
Nuclear resonant spectroscopy at Bragg reflections from periodic multilayers: Basic effects and
applications

M. A. Andreeva
Department of Physics, M. V. Lomonosov Moscow State University, 119992, Moscow, Russia

B. Lindgren
Department of Physics, Uppsala University, Box 530, 751 21, Uppsala, Sweden

�Received 4 March 2005; revised manuscript received 21 June 2005; published 16 September 2005�

A systematic study of the Bragg nuclear resonant reflectivity from periodic multilayers in the energy and
time domains is presented. Using the kinematical approach of the general reflectivity theory we describe the
basic features of the time evolution of the reflected wave after a pulsed excitation of resonant multilayers by
synchrotron radiation. Effects of the collective excitation have been examined such as the shift of quantum beat
phases, the interplay between electronic and nuclear subsystem excitations depending on their relative position
in a multilayer, the energy and time evolution of standing waves inside a resonant multilayer, and their
influence on the reflectivity spectra. The exact expression for the reflectivity by a thin resonant layer placed
inside a multilayer structure has been derived. The observed shift of the delayed reflectivity Bragg peak relative
to the prompt peak is explained by the developed formalism. Experimental applications are discussed with
examples of magnetic profile determinations in Fe/Cr, Fe/V, and Fe/Co multilayers measured at ESRF.
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I. INTRODUCTION

In the last decades great progress has been achieved in
fabrication of periodical multilayers with controlled thin-film
growth at the atomic level. Such heterogeneous semiconduc-
tor, metallic, oxide, and superconducting structures have
been investigated intensively. The unique structural, mag-
netic, electrical, and optical properties, such as perpendicular
anisotropy, antiferromagnetic interlayer magnetic coupling,
giant magnetoresistance, spin-dependent conductivity, and
proximity effects, form the basis of numerous applications of
multilayers for new technologies, such as x-ray mirrors,
memory cells, spin valves, magnetic recording heads,
electro-optical sensors, communication sectors, etc. On the
other hand they exhibit an extremely interesting physics of
magnetic properties, electronic phenomena, and structural
complexity which has not been fully understood yet. There is
a lot of evidence that interfaces play a key role in most of the
phenomena. Characterization of buried interfaces remains
one of the great experimental challenges in material science.
For such investigations more and more sophisticated experi-
mental techniques are being developed.1

The basic method for multilayer structure investigations
has been x-ray or neutron diffraction and grazing-angle
specular reflection, but for the understanding of the local
magnetic and electronic properties resonant methods such as
NMR,2 Mössbauer or nuclear resonance spectroscopy,3–5 va-
lence and core-level spectroscopy, and in particular x-ray
magnetic circular and linear dichroism as well as spin-
polarized photoemission1 are more informative. Essential im-
provement of depth selectivity in such investigations up to
one atomic monolayer can be achieved with probe-resonant
monolayers, e.g., in Mössbauer spectroscopy 57Fe monolay-
ers may be embedded at a definite depth.3–5 The obvious
drawback of such investigations is the necessity to prepare

sets of identical samples with different depth positions of the
resonant probe layer. Even in the best technological produc-
tion cycles full reproducibility is difficult to achieve. An al-
ternative is to embed the probe-resonant layer in a step or
wedge fashion.6,7

Resonant investigations with high depth selectivity can be
performed on superstructures when they are combined with
specular reflection or diffraction. Mössbauer spectra at total
external reflection from a 57Fe mirror were already measured
in 1963 by Bernstein and Campbell.8 Since that time only a
few Mössbauer experiments in grazing geometry were
performed,9–17 qualified as “the exotic side of the method.”18

The main difficulty was the low intensity obtainable with
radioactive sources when selected within the small angular
divergence ��0.5 mrad� required for reflectivity measure-
ments. This difficulty does not exist for synchrotron radiation
�SR� which is naturally strongly collimated. SR beams of
high brilliance supply the possibility to investigate the reflec-
tivity with high accuracy on a large angular scale and in the
energy range needed for nuclear resonances as well as to
perform x-ray resonant spectroscopy near the atomic absorp-
tion edges. When beamlines for nuclear resonant scattering
had been developed at the third-generation SR facilities
�ESRF, APS, KEK, SPRING-8�, the nuclear resonant reflec-
tivity at grazing angles �“synchrotron Mössbauer reflectom-
etry”� became a standard method for thin-film and multilayer
investigation �see, e.g., the review by Chumakov et al.19�.

The essential difference between nuclear resonant spec-
troscopy with SR and ordinary Mössbauer spectroscopy lies
in the energy resolution of the incident radiation. In Möss-
bauer spectroscopy an “energy scan” of the hyperfine-split
nuclear transitions is performed, while supermonochromati-
zation of SR up to the width of the nuclear resonant line
��10−8 eV in the case of 57Fe� is extremely difficult. How-
ever, the pulsed structure of SR provides the possibility to

PHYSICAL REVIEW B 72, 125422 �2005�

1098-0121/2005/72�12�/125422�22�/$23.00 ©2005 The American Physical Society125422-1

http://dx.doi.org/10.1103/PhysRevB.72.125422


investigate the nuclear decay in the time domain and the
hyperfine splitting is characterized by quantum beats in the
time evolution of the nuclear resonant scattering �see Ref. 20
and references therein�. This circumstance leads to specific
peculiarities of Mössbauer spectroscopy with SR, which
have been discussed in many papers �for a review, see Ref.
21� but here we shall focus our attention on some other ef-
fects related to the reflectivity process itself.

Spectroscopy of the reflectivity signal reveals some addi-
tional features in reflectivity theory. In particular, the reflec-
tivity is usually considered as the total result of interaction of
radiation with the whole multilayer �multibeam interference�,
but with a spectroscopic analysis it became possible to dis-
cuss the different contributions from different groups of at-
oms or resonant nuclei to the reflectivity signal. For example,
the delayed integral reflectivity of the nuclear resonance scat-
tering �delayed due to the finite lifetime of the resonant
nuclear level� provides actually a way to select the nuclear
resonant response from the prompt electronic scattering. An-
other feature is the appearance of a peak, near the critical
angle for total external reflection, in this delayed integral
reflectivity curve,22,23 different from the ordinary reflectivity
curve. Due to the sensitivity of the nuclear resonant scatter-
ing to the magnetic alignment, additional Bragg peaks appear
on the delayed nuclear resonant reflectivity curve when the
magnetic period of the superstructure differs from the chemi-
cal one,22,24,19 similar to what is seen in polarized neutron
reflectometry. In this article we shall also discuss the shift of
the delayed Bragg peak relative to that observed in the
prompt reflectivity curve. Use of the radiation field transfor-
mation and the standing-wave concept will turn out to be
very efficient for the description of the selected contributions
to the reflectivity signal.25

Another example of the drawbacks of the ordinary reflec-
tivity theory when combined with the spectroscopic analysis
is the description of the influence of roughness. The com-
monly used Nevot-Croce or Debye-Waller attenuation
factors26,27 do not describe the peculiarities of the influence
of roughness on the different spectrum contributions to the
reflectivity signal.

Going to the spectroscopy analysis, we should keep in
mind that reflectivity spectroscopy differs in many aspects
from common transmission spectroscopy. In the first papers
on Mössbauer total external reflection8,9 it was shown that
resonant lines in reflectivity spectrum have an asymmetric
dispersionlike shape in accordance with the ordinary Fresnel
formula with a dip at angles lower than the critical angle and
a peak at larger angles �see also the experimental
results16,17�. The line shape becomes even more complicated
near a Bragg maximum12,13,19 for periodic resonant multilay-
ers. Extremely broad and distorted lines were observed in
pure nuclear reflections from grazing-incidence antireflection
films.14,28–33 For the conversion electron Mössbauer spectra
�CEMS� measured at total reflection, a resonant distortion of
the “background line” appears �in addition to the distortion
of the resonant lines itself� as a result of the modulation of
the photoelectron yield by the resonant dependence of the
radiation field inside the resonant media.34–36 Another com-
plication of the spectrum analysis arises in the time represen-
tation of the reflectivity spectrum where dynamical beats,

enhancement of the initial decay, and speed-up effects essen-
tially change the simple quantum beat pattern19,37 �in the
same manner as for the saturated forward scattering21�.

These circumstances make the numerical analysis of the
reflectivity spectra more complicated compared to the analy-
sis of absorption spectra but do not invalidate the main sub-
ject of the spectroscopic analysis: the relative weights of the
contributions. In the reflectivity spectrum, as distinct from
the absorption spectra, the relative weights of different con-
tributions strongly depend on the depth position, smoothness
of the resonant scattering distribution, and small variations of
the angle. The description and explanation of such effects
will be the main purpose of the present paper.

A main advantage with reflectivity spectroscopy is the
pronounced decrease of the radiation penetration depth �up
to �3 nm� at angles less than the critical angle of the total
external reflection ��3.8 mrad for pure iron and 14.4 keV
radiation� with the ensuing increase of the surface sensitivity
of the method. Beyond the critical angle the penetration
depth is gradually increased, additional spectrum compo-
nents from deeper layers are added to the reflectivity spec-
trum, and we obtain the possibility to perform a “depth
scan.” Impressive experimental examples of investigations of
the depth distribution of corrosion products in 57Fe thin films
using grazing- incidence Mössbauer spectroscopy �Möss-
bauer reflectometry in the energy domain� were presented in
Refs. 11, 15, 35, and 36 and using the time domain “synchro-
tron Mössbauer reflectometry” in Refs. 38 and 19.

