.19 In reality, the driving force for
vacancy clustering is the reduction of dangling bonds on
atoms in the crystal matrix and not direct affinity between
the holes themselves.

Consider, for example, the hexagonal vacancy cluster
shown in Fig. 4. Without screening, there are a total of six
1NN, six 2NN, and three 3NN interactions, leading to a
volumetric contribution to the total bonding energy. With the
screening model outlined in Figs. 3 and 4 however, there are
only six 1NN interactions, which are clearly representative
of the cluster surface area. Interestingly, it will be shown in
Sec. IV C that it is not possible to obtain the correct cluster-

ing physics without the screening mechanism, regardless of
the values used for the various bonding energies.

C. Transition barriers and rates for on-lattice simulations

In principle, transition barriers for all events during the
KMC simulation can be computed based on the initial and
final states and the energy barrier associated with an isolated
single vacancy hop, �Ehop, i.e.,7

�Etotal = 0.5 � �Efinal − Einit� + �Ehop. �3�

The energy barrier for any transition is therefore given by

�Ei = max
0,�E0 − 0.5 � �
j=1

NN

��NBjEb
j �� , �4�

where �Ei is the energy barrier for event i, NN is the maxi-
mum interaction shell, �NBj is the bond-count change due to
a hop associated with interaction range j, Eb

j is the corre-
sponding bond energy. Note that all barriers are positive; if
the energy difference between the initial and final states is
negative and larger in magnitude than �E0, no energy barrier
exists for the hop. The rate of an event i is then simply given
by an Arrhenius expression of the form

FIG. 2. Examples of bonding energies for various configurations
aligned along the �110� crystallographic direction. The notation
Eb

3�110� and Eb
4�110� indicate a third-nearest neighbor and fourth-

nearest neighbor interaction along the �110� direction, respectively.

FIG. 3. Two-dimensional representation of screening volume
between two vacancies �gray circles�. Any occupied lattice sites
�small white circles� within the large circle lead to a screening of
the interaction between the two vacancies.

FIG. 4. Interactions of a hexagonal cluster �a� without and �b�
with interaction screening.
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ri = v0 exp
− �Ei

kBT
� , �5�

where ri is the rate for event i, v0 is the overall attempt
frequency, kB is the Boltzmann constant, and T is the tem-
perature.

While the Eb
j can be computed using molecular statics/

dynamics �empirical or electronic structure based�, it is im-
portant to note some important limitations of lattice-based
KMC. In off-lattice Monte Carlo simulations �kinetic or oth-
erwise�, changes in the configurational and vibrational en-
tropy between the initial state and final state are implicitly
accounted for because the system is being evolved in the full
�continuous� coordinate space. In lattice KMC, however,
atomic moves are performed on a much lower dimensional
subspace that neglects all of the vibrational, and most of the
configurational, entropy changes associated with a transi-
tion. We have recently shown �a� that the configurational
entropy associated with vacancy clusters at high tempera-
tures is entirely due to an enormous number of off-lattice
configurations,20 and �b� this configurational entropy is large
enough to substantially alter the equilibrium morphology of
these clusters.12

Obviously, these off-lattice states cannot be represented
explicitly in a lattice model. In some sense, each configura-
tion in the on-lattice system is a representative of a local
ensemble of off-lattice configurations in the continuous sys-
tem. A transition between two on-lattice configurations,
therefore, can be considered to be an effective transition be-
tween two ensembles. The nature of these ensembles is a
function of the degeneracy of the various configurations as
well as the distribution of vibrational states associated with
each one. Detailed analysis of this concept will be presented
in a future publication. Here, we hypothesize that reproduc-
ing the vacancy size distribution predicted by MD implies
that we have captured these off-lattice characteristics.
Equally importantly, we will show that leaving them out
leads to severe errors, particularly at high temperature.

III. KMC MODEL REGRESSION TO MD DATA

As mentioned in the Introduction, the overall approach
taken in this work to determine effective bond energies, Eb

j ,
is to regress them using direct comparison to MD evolution
data. In this section, we first outline the specific MD data that
will be used to compute the KMC rates, and then discuss the
regression approach.