For the Bragg reflectivity from periodic multilayers this
simple idea about penetration depth does not work. However,
as we are going to show here, the depth selectivity of the
Bragg reflectivity spectroscopy becomes even more essential
when it is applied to one repetition period of the multilayer
structure. An excellent demonstration of such a structure sen-
sitivity of the resonant x-ray Bragg reflectivity was given by
Sève et al.39 where the magnetic moment depth profiles in a
repetition period of Ce/Fe and La/Fe structures were ob-
tained from L2,3-edge reflectivity spectra.

In general, the analysis of the contributions to the reflec-
tivity spectrum is quite complicated because reflectivity is a
coherent sum of waves multiple-reflected by all boundaries
in the multilayer. In our discussion of the Bragg reflectivity
we shall use the kinematical approximation of the reflectivity
theory,40 being reasonably good for glancing angles much
larger than the critical angle of total external reflection. This
approximation gives a clear picture of the interference pro-
cess between reflected waves and even describes the
standing-wave influence on the reflectivity25,41–44 via the
generalized Laue function, at least on a qualitative level.
When necessary we compare the kinematical approximation
with full numerical calculations using the Parratt
formalism,45 or generalized recurrent formalism for aniso-
tropic multilayers.46,47

In this paper we present a detailed analysis of the reflec-
tivity spectrum formation and explain different effects ap-
pearing in the spectral shape. The normal interference effects
have the most pronounced influence on the intensity of the
different spectral lines in the energy domain and on the shift
of the phases of quantum beats in the time domain. However,
the collective character of the multilayer excitation reveals
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itself even for systems with relatively small amount of rep-
etitions. The most surprising thing is the time dependence
induced into the electronic response which in the absence of
resonant nuclei is just prompt. This leads to additional inter-
ference contributions in the reflectivity time spectrum and is
a true signature of the collective character of the excitation in
a resonant multilayer. Other evidence is the existence of an
interference peak previously observed in the delayed reflec-
tivity curve,22,23 being the result of the influence of the elec-
tronic response on the nuclear subsystem excitation. Here we
will show that analogously it is possible to observe a shift of
the delayed Bragg peak relative to the prompt electronic one.
The derived formula for the reflectivity of a thin layer placed
inside a periodical multilayer explains this results in terms of
standing waves. We present a number of model examples
which illustrates various peculiarities observable in the re-
flectivity spectra in both the energy and the time domains
and show how these effects may be used in order to extract
depth-selective information of the local magnetization. The
analyses of experimental nuclear resonant reflectivity data
obtained for the periodic multilayers 57Fe/Cr, 57Fe/V,
57Fe/Co, and thin 57Fe films in a nonresonant periodic struc-
ture are discussed.

II. THE KINEMATICAL APPROXIMATION

The well-known Parratt recursive algorithm45 is usually
used for calculations of the reflectivity,

Rj =
rj + Rj+1e2i�j

1 + rjRj+1e2i�j
. �1�

Here rj is the Fresnel amplitude of the reflection at the
boundary between layer numbers j−1 and j. Rj+1 is the co-
efficient of the multiple reflection at the previous boundary
between the j and j+1 layers, � j =�� jdj is the phase shift for
the reflected wave in layer j having the thickness dj, and � j
is the projection of the wave vector �in units of �=2� /�� on
the surface normal q,

� j = �sin2 � + 	 j , �2�

where � is the glancing angle of incidence. The indexing
is running from the top to the substrate, i.e., j=0 is the
outer space above the sample surface �air or vacuum� and j
=N+1 corresponds to the “infinitely thick” substrate on
which the N layers are grown. The susceptibility 	 j of layer
j is given by

	 j =
4�

�2 
 j f j =
�2

�

 j f j �3�

where f j is the forward scattering amplitude and 
 j is the
volume density of the scattering centers. For monatomic sub-
stances it can be calculated from the density and atomic
weights �the important x-ray data are available on the world-
wide web48�. In our case f j includes the electronic charge
scattering as well as the nuclear resonant scattering:

f j = f j
el + f j

nuc��� . �4�

For the electronic part we have

fel = − r0�Z + �f� + i�f�� �5�

where r0 is the radius of the electron, Z+�f� and �f� are the
real and imaginary parts of the atomic scattering amplitude
in units of r0 �the atomic amplitude of x-ray scattering can be
taken from Ref. 49�. The nuclear resonance part of the sus-
ceptibility is energy �or frequency� dependent:

	nuc��� = − ��nuc�
i

Ai�i/2q

� − �i + i�i/2q
. �6�

If Ai is normalized so that �iAi�i=�nat ��nat is the natural
total linewidth of the resonance�, then the linear nuclear ab-
sorption coefficient nuc is

nuc = �res
fLMP �7�

where �� =� /2�=1/�,

�res =
2�

k2

2Ie + 1

2Ig + 1

��

�nat

is the cross section of the nuclear resonant absorption, Ie,g are
the spins of the exited and ground states, �� /�nat=1/ �1+��
is the ratio of the radiative linewidth to the total linewidth,
� is here the conversion coefficient �for 57Fe, �res
=2.56�10−4 nm2 �Ref. 50��, 
 is the volume density of reso-
nant nuclei, fLM is the probability of the Mössbauer effect,
and P is the enrichment of the nuclear resonant isotope.
In the case of �-Fe 
=84.9 nm−3 and we have ��nuc

=1.98�10−4for fLM=0.7 and P=0.95.
The Parratt formula �1� takes into account the multiple

interference of all the waves successively reflected by the
boundaries of each layer. It is equivalent to the exact solution
of the Maxwell equations for a stratified medium. Such an
approach is often called a dynamical theory. Multiple inter-
ference presented by Eq. �1� corresponds to a rather compli-
cated picture of interaction so qualitative analysis of the
spectrum formation is not feasible on the basis of Eq. �1�.
However, for Bragg reflectivity investigations at angles es-
sentially larger than the critical angle �c of the total external
reflection of x rays ��� �2–3��c�, the kinematical approxi-
mation can be effectively used �as was done for the resonant
magnetic L2,3 x-ray spectrum fit in Ref. 39�. Such an ap-
proximation can be obtained from the Parratt formula �1� as
the result of the following successive simplifications. First
we neglect multiple scattering and consequently the denomi-
nator in Eq. �1�. Second, when sin2 ��	, we can expand Eq.
�2� as

� � sin � +
	

2 sin �
. �8�

And third the Fresnel expression for the reflectivity can be
replaced by its approximate formula

rj =
� j−1 − � j

� j−1 + � j
�

	 j−1−	 j

4 sin2 �
. �9�

Accordingly, the phase difference between waves reflected
by two subsequent boundaries j and j+1 becomes
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e2i�j � e2i�dj�sin �+	j/2 sin ��. �10�

Hence, we get the following general kinematical formula for
the reflectivity amplitude:

R =
1

4 sin2 �
�
j=1

L

�	 j−1 − 	 j�exp	i
Qzj−1 +
�

sin �
�
k=1

j−1

	kdk�� ,

�11�

where zj−1 is the depth of the boundary between layers j−1
and j, calculated from the surface z0=0, and Q
= �4� /��sin � is the scattering vector. Formula �11� has an
obvious interpretation as a sum of waves reflected by all
boundaries in the multilayer, accounting for the proper phase
difference. In Eq. �11�, which in our definition describes the
general kinematical approximation, absorption and refraction
effects on the phase factors are still taken into account.

The kinematical formula �11� reduces to the simplest form
�kinematical limit� if we further neglect the absorption and
refraction in the phase shifts of the different contributions:

R =
1

4 sin2 �
�
j=1

L

�	 j−1 − 	 j�eiQzj−1. �12�

In Ref. 40 the different kinematical approaches are compared
by calculations of the reflectivity curve as a function of the
angle. It was shown that only near the total external reflec-
tion angle does the the full Parratt formula have to be used
and at the larger glancing angles one may even use the sim-
plest kinematical limit. Here we analyze the applicability of
the kinematical approach for the description of the reflectiv-
ity spectra in the energy and in the time domain �Fig. 1�.

In the calculations we have used a simple model system: a
periodic �57Fe�1.5 nm� /V�1.5 nm��N multilayer �N is the
number of repetitions� with an ad hoc 21 T magnetic hyper-
fine field on the 57Fe nuclei oriented perpendicular to the
layer boundaries �only the second and fifth lines in the sextet
spectrum are then excited by the linear �-polarized SR
beam�. The enrichment P=0.5 was chosen. The exact first-
order Bragg angle is 14.75 mrad for a 3 nm repetition period
and a resonant wavelength of 0.086 nm. Figure 1 shows that

the main features of the spectra are quite similar for all three
methods of reflectivity calculation. The general kinematical
approximation deviates very little from the exact calculations
and even the simplest kinematical approximation reproduces
the main features of the spectra rather well for a qualitative
analysis. However, the difference of the spectrum shapes in-
creases with the number of repetition periods, so for more
accurate calculations �e.g., in a fit procedure� the effects of
the multiple scattering �dynamical interaction of radiation
with the sample� should be taken into account.

For real samples several factors �reducing “the density of
the nuclear resonant interaction”� can decrease the dynamical
effects in the reflectivity spectrum, such as the splitting and
the broadening of the resonant lines, the relative thickness of
the resonant layers in the repetition period, or a dilution of
the resonant nuclei density by nonresonant atoms due to in-
termixing, oxidation, hydrogenation, etc., of the layers. For a
given sample, a simple way of decreasing the dynamical in-
teraction �and, hence, simplifying the interpretation of the
reflectivity spectra� is a small shift of the angle from the
exact Bragg position. However, the reduction of the speed-up
and dynamical beat effects in the reflectivity spectra is not
the only effect appearing with variation of the angle in vicin-
ity of the Bragg peak. We shall return to this question in Sec.
VIII.

III. REFLECTIVITY FROM A PERIODIC STRUCTURE

For a periodic multilayer we can extract the repeated part
in Eqs. �11� and �12� by writing

zj = nD + � j �13�

where D is the repetition period of the structure and � is the
z coordinate within each period �Fig. 2�. Equation �12� is
then expressed as

R =
1

4sin2�
�1 + eiQD + e2iQD + e3iQD

+ ¯ + e�N−1�iQD��
j=1

J

�	 j−1 − 	 j�eiQ�j−1, �14�

where N is the number of periods in our structure. The sum
over j refers to the J boundaries within one period and we
can define a structure factor of the “unit cell:”

FIG. 1. �Color online� Comparison of the energy and time spec-
tra shape of reflectivity at the Bragg angle, calculated in the dy-
namical approximation of the reflectivity theory by formula �1�
�solid curve�, in the general kinematical approximation by formula
�11� �dashed curve�, and in the simplest kinematical approximation
by formula �12� �dotted curve�. The model is described in the text.

FIG. 2. Coordinates of layer boundaries zj and coordinates in
one repetition period � j.
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F =
1

4 sin2 �
�
j=1

J

�	 j−1 − 	 j�eiQ�j−1. �15�

The geometrical progression in Eq. �14� is the famous Laue
function LN:

LN = �1 + eiQD + e2iQD + e3iQD + ¯ + e�N−1�iQD� =
1 − eiNQD

1 − eiQD

�16�

and the reflectivity from the periodic multilayer is expressed
as

R = LN��,D�F��,dj,	 j� . �17�

Finally we have obtained the following essential features of
the simplest kinematical approximation �12� in a periodic
structure. The Laue function LN depends only on the angle �,
the repetition period D of the structure, and the number of
periods N. At the exact Bragg conditions QD=n�2�, and
we have simply LN=N. The variation of this function with
the angle is well known. It determines the shape of the Bragg
peak. It is essential to notice that the Laue function changes
rapidly with small angle variations near the Bragg maximum
�� is multiplied by N�, while the structure factor varies very
slowly. All peculiarities of the spectra, structural information,
and in particular their depth selectivity on the scale of one
repetition period are contained in the structure factor F �Eq.
�15�� �or see further Eq. �21��. Hence, in this simplest kine-
matical limit �12� we have almost no variation of the spec-
trum shape in the vicinity of the Bragg peak but only the
usual intensity reduction. However, if the resonant suscepti-
bility is included in the phase factors in Eq. �14�, as in Eq.
�11�, the nuclear resonant interaction will introduce addi-
tional effects that will be described later in Sec. VIII.

IV. REFLECIVITY AS A SUM OF WAVES SCATTERED BY
SEPARATE SUBLAYERS

Formulas �11�, �12�, �14�, and �15� determine the reflec-
tivity as a sum of waves reflected by the boundaries between
two continuous media and each item in the sum depends on
both adjacent layers. In the further experimental data analy-
sis we will try to distinguish the properties of the nuclear
scattering amplitude with respect to different hyperfine inter-
actions in each sublayer and it is appropriate to rewrite Eq.
�15� by introducing the scattering from a set of discrete thin
layers. The scattering amplitude r from a single scattering
plane can be obtained from Eq. �12� if we put

	 j−1 = 0, 	 j+1 = 0, 	 j =
�2

�

 j f j , �18�

which gives

r =
1

4 sin2 �
��	 j−1 − 	 j� + �	 j − 	 j+1�eiQdj� �

iQdj

4 sin2 �
	 j .

�19�

Defining the surface density of the scattering centers as � j
=limdj→0�
dj� we obtain the well-known expression for the

reflection amplitude from a single plane �see, e.g., Refs. 51
and 52�

r = i
�

sin �
�f . �20�

Because the dominating real part of the atomic scattering
amplitude f is negative in the x-ray region this formula im-
plies that the scattered wave lags the incident wave by � /2.
Now the structure factor �15� can be expressed as

F =
i�

sin �
�
k=1

K

�kfke
iQ�k, �21�

where k numerates the discrete sublayers in the unit cell.
Equation �21� allows us to analyze how separate sublayers
contribute to the total reflectivity signal �in the kinematical
limit�.

At first sight the two expressions �15� and �21� are quite
similar. For illustration of their difference let us consider
only two terms in each of them with the same phase differ-
ence, e.g., Qd=�. The first formula �15� gives the reflectivity
from a layer with susceptibility 	 and adds the waves re-
flected from two boundaries �Fig. 3�a��

F =
1

4 sin2 �
��	1 − 	2� + �	2 − 	1�ei��

=
1

4 sin2 �
�− 	 + 	ei�� =

− 	

2 sin2 �
. �22�

At Qd=� we get the maximum reflectivity. The expression
�21� adds two waves from two infinitely thin layers in the
unit cell �Fig. 3�b��:

F =
i�

sin �
��1f1 + �1f1ei�� = 0 �23�

and at Qd=� we get the total suppression of the reflection.
In both cases Eqs. �15� and �21� we have two adding waves.
But the model and the result is quite different. In order to get
the result �22� by formula �21� it is necessary to consider
another model, namely, to fill the layer by a continuous set of
sublayers:

F =
i�

sin �
�difff

0

d

eiQ�d� =
− 	

2 sin2 �
�24�

if we define the differential surface density as �diff=
 and
put Qd=�.

FIG. 3. �Color online� The illustration of the difference of the
reflectivity calculated by the formulas �15� and �21�. In both cases
we add two waves with the same space phase shift Q�=�. But Eq.
�15� describes the reflectivity by two boundaries between continu-
ous media �a� and Eq. �21� describes the reflectivity by two thin
layers in empty space �b�.
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Here another question arises: how thin should these sub-
layers be in order to simulate the continuous layer model,
and vice versa, how good an approximation is the continuous
medium model in reflectivity theory for discrete atomic �or
even more thin nuclear� layers in epitaxially grown films.

Consider the reflection by n equal layers with a total
thickness of d �see Fig. 4�. In the continuous model �Eq.
�15�� the scattering by a layer in vacuum having the suscep-
tibility 	 with thickness of d gives

F =
− 	

4 sin2 �
�1 − eiQd� . �25�

Supposing that in reality we have in this layer the set of n
discrete �atomic� planes with surface density �=
d /n we
instead have from Eq. �21�

F =
i�

sin �
�f�

k=0

n−1

eiQkd/n =
i�

sin �
�f

1 − eiQd

1 − eiQd/n

�
− 	

4 sin2 �
�1 − eiQd� . �26�

The approximation in Eq. �26� is valid if Qd /n�1 and
eiQd/n�1+ iQd /n which implies that

sin � �
�

4�d/n
. �27�

Hence, for angles that are much smaller than the Bragg angle
for a given lattice spacing d /n, the continuous approach is
appropriate also for electronic and nuclear resonance scatter-
ing.

In the qualitative analysis below we shall use mainly the
expression �15� for the electronic contribution to the scatter-
ing but expression �21� for the nuclear resonant contribution,
because it is essential to select different resonant contribu-
tions according to their depth position.

V. STUCTURE SENSITIVITY OF THE REFLECTIVITY IN
THE SIMPLEST KINEMATICAL APPROXIMATION

Using the kinematical limit formula �21� for the structure
factor, neglecting the refraction corrections in the phases of
the separate contributions, we can qualitatively analyze the
site sensitivity of the Bragg reflectivity and compare the re-
sults for the energy and time domains. As illustrations we
consider some significant model examples.