A. Molecular dynamics evolution data

A single constant-NVT ensemble MD simulation was per-
formed in which 1000 uniformly spaced single vacancies
were placed in a cubic simulation box containing 215 000
silicon atoms arranged in a diamond lattice. The vacancy
population was evolved at 1600 K and zero pressure using
velocity rescaling for temperature control. Time integration
was performed using the Gear fifth-order predictor-corrector
algorithm with a time step of 0.77 fs. The environment-
dependent interatomic potential �EDIP�13 was used to com-

pute the atomic forces. The EDIP has been demonstrated to
give excellent predictions19 for vacancy and cluster energies
and structures.

The size distribution of vacancy clusters was monitored
periodically. At each sampling time, the locations of the va-
cancies were determined by quenching the lattice at constant
density and then comparing the atomic coordinates to a ref-
erence perfect crystal. The individual vacancies were then
assigned to clusters based on their mutual separation accord-
ing to the Stillinger cluster criterion.21 Finally, the clusters
were used to compute a size distribution and its moments for
use in the regression described below. Various components
of the cluster size distribution are shown in Fig. 5. The vari-
ous moments of the size distribution are defined as Mn
=�ss

nXs, where Xs is the number of clusters of size s, and n
is the moment order. Of particular note is the statistical qual-
ity of the data, which exhibits relatively little scatter due to
the large system size.

B. Regression approach

The regression approach for determining the KMC rate
parameters is shown in Fig. 6. For each comparison, the
KMC simulation is initialized in exactly the same manner as
the MD calculation described above and evolved for the
same duration of time. The input parameters to the KMC
simulation are the bond energies and the overall attempt fre-
quency, v0. Once the KMC run is completed, a normalized
objective function is evaluated based on a least-squares com-
parison of the KMC and MD size distribution components,

OF
�0,Eb

j
=

1

N
�
i=1

N 
2�Xi
KMC − Xi

MD�
Xi

KMC + Xi
MD �2

, �6�

where OF is the objective function, �0 is overall attempt
frequency, Eb

j is the bond energy for interaction j, and Xi
KMC

and Xi
MD are the data points at sampling point i from the

FIG. 5. Various components of the vacancy cluster size distri-
bution. X1 is the monomer �open squares�; X2, dimer �open circles�;
M0, the number of clusters �solid diamonds�; M2, the average clus-
ter size �solid circles�; M3, third-order moment �solid deltas�; M5,
fifth-order moment �solid squares�; and M7, seventh-order moment
�solid gradients�.
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KMC and MD simulations, respectively. Finally, N is the
total number of comparison points used in the regression.

As shown in Fig. 5, included in the comparison are the
concentration of monomers and dimers as well as several
moments. The motivation for using high-order moments is to
emphasize the large cluster contribution to the data given the
relatively short evolution time �about 5 ns�. The results of
three KMC runs are averaged at each objective function
evaluation to reduce the noise in the objective function.

The optimizer is based on a hybrid genetic algorithm
�GA� described in detail in Ref. 22, which allows for a global
parametric search on a nonconvex surface. Various con-
straints are imposed during the optimization process. Some
of these constraints are predefined “hard constraints” on the
allowable values of the bond energies and attempt frequency
to physically reasonable values. Other constraints are imple-
mented as “soft constraints” that add a penalty term to the
objective function defined in Eq. �6�. Each time the GA gen-
erates a new population of individuals, the corresponding
sets of parameters are passed to the KMC simulation to ob-
tain new objective function �fitness� values. The ability of the
GA to sample local minima is enhanced by including peri-
odic local minimization based on the simplex method. In this
approach, the best N+1 individuals are used to create an
N-dimensional simplex every three to four generations. This
simplex is evolved to the local minimum, and the new sim-
plex vertices are then passed back to the GA to replace the
worst individual in the current generation. The GA then pro-
ceeds to create the next generation using a sequence of mat-
ing and mutation operations.

IV. RESULTS AND DISCUSSION

Two sequences of rate regression studies were performed.
In the first, no constraints were applied other than the pre-
defined hard constraints, while in the second, a penalty func-
tion was additionally applied to the objective function in Eq.
�6�. These cases are discussed separately in the following
sections.