The first one shows how the phase shift in the time-
spectrum quantum beat oscillations changes with the position
of the resonant layer in the repetition period. Consider a
simple repetition period where two thin resonant sublayers

�57Fe� with equal thickness d are placed at the depths �1 and
�2. For simplicity we also assume that each resonant layer is
characterized by a single resonance frequency ��1 and �2,
respectively�. The corresponding structure factor is

F��� = Fel −
id

2 sin �
nuc
 �/2q

� − �1 + i�/2q
eiQ�1

+
�/2q

� − �2 + i�/2q
eiQ�2� , �28�

where Fel is the structure factor for the scattering by the
electronic density, including contributions from nonresonant
layers and independent of the energy shifts across the reso-
nant spectrum. The time dependence of the structure factor is
calculated by applying the Fourier transform

F�t� =
1

2�


−�

+�

F���e−i�td� . �29�

The electronic scattering Fel now disappears and for each
resonant line we obtain a decaying wave with a resonance
frequency �0=�1,2:

1

2�


−�

+� e−i�t

� − �0 + i�/2q
d� = ie−i�0t−�t/2q. �30�

Omitting some trivial factors we can write the structure fac-
tor in the time representation as

F�t� � e−�t/2q�eiQ1�1−i�1t + eiQ2�2−i�2t� �31�

and the corresponding intensity of the reflected wave as

�F�t��2 � 2e−t/�0�1 + cos„��1 − �2�Q + ��2 − �1�t…� , �32�

where �0= q /� is the mean lifetime. This result is quite simi-
lar to the time spectra of two resonant nuclei in forward
scattering21 but with one very essential difference. In the
delayed decay curve �Fig. 5� an additional phase shift �
= ��1−�2�Q of the quantum beat oscillations appears �we

FIG. 4. Reflectivity from discrete �atomic� layers �left side� and
reflectivity from continuous thick layer �right side�.

FIG. 5. �Color online� The structure sensitivity of the Bragg
reflectivity is illustrated. The relative positions of two 57Fe mono-
layers in an �Fe/V� structure leads to a change in the ratio of the
line intensities in the energy spectra and to a phase shift of the
quantum beat oscillations in the time spectra. This phase shift is
easily detected in an experiment.
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shall call it as a “space phase shift”�. Since this phase shift
depends on the distance ��1−�2� between the resonant sub-
layers within a repetition period it grants a possibility for an
experimental determination of the depth distribution of the
magnetic structure. The spectra shown in Fig. 5 were calcu-
lated for a �Fe�1.8 nm� /V�1.2 nm��20 model structure. The
two resonant 57Fe layers with thicknesses d=0.3 nm and en-
richment P=0.5 were placed at different depths � in the non-
resonant 56Fe layer. Their single resonance energies corre-
spond to �±1.5 mm/s isomer shifts in the Mössbauer
spectrum. At the first Bragg peak ��B=14.75 mrad� the bi-
layer depth D=3 nm corresponds to a 2� phase shift and the
phase shift � in the time spectra can be calculated in units of
2� as ���1−�2� /D�2�. Hence, Q��1−�2�=�, � /2, and 0 for
the three cases presented in Fig. 5, respectively, from the top
to the bottom. For the computer simulations we actually used
the general Parratt formula �1�, taking into account the re-
fraction effects as well, but the main features of the spectra
can be explained by a qualitative analysis in the simplest
kinematical approximation.

It is interesting that in order to explain the variation of the
relative intensities of lines in the energy spectra in Fig. 5
we must also take into account the electronic part of the
scattering Fel. For example, for the case when the two
resonant sublayers are separated by D /2, the electronic
and nuclear resonant scattering are added in antiphase for
the �1= +1.5 mm/s line �Re�	V−	Fe��0, Fnuc��=�1�
� i2 Im�fnuc��=�1���0�, so their interference is destructive.
We use Eq. �21� for the description of the contributions from
thin sublayers, but Eq. �15� for the electronic contributions
from thick layers. The �2 line is enhanced by a constructive
interference with the electronic scattering because the contri-
bution from the resonant sublayer with �2=−1.5 mm/s gets
the additional phase shift � and Re�	Fe−	V��0. When the
space phase shift for the sublayer with the �1 line becomes
� /2 �Fig. 5, middle case�, the real part of fnuc��=�1�, hav-
ing different signs on both sides of the exact resonance, in-
terferes with Fel which results in a noticeable asymmetry of
the reflectivity at the �1 line. Hence, in the simplest kine-
matical approximation the energy spectra are sensitive to the
different positions of the resonant layers relative to the elec-
tronic structure while the time spectra depend only on the
distance between resonant layers. However, later we will
show that if refraction effects are included the information
on the position of the resonant layers relative to the elec-
tronic structure appears also in the time spectra.

From the previous discussion and Eq. �30� it is evident
that two identical resonant sublayers, at a separation
��1−�2� of half a multilayer period, interfere destructively at
the first Bragg peak since Q��1−�2�=�. In our next model
example we use a �V�1.5 nm� / 57Fe�1.5 nm��20 multilayer as-
suming that a 1

4 iron layer at both interfaces has a smaller
hyperfine field �21 T� than that in the middle part of the 57Fe
layer �33 T�. For simplicity we also assume that the hyper-
fine fields are orientated perpendicular to the layers so only
two lines �second and fifth� in each sextet are excited by the
�-polarized radiation. We choose the same relative amount
of resonant nuclei with each kind of hyperfine field �33 and
21 T�. A conventional absorption Mössbauer spectrum then

shows two doublets with equal amplitudes of all four lines.
In the energy spectrum of reflectivity at the first-order

Bragg peak �see Fig. 6�a�� we observe the substantial sup-
pression of the lines �denoted a and b in Fig. 6�, correspond-
ing to the interface field �21 T�, and the disappearing of the
beat frequency between those lines �a−b� in the time spec-
trum. As already mentioned this is due to the destructive
interference of the two interface contributions with a phase
difference of �=Q��1−�2���. At the second-order Bragg
peak this phase difference is instead 2� and all lines in the
energy spectrum are present with comparable intensities.
However, both time spectra of reflectivity, and in particular
at the second-order Bragg peak, are dominated by the beat-
ing between the two hyperfine fields: interference of the lines
A-b and B-a gives the maximum at 2.5 mm/s in the half-
frequency-scaled Fourier transforms of the time spectra in
Fig. 6. This also illustrates how much more complicated the
interpretation of the time spectrum may be compared to the
energy spectrum.

The analysis of the frequency contributions in the time
spectrum is not as straightforward as for the different lines in
the energy spectrum. Here and later on we have used the
Fourier transform of the reflectivity time spectra in order to
identify the different beat frequencies. We calculate the Fou-
rier transform using a Kaiser-Bessel window function

W�n� = I0���1 − �n/N�2�/I0��� �33�

based on modified Bessel functions of the first kind �� is a
shape parameter�. A previous normalization of the time curve
to a fitted decay factor often gives a better resolution of the
beat frequencies, in particular in the low-frequency range,
but on the other hand prevents comparisons of intensities
between different time spectra.

In our first model example �Fig. 5� we used two singlet
resonant lines to illustrate how the scattering phase differ-
ence, caused by the different positions of resonant sublayers

FIG. 6. Energy spectra �a�,�d�, the corresponding reflectivity
time spectra �b�,�e� and their Fourier transforms �c�,�f� calculated at
the first- and second-order Bragg peaks. Details of the structure are
explained in the text. The frequency scale of the Fourier transform
is rescaled in order to allow a direct comparison with the velocity
�energy� scale of the Mössbauer spectrum.
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in the repetition layer, directly appears in the reflectivity en-
ergy and time spectrum. As more Mössbauer lines are
present these space phase shifts will enhance or suppress
various cross-interference beats. In the next example we re-
place one of the singlets by a doublet from a 33 T hyperfine
field again oriented perpendicular to the layer surface for
simplicity �only Mössbauer lines 2 and 5 are excited by lin-
early polarized synchrotron radiation�. The time-dependent
structure factor then contains three waves with amplitude AB
�frequencies �1 and �2� and A0 �frequency �0�, respectively,

F�t� � e−�/2q�AB�e−i�1t + e−i�2t�eiQ�1 + A0e−i�0t+iQ�2� .

�34�

In the time spectra two frequencies are present. In addition to
the beat frequency ��1−�2� corresponding to the energy dif-
ference between two lines in the 33 T split spectrum �the
3 mm/s line in Fig. 7�b��, the interference between these
transitions and the singlet resonance gives a beat with half
the frequency ���1+�2� /2=�0 for no isomer shifts�:

�F�t��2 � e−t/�0
A0
2 + 2AB

2�1 + cos��1 − �2�t�

+ 4A0AB cos
��1 − �2�t

2
cos �� �34��

where �= ��1−�2�Q is again the space phase shift between
the two reflection amplitudes from the resonant layers in the
unit cell. The existence and the phase of these half-frequency
beats is determined by cos �. Cross-interference beats �at
�1.5 mm/s in the half-frequency scale of the Fourier trans-
form� can appear, disappear, or change sign depending on the
relative space position of the resonant sublayers �Fig. 7�.

It is easily understood that in general the beat frequencies
corresponding to each kind of hyperfine splitting do not de-
pend on the space phase shifts, so they do not change the
phase of the oscillations at any angle. They can only be
enhanced or suppressed due to the space distribution of the
relevant nuclei. The beat frequencies corresponding to the
interference between resonant lines of different hyperfine
splitting �cross-interference terms� always have a space
phase shift of the quantum beats �ij = ��i−� j�Q. In principle,
space phase differences can be deduced from just one reflec-
tivity time spectrum, provided the frequency components are
resolved. However, cancellation of certain fractions may oc-
cur �if the phase difference happens to be close to ��. Re-
flectivity time spectra measured at different angles should
provide more reliable information �unless the hyperfine fields
are distributed homogeneously in the multilayer—which in
reality is not probable�. The reflectivity time spectra at the
critical angle and at the Bragg peaks of different orders re-
veal drastic differences just because �ij =�ij�Q�.

Notice that contrary to the reflectivity time spectrum, the
reflectivity energy spectra are not influenced by these cross-
interference terms if resonance lines are well separated. The
lines are distorted only by the interference with the electronic
scattering while in the time representation the electronic scat-
tering does not appear �in the simplest kinematical approxi-
mation�. That is the essential difference of the two represen-
tations.

VI. EXPERIMENTAL APPLICATIONS: RESULTS IN THE
SIMPLEST KINEMATICAL APPROXIMATION

The selectivity of the different spectrum contributions
with respect to the position of the corresponding scatterers in
the repetition period of a multilayer is the particular property
of Bragg reflectivity spectra that can be effectively used for a
depth structure analysis. An excellent example of such inves-
tigations was presented in Ref. 39 where the depth profiles of
the magnetic moments of Ce and La across the repetition
period were determined by the analysis of the x-ray resonant
spectra of the Bragg reflectivity near L2,3 edges at nine orders
of reflection from periodic Ce/Fe and La/Fe multilayers,
respectively.

MgO�001� / �57Fe�6 ML� /Co�3 ML��35/V�10 ML�, where
ML indicates a monolayer, denoted �Fe6Co3�35, was studied
by conversion electron Mössbauer spectroscopy and by the
time spectra of nuclear resonance scattering in grazing-
incidence reflection geometry.53 The SR measurements were
performed at the Nuclear Resonance Beamline of the Euro-
pean Synchrotron Radiation Facility �ESRF�. The experi-
mental station is described, e.g., in Ref. 20. CEMS data
could be fitted with two hyperfine fields 36.4 and 33.8 T.
The low-field value is close to the field in �-iron and it is
tempting to assign this field to the monolayers in the center
of the Fe layers. However, the fraction �9%� corresponds to
only half a monolayer, indicating an interface site. This is
also what the SR reflectivity time spectra unambiguously
show �see Fig. 8�. A beat frequency corresponding to 33.8 T
is clearly too small to fit the data. While CEMS probes all
57Fe sites in the sample, nuclear resonance reflectivity at the

FIG. 7. �Color online� Time spectra of reflectivity �a� and their
Fourier transforms �b� for three different relative positions of two
thin resonant 57Fe layers, having Bhf=33 and 0 T, respectively, in a
�V/Fe�n superstructure. The layers are placed at 0, 1 /4, and 1/2 the
distance of the repetition period corresponding to a space phase
difference of the reflectivity amplitudes �=0 �solid lines�, � /2
�dashed lines�, and � �dotted lines�. The Fourier transforms are
normalized to the peak at 3 mm/s, which corresponds to interfer-
ence of the second and fifth lines in the 33 T spectrum. The
1.5 mm/s peak corresponds to the interference of these second and
fifth lines with the singlet line. The frequency scale of the Fourier
transform is rescaled in order to allow a direct comparison with the
velocity �energy� scale of the Mössbauer spectrum.
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first-order Bragg angle emphasizes the contribution from the
center of the Fe layers, as was shown in the previous section.

Nuclear resonant reflectivity time spectra in the first- and
second-order Bragg peaks were measured for the sample
MgO�001� /V�5 ML� / �57Fe�7 ML� /V�5 ML��20/V�5 ML�,
denoted �Fe7V5�20. Measurements were performed in rema-
nence with the sample magnetized along the beam propaga-
tion. The experiment was performed at 10 K, and CEMS
data for this temperature were not available.

A simultaneous fit of the two Bragg-angle time spectra
�Fig. 9� gives us the depth distribution of the hyperfine fields
within the repetition of the superstructure, using a model
�Fig. 10� with one average field attributed to each 57Fe
atomic sublayer.54 Calculations were performed on the basis
of the full theory.15,35,36,46,47 The result demonstrates a depth
selectivity up to one monolayer of the nuclear resonant spec-
troscopy at Bragg maxima.

Similar investigations but just with one Bragg maximum
were done also for other 57Fe/V multilayers.55 The reflectiv-

ity for these systems is relatively high, so some dynamical
features �or at least the refraction and absorption corrections�
are essential. In particular, they lead to a variation of the
spectrum shape in the vicinity of the exact Bragg angle
which was used to derive the additional structure informa-
tion. These results are presented in Sec. XI after a discussion
of the refraction and absorption corrections.

VII. RESONANT REFRACTION AND ABSORPTION
CORRECTIONS

Up to now we have only considered the effects in the
simplest kinematical approximation, which can be described
by a simple interference of waves reflected by sublayers in
one repetition period, that is, by the structure amplitude. The
refraction and absorption described by the exponent of Eq.
�11� belong to the next order of corrections, but they can lead
to noticeable effects in some cases. In the next example we
tune the interference conditions in such a way that small
refraction corrections will be clearly seen. The model is simi-
lar to that of the previous examples �Figs. 5–7 but now with
three equidistant thin resonant layers in the repetition period
at �1 ,�2 ,�3 ��1−�2=�2−�3�. Layers 1 and 3 are characterized
by the doublet ��1 ,�2� and layer 2 by the single resonance
frequency �0, with �0 in the middle between �1 and �2
��1−�0=�0−�2�. Omitting the decay factor e−t/2�0 we ob-
tain

F�t� � �e−i�1t + e−i�2t��eiQ�1 + eiQ�3� + Ae−i�0t+iQ�2, �35�

where A is the relative amplitude of the singlet resonance
contribution. The corresponding intensity is given by

�F�t��2 � �A�2 + 4�1 + cos��1t − �2t���1 + cos��1Q − �3Q��

+ 8A cos
�1t − �2t

2
cos

�1Q − �3Q

2
. �35��

The second term in Eq. �35�� corresponds to the beat fre-
quency ��1−�2� between the doublet lines and the third
term, with half frequency ��1−�2� /2, is the interference
term between the singlet line and the doublet lines.

At the exact first-order Bragg angle Q��1−�3�=� and all
quantum beats are suppressed. Only an exponential decay is
characterizing the time dependence. This delicate phase equi-

FIG. 8. �Fe6Co3�35 time spectrum measured at the first-order
Bragg peak. The thick full line is calculated with the CEMS param-
eters and with the low field �33.8 T� in the Co/Fe and Fe/Co in-
terfaces. For the thin line the low field is instead in the center of the
Fe layers. The fields are oriented in the layer, along the �110� direc-
tion being perpendicular to the beam ��e��.

FIG. 9. Time spectra of reflectivity measured for a �Fe7V5�20

sample at the first- and second-order Bragg peaks; symbols repre-
sent the experimental data, solid lines are the fit result giving the
model of the hyperfine field depth distribution presented in Fig. 10,
and dashed lines are the calculated spectra assuming the same hy-
perfine fields homogeneously distributed in the whole 57Fe layer.
We see that this last model is unacceptable.

FIG. 10. �Color online� Mössbauer subspectra of the different
sublayers in a repetition period of the �57Fe7V5�20 superstructure,
obtained by the fit of the two Bragg reflectivity time spectra pre-
sented in Fig. 9.
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librium can be destroyed by any imperfection. A small shift
of the incident angle off the Bragg peak corresponds to a
change in the phase factor Q��1−�3�=�+� and the cross-
interference term ���� will dominate compared with the dou-
blet interference beat term ���2�. We see that these half-
frequency beats change the phase by � as the angle is moved
through the Bragg angle. This qualitatively explains the
calculated time spectra in Fig. 11 where an almost pure
single-frequency pattern is seen with opposite phase of os-
cillations at both sides of the exact Bragg angle. The model
used for the calculations is the superstructure
�57Fe�0.3 nm� / 56Fe�0.45 nm� / 57Fe�0.3 nm� / 56Fe�0.45 nm� /
57Fe�0.3 nm� /V�1.2 nm��n /MgO. The density of the reso-
nant 57Fe nuclei in the sublayers 1 and 3, having doublet
resonance spectra, was taken three times smaller than that in
the sublayer 2 �the single-line resonance layer� in order to
enhance the oscillations in the time spectrum. Notice that at
the exact Bragg angle the frequency beats are not completely
suppressed because in the calculations we take into account
the refraction effect, which means that the relative phases of
the scattered waves in Eq. �25� are frequency dependent and
it is not possible to obtain the exact phase differences � or
� /2 for all frequencies at any angle.

The result of calculations for the structure amplitude �35�
directly corresponds to the reflectivity by a single repetition
period, as presented in the upper part of Fig. 11. Considering
the Laue factor �17� we expect that the variations of the
spectra with the angle variation in the vicinity of the Bragg
peak will be more pronounced for a larger number of re-
petitions. Indeed, we see that for 25 repetitions this really

takes place �Fig. 11, bottom part�, but surprisingly we ob-
serve a change of the oscillation phase, compared with single
bilayer. Figure 12 shows the reflectivity time spectra calcu-
lated for the same model at one and the same angle, off the
Bragg peak, but with increasing number of repetitions in
the superstructure, and we see that the oscillation phase
changes several times. That means that the Laue function in
Eq. �17� is not just magnifying the Bragg reflection with the
number of repetitions but also changes the spectrum of re-
flectivity.