A. Unconstrained optimization

A sequence of KMC models, with different interaction
ranges, was regressed to the MD data shown in Fig. 5. The

interaction distance in these models ranged from 2NN up to
8NN, and the screening physics discussed in Sec. II B was
activated in all cases. For each fit, the bond energies and as
well as the overall attempt frequency, �0, were allowed to
vary subject to the predefined constraints. Note that the num-
ber of fitting parameters increases proportionately to the
vacancy–vacancy-interaction distance. The fit quality �i.e.,
the agreement between the KMC and MD cluster size distri-
butions� was generally found to increase slightly with in-
creasing interaction range, although almost all models led to
good representations of the MD data; the results for 2NN and
8NN KMC model fits are shown in Figs. 7 and 8, respec-
tively. Except for the monomer concentration evolution be-
ing somewhat slow in the 2NN case, both fits are excellent
overall.

As expected, the computational effort required to find the
best parameter values increased somewhat with increasing
number of parameters, and for the largest interaction dis-
tances it was not possible to be certain that the very best
parameter sets possible were located by the time the optimi-
zation was terminated. The uncertainty was minimized using
several regression runs with different initial conditions. Ter-
mination of the regression in each case was determined by
monitoring the evolution of the best objective function, and
typically about 8000 to 10 000 function evaluations were re-
quired before the objective function stopped evolving. In all
cases, the statistical fluctuations in both the MD and KMC
results also resulted in more difficult global optimizations.
The best objective functions obtained for each KMC model
are shown in Table I.

Also shown in Table I for each run is the ratio of the
KMC single vacancy diffusivity, DV1

KMC, to the MD value,
DV1

MD. Recall that the single vacancy diffusivity is given by
DV1=v0 exp�−�Ehop /kT� and is proportional to the overall
attempt frequency. Interestingly, as the interaction range in-
creases from 2NN to 8NN, the ratio decreases almost linearly

FIG. 6. KMC rate tuning framework.

FIG. 7. Comparison of MD and fitted KMC model �2NN� pre-
dictions for the vacancy cluster size evolution. Evolution profiles
are symbols for MD, solid lines for KMC; X1 is the monomer �open
squares�; X2, dimer �open circles�; M0, the number of clusters �solid
diamonds�; M2, the average cluster size �solid circles�; M3, third-
order moment �solid deltas�; M5, fifth-order moment �solid
squares�; and M7, seventh-order moment �solid gradients�.
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from 2.4 to unity. In other words, the best objective function
does not improve significantly as the interaction distance in-
creases because the regression process artificially increases
the overall attempt frequency in the system to compensate
for the incorrect physics. It is notable that the correct diffu-
sivity is almost exactly reproduced once the correct interac-
tion distance �8NN� is specified. Also note that this informa-
tion is not explicitly provided in any constraint, but rather is
implicitly present in the cluster size distribution evolution.
The vacancy diffusivity ratio evolution with interaction dis-
tance is shown graphically in Fig. 9, and other than the scat-
ter in the 6NN point, the regressed diffusivity ratio appears
to evolve smoothly to unity at 8NN.

B. Constrained optimization

The same series of experiments described in the previous
section was repeated, but this time the overall attempt fre-
quency was constrained so that the KMC single vacancy dif-
fusivity was matched to the MD value during the optimiza-

tion. This constraint was implemented by adding a penalty
term to the objective function in Eq. �6�. The optimization
problem is now formulated as

OF
�0,Eb

j
=

1

N
�
i=1

N 
2�Xi
KMC − Xi

MD�
Xi

KMC + Xi
MD �2

+ K�DV1
KMC − DV1

MD�2, �7�

where K is the penalty constant, which was set at 5 for all
runs.