Consequently, the expression �16� for the Laue function,
which is independent of the resonant factors, should be gen-
eralized according to Eq. �11� in order to take into account
the resonant refraction and absorption corrections, and we
call this approximation the general kinematical approxima-
tion. We shall now investigate this approximation more care-
fully.

VIII. THE LAUE FUNCTION INFLUENCE ON THE
ENERGY AND TIME SPECTRA

The separation �17� of the reflectivity amplitude into the
structure factor and Laue factor for periodic multilayers is
also possible in the general kinematical case when refraction
and absorption cannot be neglected in the phase factors. The
Laue function then takes the form

FIG. 11. �Color online� The change of the reflectivity time spec-
trum with a slight variation of the angle in vicinity of the Bragg
peak ��B=14.75 mrad� calculated for the model described in the
text with the superstructure consisting of a single and 25 repetition
periods, respectively.

FIG. 12. �Color online� The calculated time spectra of reflectiv-
ity at 14.4 mrad for the same model as in Fig. 11, but for a different
number of repetitions in the structure. The curves are shifted rela-
tive to each other for clearity. The vertical dotted lines are plotted
through the maxima of the curve for 25 repetitions in order to
follow the oscillation phase reversal.
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LN��,D,dj,	 j,�� =

1 − exp iN
QD +
�

sin �
�k=1

K
	k���dk�

1 − exp i
QD +
�

sin �
�k=1

K
	k���dk� ,

�36�

where K is the total number of the sublayers in one repetition
period. The structure factor in the same approximation
should be taken as

F��,dj,	 j,�� =
i�

sin �
�
j=1

K


 j f j exp i
Q� j−1

+
�

sin �
�k=1

j−1
	k���dk� , �37�

where j−1 is the number of sublayers before the reflecting
sublayer j in one repetition period. However, the refraction
and reflection corrections in Eq. �37� are not enhanced by the
number of the repetition periods N �as in Eq. �36��, so they
can be neglected in most cases. The change of the time spec-
trum in Figs. 11 and 12 for different numbers of the repeti-
tion period, determined by the refraction corrections in Eq.
�37�, is a quite special case.

The most essential consequences for the resonant scatter-
ing arise from the energy dependence of the Laue function.
In the general kinematical approximation with a separation
of the structure factor into a nonresonant Fel part describing
the scattering by the electrons and a nuclear part Fnuc we
have the general expression for the reflectivity

R��� = FelLN��� + Fnuc���LN��� , �38�

or in the time representation

R�t� = FelLN�t� + Rnuc�t� , �39�

where

Rnuc�t� = 
0

�

Fnuc�t��LN�t − t��dt�, �40�

and the Fourier transform of the Laue function is

LN�t� =
1

2�


−�

+�

LN���e−i�td� . �41�

Let us first analyze the results in the energy representa-
tion. Remember that the Laue function changes quickly with
a small angle variation in the vicinity of the Bragg peak. So
the nuclear resonant reflectivity spectra �38� will distinc-
tively change shape while the angle is shifted across the
Bragg maximum. For one resonant line it was shown in Ref.
19.

The structure factor �37�, Laue function �36�, and total
reflectivity curve �17� are compared in Fig. 13 for our first
model example used for Fig. 5 with two sublayers with sin-
glet resonant lines �1 and �2 in each one. There is no visible
change of the structure factor with a small variation of the
angle, but we see that the Laue function changes drastically.
A significant distortion of the reflectivity line shapes, differ-

ent for different angular shifts in the vicinity of the Bragg
peak, is caused by the Laue function. We obtain a line broad-
ening, even a splitting, and a substantial asymmetry of the
lines. The effects are quite similar to those observed for thick
resonant absorbers, but here the thickness effect is associated
with the angle variation through the Laue function. The ex-
ponential factor in Eq. �36�,

exp	iN
QD +
�

sin �
�
k=1

K

	k���dk��
describes actually the total change of the amplitude and
phase of the incident wave during double transmission
through the whole multilayer at the glancing angle �.

Such a dispersive resonant absorption is not the only ef-
fect caused by the energy dependence of the Laue function.
An additional circumstance should be taken into account.
This very essential property is that the electronic contribu-
tion Fel now becomes energy dependent after multiplication
by the Laue function �36� and leads to a distortion of the
nuclear resonant reflectivity spectra. For each reflectivity
spectrum in Fig. 13 the energy-dependent “background line”
is also shown, which actually is the electronic scattering con-
tribution, repeating the shape of the Laue function. The effect
is quite similar to the distortion of the resonant secondary
radiation yield by the nonresonant secondary radiation inves-
tigated in Refs. 34–36 and 41 at the total reflection condi-
tions.

In the time representation this electronic contribution not
only reveals itself as a prompt electronic response but also in
the decay. This additional distributed source of coherent
�electronic� scattering having definite resonant frequencies
determined by the Laue factor LN�t� �41�, Eq. �36� will inter-
fere with the nuclear resonant scattering and create additional
quantum beat oscillations. Hence, the influence of the Laue
function on the reflectivity curve in the time representation is
considerably more intricate.

FIG. 13. Energy dependencies of the modulus squared of the
structure factor �a�,�b�,�c�, the Laue function �d�,�e�,�f�, and their
product �g�,�h�,�i� giving the reflectivity energy spectrum calculated
at three angles in the vicinity of the Bragg maximum. Calculations
were done for the same model as used for Fig. 5 but the number of
repetitions was taken to be 30. Thin lines in �g�,�h�,�i� are the elec-
tronic contribution to the reflectivity, proportional to the Laue
function.
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The calculated time spectra in Fig. 14 show that for rela-
tively large number of repetitions a significant phase shift of
the quantum beat oscillations appears with different signs on
either sides of the exact Bragg angle. The origin must be
found in the Laue function. A remarkable observation is that
if we in the calculations reset the electronic susceptibility in
all layers to zero, the phase shift of the quantum beat oscil-
lations disappears. Hence, this phase shift is predominantly
caused by the influence of the electronic scattering and in
particular by the interference of the electronic �modified by
the Laue function� and nuclear resonant reflectivity. This
conclusion is supported by the result shown in Fig. 14,
namely, we see that the phase shift of the oscillations also
depends on the positions of the resonant sublayers relative to
the electronic structure. So in the general kinematical ap-
proximation the electronic scattering participates in the re-
flectivity time spectra as well as in the energy spectra �con-
trary to the simplest kinematical approximation� and it
suggests an additional structure sensitivity introduced by the
Laue function.

This additional time dependent electronic scattering is the
reason for the reversal of the phases of the quantum beat
oscillations in Fig. 12. The dominating frequency there is
��1−�2� /2, which is the result of the interference of the �0

component with the �1 and �2 components being almost
completely suppressed in the structure factor. But the fre-
quency components �1 and �2 become more and more en-
hanced with increasing number of repetitions N—through the
Laue function, multiplying the electronic scattering ampli-
tude in particular—and now they can interfere with the �0
component. These electronic �1 and �2 resonant scattering
amplitudes can change phase for different N as shown in Fig.
15, whereas the change in the nuclear resonant scattering
amplitude is negligible. That explains the results shown in
Fig. 12.

In the energy representation the reflectivity line shape is
described by a simple product of the structure factor and the

Laue function �see Eq. �38�� which can readily be studied
separately. In the time representation the reflectivity is de-
scribed as a convolution of the Fourier transforms of the
nuclear structure factor and the Laue function �40�. In such
an integral form it is difficult to analyze the results on a
qualitative level. Some more understanding can be achieved
if we instead consider the differential contributions to the
reflectivity signal from selected sublayers.

IX. THE INFLUENCE OF STANDING WAVES ON THE
REFLECTIVITY

The Laue function describes how the number of repeti-
tions in a multilayer influences the reflectivity and we find
that in the general kinematic approximation the spectrum
shape of the total reflectivity is not simply a multiplicative
factor times the shape for a single repetition period. Hence,
the contribution to the reflectivity from each individual sub-
layer in a periodic multilayer depends somehow from the
other layers. The multilayer creates a collective excitation
state which influences the reflectivity from each single layer.
The Laue function describes only the total effect of all layer
contributions, which of course is what the measurements
give, but from a fundamental point of view it is also inter-
esting to know how the reflectivity changes when we put a
particular single layer into the multilayer structure.

Consider first the simple example with a thin resonant
layer on the top of some multilayer structure, here called the
“substrate” �not to be confused with the substrate on which a
multilayer is grown�. Without the resonant layer, the re-
flected wave at a distance H from the surface of the reference
substrate, normalized to the incident wave at the same posi-
tion H, is

R = RsubstreiQH, �42�

where Rsubstr is the reflectivity on the top of the substrate.
When we add a thin resonant layer with susceptibility 	 and
thickness d at the distance H from the surface, the total re-
flectivity within the general kinematical approximation
�compare with Eqs. �11� and �37�� becomes

FIG. 14. �Color online� Time spectra of reflectivity calculated
for the same model as in Fig. 5 with �=� and for a single repetition
period �top graph� and 30 repetition periods �below�. Three angles
at the Bragg maximum are considered. No oscillation phase shift
appears for one repetition period but for 30 repetition period it
depends on the sequence of the electronic susceptibilities in the
multilayer.