The resulting best objective functions and diffusivity ra-
tios are shown in Table II. Because of the constraint on the
single vacancy diffusivity, the objective function values now
decrease monotonically with increasing the interaction range,
and the improvement of the fitting with increasing interac-
tion range is now significant as shown in Figs. 10 and 11 for
the constrained 2NN and 8NN KMC models, respectively. In
other words, the 2NN fit is now demonstrably worse than the
8NN fit, showing that it is impossible to obtain the correct
evolution while restricting the monomer diffusivity to its MD
value. As shown in Table II, forcing the KMC single vacancy
diffusivity to the MD value results in lower ratios at each
interaction distance, but once again a ratio of unity is not
attained until the correct interaction range is used in the
KMC simulation. Finally, the constrained and unconstrained
regressions give very similar fits to the MD data both in

FIG. 8. Comparison of MD and fitted KMC model �8NN� pre-
dictions for the vacancy cluster size evolution. Evolution profiles
are symbols for MD, solid line for KMC; X1 is the monomer �open
squares�; X2, dimer �open circles�; M0, the number of clusters �solid
diamonds�; M2, the average cluster size �solid circles�; M3, third-
order moment �solid deltas�; M5, fifth-order moment �solid
squares�; and M7, seventh-order moment �solid gradients�.

TABLE I. Objective function values and vacancy diffusivity ra-
tios for KMC models with different interaction ranges. Uncon-
strained regression.

Model Objective function DV1
KMC/DV1

MD

2NN 0.0741 2.37

3NN 0.0257 2.27

4NN 0.0214 2.05

5NN 0.0239 1.81

6NN 0.0361 1.15

7NN 0.0157 1.25

8NN 0.0211 1.05

FIG. 9. Ratio of single vacancy diffusivity obtained from KMC
models and MD as a function of KMC model interaction distance.

TABLE II. Objective function values and vacancy diffusivity
ratios for KMC models with different interaction ranges. Con-
strained regression.

Model Objective function DV1
KMC/DV1

MD

2NN 0.5415 1.47

3NN 0.2668 1.31

4NN 0.1642 1.18

5NN 0.1274 1.15

6NN 0.0515 1.06

7NN 0.089 1.01

8NN 0.111 0.97
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terms of quality and parameter values, further demonstrating
the robustness of the approach.

C. Unscreened interactions

To assess the effect of the screening physics introduced in
Sec. II B, several of the KMC models with the screening
physics deactivated were regressed to the MD evolution data
in Fig. 5 without any constraint on the overall attempt fre-
quency. None of the optimizations were found to give a sat-
isfactory representation of the MD data. The predictions of
the optimized 6NN KMC model, which led to the lowest

objective function, are shown in Fig. 12. Clearly the agree-
ment is poor for each component of the cluster size distribu-
tion, and provides strong evidence for the relevance of the
screening physics. Once again, the effect of the screening
physics is to ensure that the void energies scale with the
surface area of the clusters, rather than the volume. This
result demonstrates that the regressions are not overspecified,
i.e., even with nine parameters, it is still not possible to ob-
tain good agreement unless the model physics are correct.

D. Cluster morphologies and the effect of entropy

The inclusion of the full interaction range �8NN� in the
KMC model has profound effects on the predicted cluster
morphologies. Shown in Figs. 13�a� and 13�b� are snapshots
at 5 �s of the overall vacancy distribution taken from 2NN
and 8NN KMC simulations, respectively. In the former, the
clusters are observed to exhibit highly compact, faceted
structures. The facets are aligned along �111� orientations as
observed experimentally for much larger voids found in Czo-
chralski silicon crystals after cooling.8 In other words, these
structures are close to their expected energetic ground states.

On the other hand, the clusters in the 8NN simulation are
highly amorphous, extended structures, which are similar to
those found in MD simulations. Keep in mind that the clus-
ters in Fig. 13�b� are, of course, on-lattice structures because
of the fixed KMC lattice, while in MD simulations the “real”
clusters are best described as relatively amorphous regions
that contain the same number of vacancies. The extended
clusters in Fig. 13�b� have a larger capture radius, and are
more mobile, than the compact structures in Fig. 13�a�.
These two features lead to an enhancement of the evolution
dynamics in agreement with the MD predicted behavior.
Representative clusters from each simulation are shown in
Fig. 14.

FIG. 10. Comparison of MD and fitted KMC model �2NN� pre-
dictions for the vacancy cluster size evolution. Evolution profiles
are symbols for MD, solid line for KMC; X1 is the monomer �open
squares�; X2, dimer �open circles�; M0, the number of clusters �solid
diamonds�; M2, the average cluster size �solid circles�; M3, third-
order moment �solid deltas�; M5, fifth-order moment �solid
squares�; and M7, seventh-order moment �solid gradients�.

FIG. 11. Comparison of MD and fitted KMC model �8NN� pre-
dictions for the vacancy cluster size evolution. Evolution profiles
are symbols for MD, solid line for KMC; X1 is the monomer �open
squares�; X2, dimer �open circles�; M0, the number of clusters �solid
diamonds�; M2, the average cluster size �solid circles�; M3, third-
order moment �solid deltas�; M5, fifth-order moment �solid
squares�; and M7, seventh-order moment �solid gradients�.

FIG. 12. Comparison of MD and fitted KMC model �with no
screening� predictions for the vacancy cluster size evolution. Evo-
lution profiles are symbols for MD, solid line for KMC; X1 is the
monomer �open squares�; X2, dimer �open circles�; M0, the number
of clusters �solid diamonds�; M2, the average cluster size �solid
circles�; M3, third-order moment �solid deltas�; M5, fifth-order mo-
ment �solid squares�; and M7, seventh-order moment �solid
gradients�.
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The difference between the cluster morphologies in the
2NN and 8NN KMC models can best be understood by con-
sidering the thermodynamics of the real, continuous system.
We have recently shown that the high temperature properties
of atomic clusters in silicon are dominated by the presence of
an extremely large number of mechanically stable off-lattice
configurations. These states lead to significant configura-
tional entropy, which has been neglected in the literature, and
in conjunction with the vibrational entropy, shift the free
energy minimum from the energetic ground state to a collec-
tion of extended structures such as the one shown in Fig.
14�b�. Interestingly, EDIP MD simulations at 1600 K show
vacancy cluster morphologies that are qualitatively similar to
the one shown in Fig. 14�b�. A more direct comparison is not
possible because the MD structures quench into complex off-
lattice configurations that make vacancy identification am-
biguous.

The physics of the 2NN and 8NN KMC models were
further probed by computing cluster diffusion coefficients.
Note that, like the single vacancy diffusivity, cluster diffu-

sivities are not explicitly considered in the regression pro-
cess. Furthermore they are complex functions of many types
of single vacancy hops with different transition rates. As a
result they provide a strong test of the overall physical ro-
bustness of the KMC models generated in this work. Shown
in Fig. 15 are various cluster diffusion coefficients predicted
by the 2NN and 8NN KMC models, along with the values
computed with full MD. Details of the calculation approach
used to compute the diffusion coefficients are given in Ref.
11. The agreement between the 8NN KMC model predic-
tions and the MD values is excellent for all cluster sizes
�including single vacancies�. On the other hand, the 2NN
KMC model leads to substantially worse representation of
the cluster diffusivities. The regression procedure artificially
inflates the value of the overall attempt frequency to com-

FIG. 13. Snapshots of vacancy cluster distributions at 5 �s; �a�
2NN model and �b� 8NN model.

FIG. 14. Comparison of cluster morphologies predicted by �a�
2NN model and �b� 8NN model.

FIG. 15. Comparison of cluster diffusivities from 2NN and 8NN
KMC models. Solid line and open squares are MD values; dashed
line and solid circles, 8NN KMC values; solid line and open deltas,
2NN KMC values.
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pensate for the low mobility of the compact structures. As a
result, small clusters are too fast, while larger ones become
too slow.

The ability of the regression approach presented in this
work to correctly reproduce the MD dynamics, while pre-
dicting the correct vacancy cluster diffusion coefficients and
cluster morphologies, implies that we have correctly pro-
jected the full dimensional thermodynamics onto the re-
stricted subspace of the lattice KMC. In some sense, clusters
such as the one shown in Fig. 14�b� are representative struc-
tures of ensembles of complex off-lattice morphologies that
appear in MD simulations. On the other hand, restricting the
cluster definition to the 2NN interaction distance greatly re-
duces the degrees of freedom available to capture this effect
and leads to compact structures, which are not observed in
EDIP MD simulations at 1600 K.

E. KMC evolutions based on on-lattice energies

Our final investigation was to assess the standard ap-
proach of computing energy barriers using the energies of
on-lattice configurations and Eqs. �3� and �4�. A very large
number of on-lattice structures ��10 000� were generated
and statically relaxed with conjugate gradient energy mini-
mization based on the EDIP potential. The structure-energy
database was then used to extract “on-lattice bond energies”
up to 8NN. The regressed bond energies were found to al-
most exactly reproduce the MD formation energy of all
structures in the database. Note that the lattice-based barriers
still capture some elements of the interatomic potential be-
cause of the static relaxation used to compute the configura-
tion energies.