FIG. 15. The energy dependence of the real and imaginary parts
of the electronic reflectivity amplitude, calculated for the same
model as in Fig. 12 and at an angle of 14.4 mrad. The electronic
amplitude changes sign �or phase by �� at resonant energies at �1

and �2 when the number of periods increases from 25 to 40. This
explains the reversal of the oscillation phase observed in Fig. 12.
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Rtot = Rei�2�	/� sin ��d + r , �43�

where we take into account the refraction corrections for the
incident and reflected waves twice crossing the added layer.
The reflectivity from this thin layer is �see Eq. �20��

r = i
�	

� sin �
d . �44�

Assuming the thickness d is small, a first-order expansion of
the exponential factor in Eq. �43� gives the following simple
expression for the contribution to the total reflectivity caused
by the additional layer:

Rr = Rtot − R = r�1 + 2RsubstreiQH� . �45�

At the exact Bragg angle for the periodic multilayer the
phase of eiQH in Eq. �45� passes a full period when H
changes in one repetition period. So depending on the posi-
tion z the contribution from a thin sublayer to the total re-
flectivity may be enhanced or suppressed by a factor of
1±2�R�, respectively. Notice that this factor cannot be nega-
tive, since R�1 in the kinematical approximation.

Equation �45� is in direct analogy to the x-ray standing-
wave method,56,57 where the intensity of the secondary �e.g.,
fluorescent or photoelectron yield� radiation depends on the
position of the emitting atoms relative to the nodes or antin-
odes of the standing waves, created by the coherent superpo-
sition of the incident and reflected waves. A remarkable dif-
ference is that the amplitude of the secondary radiation is
proportional to �1+R�, whereas we here obtain �1+2R�.

The origin and interpretation of this difference become
clear when the consideration is performed exactly—in the
dynamical approximation on the basis of Eq. �1�.25 For cal-
culations of the reflectivity from a thin layer by Eq. �1� we
assume that the phase shift 2i� due to the thin layer, placed
at the distance H from the substrate surface, is small. Ne-
glecting �2i��2 term we obtain

Rtot =
r01 + R̃

1 + r01R̃
+

R̃�1 − r01
2 �

�1 + r01R̃�2
2i� �46�

and

R̃ =
r10 + R

1 + r10R
, �47�

where r01 and r10 are the Fresnel reflectivity amplitudes from
both sides of the tested layer and R is determined by Eq.
�42�. Finally we obtain

Rtot = RsubstreiQ�H+d� + r�1 + RsubstreiQH�2, �48�

where r again is determined by Eq. �44�.
So in the exact calculations the contribution to the total

reflectivity, caused by the additional layer, is proportional to
�1+R�2, but not to �1+R� as occurs for secondary radiation.
The kinematical approach �45� obtained above was valid be-
cause when R is small, �1+R�2�1+2R. This result explains
the essential difference between the secondary radiation
yield and reflectivity from some sublayer. The reflectivity
amplitude r in the presence of the other reflecting layers is
modulated by the “squared standing wave” �1+R�2 because
the standing-wave structure of the radiation field reveals it-
self for the incident �absorption process� as well as for the
reflected wave �emission process�. The scattered secondary
radiation is not coherent with the incident wave, so we
should not take into account the standing-wave structure for
the scattered wave.

It is possible to investigate the general case when a thin
sublayer with reflectivity r is placed inside a multilayer at a
depth z. The previous derivations will be valid for that part
of the multilayer which is below the considered sublayer:

Rr�z� = rT�z�T��z��1 + Rbelow�z��2, �49�

where T�z� and T��z� describe the transformation of the wave
on the way from the surface to the z position and back. Rbelow

is the reflectivity amplitude at the same depth z from all
layers below the considered one. In the kinematical approxi-
mation we obviously obtain �compare with Eq. �37��

T�z�T��z� = exp
iQz +
2�

� sin �
�
m=1

j−1

	mdm� , �50�

where we take into account the refraction and absorption
corrections for the direct and reflected waves and the sum
over m is performed for all sublayers in the upper part of
multilayer. Direct calculations in the dynamical approxima-
tion �1� give the following expression for T�z�T��z�:

T�z�T��z� = e2i��1+�2+¯+�j−1� �1 − r1
2��1 − r2

2� ¯ �1 − rj−1
2 �

�1 + r1R2e2i�1�2�1 + r2R3e2i�2�2
¯ �1 + rj−1Rje

2i�j−1�2 �51�

if the investigated thin layer is at the jth boundary. This
expression gives the magnitude of the standing-wave ampli-
tude at depth z and together with Eq. �49� determines the
possibility to have much more essential enhancement of the
response from a thin investigated layer r if it is placed inside
the waveguide layer. Such an enhancement was experimen-
tally attained in Ref. 6. Note that the waveguide enhance-

ment of the field amplitude in, e.g., the �j−1� layer is
achieved when

1 + rj−1Rje
2i�j−1 � 0. �52�

The analysis of such a situation shall be given elsewhere.
Notice that the expression for T�z� is straightforwardly

obtained on the basis of Eq. �1�:

NUCLEAR RESONANT SPECTROSCOPY AT BRAGG… PHYSICAL REVIEW B 72, 125422 �2005�

125422-13



T�z� = ei��1+�2+¯+�j−1� �1 + r1��1 + r2� ¯ �1 + rj−1�
�1 + r1R2e2i�1��1 + r2R3e2i�2� ¯ �1 + rj−1Rje

2i�j−1�
. �53�

In addition the expression �51� presented here allows us to
get an exact expression for T��z� which is actually the “func-
tion of escape” of outgoing radiation penetrating through the
top part of a multilayer. In particular, we have from Eqs. �51�
and �53�

T��z� = T�z�
� j

�0
, �54�

where � j is determined by Eq. �2�. For derivation of Eq. �54�
we take into account that

1 − ri
2 = �1 − ri��1 + ri� = titi�, ti =

2�i−1

�i−1 + �i
, ti� =

2�i

�i−1 + �i
,

where ti , ti� are the Fresnel transmission coefficients through
the boundary between the �i−1� and i layers.

The obtained general expression �49� shows that in the
kinematical �50� as well as in the dynamical �51� approxima-
tion, the dependence Rr�z� on � �and thus its participation in
the delayed signal� can appear in different ways: �i� from the
tested layer reflectivity r=r���, but also from the surround-
ing multilayer if it contains resonant sublayers through �ii�
Rbelow=Rbelow��� or �iii� 	i=	i��� in the top part of the
multilayer. In particular the electronic scattering from a non-
resonant sublayer r acquires a resonant dependence on being
placed inside a resonant multilayer. In the previous section
we showed the same with the Laue function.

The standing-wave concept is rather fruitful because it
predicts the angular variations of the response from an inves-
tigated layer. The position D of antinodes of the standing
wave above the reflecting mirror is determined by

arg�Rbelow���� +
4�D

�
sin � = 2�n �55�

so it is substantially shifted with an angle variation near the
Bragg angle and the contribution to the reflectivity from a
definite layer will have a maximum at the angle at which the
antinodes of the standing wave coincide with the layer posi-
tion H.

The situation when the multilayer itself is nonresonant but
the investigated sublayer is a resonant one, r=r���, is the
simplest to analyze. In this case the angular dependence of
the delayed nuclear resonant reflectivity is determined from
the depth position and thickness of the investigated resonant
layer according to the variations of the standing-wave ampli-
tude at the position of the resonant sublayer. For the total
external reflection region the angular dependencies were cal-
culated for different depth position of the resonant sublayer
in Refs. 58–60. In particular, the electronic standing wave
��1+R�2�2 explains the existence and the height of the maxi-

mum in the angular dependence of the time-integrated de-
layed resonant reflectivity near the critical angle �“interfer-
ence peak”�, observed in Refs. 22 and 23.

For the periodic multlayer the regular standing-wave
structure has the same period as the multilayer itself �at the
first-order Bragg peak� which makes it possible to detect the
position of the tested sublayer on the scale of one repetition
period. As the angle changes in the vicinity of the Bragg
peak, the antinodes of the standing wave are shifted across
one repetition period and enhance the contribution to the
reflectivity from definite layer positions. In such a way “a
scan” across the bilayer depth is performed by the angle
variation.

A very illustrative example of the standing-wave influ-
ence on the nuclear reflectivity was obtained for a
Si/ �Mo/Si�45/ 57Fe/Nb�70 nm� sample.61 The Bragg reflec-
tivity from the nonresonant periodic multilayer “substrate”
�Mo/Si�*45 was very strong, being a good generator of a
standing wave with the period of the structure �5.83 nm.
The nuclear resonant scattering arose only from one thin 57Fe
layer.

The intersection of the antinode of the standing wave with
the resonant layer took place at a glancing angle slightly
smaller than the exact Bragg angle. That explains the ob-
tained shift and shape of the integral delayed nuclear reflec-
tivity peak. The comparative fit of the prompt and delayed
reflectivity curves allowed us to determine the exact position
z and thickness d of the 57Fe layer �Fig. 16�.