The resulting “on-lattice” bond energies were then used to
compute energy barriers in a new 8NN KMC simulation, in
which the overall attempt frequency was fixed to the MD
value. The predicted KMC evolution is compared to the MD
data in Fig. 16 and exhibits substantially slower evolution. In
fact, shortly after most of the monomers are consumed at
about 300 ps, the evolution is dramatically slowed because
of the high-energy barriers associated with cluster breakup
and rearrangement, which are required for diffusion and coa-
lescence. It was found that the overall attempt frequency
needed to be increased about 20-fold before the evolution
became comparable to the MD rate.

The failure of this model to predict even qualitatively rea-
sonable evolution can be attributed to the fact that in this
approach the on-lattice structures do not represent in any
way the physics of the real off-lattice structures. In particu-
lar, the configurational and vibrational entropy associated
with the off-lattice ensemble is completely neglected. Note
that the on-lattice configurational entropy naturally is in-
cluded in any KMC model, but as we have shown in other
work,20 it is not sufficient to lead to destabilization of the
compact geometry at any temperature of interest.

V. CONCLUSIONS

A regression approach was used to compute effective
bond energies for vacancy clusters in an on-lattice KMC

model. The resulting bond energies lead to an excellent rep-
resentation of vacancy clustering at high temperature. It is
shown that two elements are required to capture the correct
physics. The first is a large vacancy-vacancy interaction dis-
tance, up to the eighth neighbor shell, while the second is a
correct projection of continuous-space entropic effects onto
the lattice subspace of the KMC simulation. In the present
work, these entropic contributions were obtained indirectly
by the regression to MD evolution data. A more direct con-
nection between the lattice and continuous spaces will be the
subject of future work.

Some limitations of the present approach should be noted.
First, the MD evolution data is necessarily limited to very
small time scales �ns�. This means that atomic processes that
occur on slower time scales are not captured in the MD data
and therefore are not transmitted to the KMC rate param-
eters. The high temperature used in the present work miti-
gates some of these limitations for the specific case of va-
cancy aggregation. The fact that the predicted cluster
diffusion coefficients and morphologies are in excellent
agreement with MD values is a strong indicator that the es-
sential components of the problem physics are captured. In
other words, vacancy cluster diffusion and coalescence occur
by a sequence of single-vacancy events that are captured
fully by the MD data. A second limitation of the approach is
the lack of transferability to different temperatures. The
KMC bond energies regressed in this study are valid only at
1600 K because they contain temperature dependent infor-
mation from the full continuous-space problem, such as vi-
brational and configurational entropies. Unless these entro-
pies are explicitly known, there is no way to rescale the
parameters for use at other temperatures without repeating
the entire regression process. Future work will be aimed at
estimating explicitly these contributions to generalize the ap-
proach to variable temperature situations, and remove the
restriction posed by the need for multiple lengthy large-scale
MD simulations.

FIG. 16. Comparison of MD and on-lattice energy KMC model
�with interaction screening� predictions for the vacancy cluster size
evolution. Evolution profiles are symbols for MD, solid line for
KMC; X1 is the monomer �open squares�; X2, dimer �open circles�;
M2, the average cluster size �solid circles�; and M7, seventh-order
moment �solid gradients�.
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The above limitations notwithstanding, it is expected that
the approach presented in this paper for developing KMC
models should be useful for a variety of systems that are
accessible with direct MD simulation. KMC modeling of the
evolution of defect clusters in multicomponent semiconduc-
tor systems such as silicon-germanium and silicon-carbide,
in particular, potentially requires the specification of an enor-
mous number of event rates because of the large number of
different microconfigurations possible. With the present ap-
proach, many of the redundant transitions would be lumped
together automatically, the precise nature of the lumping be-
ing dependent on the specific KMC rate kernel being param-

etrized. Similarly complex aggregation processes in metallic
systems, such as point defect-impurity coaggregation, also
should be amenable to treatment within the current frame-
work.
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