Such a shift of the delayed reflectivity Bragg peak relative
prompt peak was noticed in Refs. 62–64 �look below in Fig.
25�a�� but for the resonant multilayer used in that work the
interpretation was not so clear as here.

X. RESONANT STANDING WAVES

The most specific case is the resonant periodic multilayer.
The concept of standing waves should be reconsidered in this

FIG. 16. �Color online� Experimental prompt and delayed first
Bragg peaks for the Si/ �Mo/Si�45/ 57Fe/Nb�70 nm� sample. Sym-
bols are the experimental values, solid and dashed lines are the
theoretical fits. By the fit of both reflectivity curves we get the exact
position z=5.6 and thickness d=3.4 nm of the 57Fe layer.
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case. The standing waves now become energy dependent. If
	i��� is described by Eq. �6� it means that the amplitude and
the phase of the scattered wave �and reflectivity� drastically
changes in the vicinity of each resonant line. According to
Eq. �55� the positions of the nodes and antinodes depend on
the energy shift in the vicinity of the resonance. At each
depth the different spectral frequencies will be enhanced or
suppressed. So the resonant standing-wave amplitude
changes the shape of its energy spectrum with depth—
periodically in the periodic multilayer �Fig. 17�. If we follow
the variations of the field amplitude with depth for a chosen
energy, e.g., at the exact resonance, we get the standing-wave
picture presented in Fig. 18. Notice that the positions of the
antinodes of the electronic standing wave relative to the pe-
riodic structure are different, because the phases of the waves
scattered by electronic shells and by resonant nuclei are dif-
ferent at the exact resonance.

Figure 18 shows also that a slight variation of the angle
gives a shift of the standing-wave position, which explains
�at least qualitatively� the additional depth selectivity present
in the reflectivity spectrum due to the radiation field modu-
lations inside a multilayer. Remembering that the positions
of the standing-wave antinodes are different for different fre-
quencies in the spectrum, the variations of the reflectivity
spectrum expected from an angle shift are more complicated
than the concept of just a pure “scan” across bilayer depth.
Anyhow, the calculated example in Fig. 19 demonstrates that
we enhance or suppress different spectrum contributions re-
garding their depth position by the simple angle variation in
the vicinity of the Bragg angle, which can be explained by
the standing-wave influence on the reflectivity spectrum.

Periodic modulations of the radiation field in the time
representation inside a periodic mulilayer have a more com-
plicated nature. Standing waves are the result of the interfer-
ence of two waves traveling in opposite directions. In the
simplest kinematical approximation, however, the incident
wave is not changed during propagation in the multilayer and
the wave transmitted in the forward direction has no energy
dependence. Hence, it is absent in the delayed time represen-
tation and a standing wave, which needs two coherently
added waves, does not exist.

However, exact calculations show a periodic variation of
the field amplitude inside a periodic resonant multilayer also
at delayed times �Fig. 18, right side�. Moreover, the ampli-
tude of the modulations is enhanced with the depth.42 Obvi-
ously, this is an effect of the transmitted wave modulation;
this wave becomes energy dependent during propagation in
the resonant multilayer. That explains the enhancement of
the standing-wave amplitude with depth.

The difference of the standing-wave pattern in the energy
and time representations is very interesting but if we want to
have information on the influence of the standing wave in the
contributions from a definite layer at some depth z to the
reflectivity, we should rely on the general expression �49�. In
the energy representation the standing-wave picture gives
some impression of how different contributions in the spec-
trum could be enhanced or suppressed. For the time repre-
sentation we should make a Fourier transform of �49� result-
ing in the convolution of the separate factors in the product
�and in particular the standing-wave factor �1+R��. The in-

FIG. 17. �Color online� Variations of the energy spectrum of the
squared modulus of the total radiation field �energy standing waves�
at different depths z �with a 0.4 nm step� inside one bilayer in the
periodic structure �57Fe/Cr�26. On the top, the reflectivity spectrum
at the exact Bragg is presented in the same energy scale.

FIG. 18. �Color online� Positions of the nodes and antinodes
with respect to the periodic structure at the exact Bragg angle
�13.6 mrad� and at the shifted angular positions �13.2 and
14.0 mrad� for the two domains of nuclear resonance excitation.
Calculations are made at the exact resonance �v=−5.31 mm/s� and
at an initial part of the time decay �t=15.2 ns�.

FIG. 19. �Color online� Energy and time spectra of the
reflectivity, calculated for three angles in vicinity of the first-
order Bragg peak �14.75 mrad�. Calculations were done for
the periodic multilayer �57Fe21T�0.3 nm� / 57Fe33T�0.3 nm� /
57Fe21T�0.3 nm� /V�2.1 nm��30.
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fluence of the radiation field structure on the reflectivity be-
comes more complicated.

The necessity to use the squared radiation field amplitude
for description of the reflectivity from a thin layer also leads
to some new features. The expression �1+R���eiQH� as such
does not give a standing-wave picture in the time represen-
tation because the incident wave �normalized to 1� for the
phase variation disappears after Fourier transformation, but
the squared radiation field �48�

�1 + R���eiQH�2 = �1 + 2R���eiQH + R2���e2iQH� �56�

gives the interference of waves with phase difference eiQH,
after a Fourier transform, such as

2R�t� + R2�t�eiQH. �57�

The effect becomes essential when we cannot neglect the R2

term in Eq. �56�.
After multiplying Eq. �56� by T�z�T��z�, as determined by

Eq. �50� or �51�, the first term �=1� also contributes to the
time dependence of the “effective” radiation field, which has
influence on the reflectivity from a layer at depth z. In total,
we see that the consideration of this influence on the basis of
the standing-wave concept in the time representation be-
comes equally complicated as that with the Laue function. In
that picture we also have an enhancement or suppression of
particular frequencies in the resonant spectrum caused by the
phase properties of the wave transmission inside the resonant
multilayer. In previous papers42–44 we called this effect a
resonant modulation of the radiation field, but its influence
on the reflectivity was not fully understood then.

Finally we can conclude that the physics of the nuclear
resonant reflectivity becomes very complicated in the general
kinematical approximation. Anyhow, when the Bragg reflec-
tivity is relatively high and resonant absorption and refrac-
tion effects modify the propagating wave inside a multilayer,
not only interference phases but also the resonant excitation
conditions for different sublayers are changed with the angle
variation. This opens additional possibilities for a determina-
tion of the depth distribution of the hyperfine fields by com-
paring the spectra measured at different angles.

XI. EXPERIMENTAL APPLICATIONS: RESULTS BASED
ON THE GENERAL KINEMATICAL APPROXIMATION

The influence of the radiation field structure was taken
into account in a depth-selective investigation of monocrys-
talline periodic multilayers MgO�001� / �57Fe�10 ML� /
V�5 ML��20/V�5 ML� and MgO�001� / �57Fe�7 ML� /
V�10 ML��29/Pd�5 ML�, denoted �Fe10/V5�20 and
�Fe7/V10�29, respectively.55

The first-order superstructure Bragg peak for these
samples was relatively high. The time spectra of the reflec-
tivity were measured at three angles in the vicinity of the
Bragg peak. In such a way we may perform a bilayer depth
scan as discussed in previous sections. Anyhow three differ-
ent spectra, measured at different excitation conditions for

the resonant nuclei, give more reliable results than just one
spectrum. The results for the sample �Fe7/V10�29 are shown
in Fig. 20. The starting model of the hyperfine field param-
eters for the interpretation of the time spectra was taken from
the measured CEMS spectrum which shows a broad hyper-
fine field distribution �Fig. 20�c��, fitted by six sextets with
various Lorentzian linewidths. These hyperfine field param-
eters and the fractions of each field were then used in the
analyses of the reflectivity time spectra �Fig. 20�b��. Here the
purpose of the reflectivity time spectrum fit was only the
depth distribution of the known hyperfine fields across one
repetition period. We again emphasize that this is the main
purpose of the reflectivity spectroscopy. The depth distribu-
tions within one repetition period �Fe/V bilayer� of each
sextet were simultaneously fitted to the three time spectra. A
strongly asymmetrical distribution is found with a noticeable
interface intermixing or roughness, in particular at the Fe-
on-V interface.

The main problem in the reflectivity spectra analysis is a
large amount of parameters; namely, the depth distribution of
M hyperfine fields in N sublayers is described by M �N
parameters, so the fit of the experimental spectra is most
probably not unique. In addition, it relies on the equivalence
of all repetition periods in the multilayer which can be in-
fringed at least for the upper or bottom layers due to their
interaction with the air or substrate. Additional measure-
ments at higher-order Bragg peaks would make the conclu-
sions more reliable since at these angles the sensitivity to the
interface region is stronger. Any peculiarity of the top-layer
structure may be revealed by the simultaneous fit of the

FIG. 20. �Color online� Experimental data for the sample
�57Fe�7 ML� /V�10 ML��29. �a� Reflectivity. �b� Time spectra of re-
flectivity for the three angles marked by the vertical lines in �a�. �c�
CEMS data and the bilayer depth distribution of the different hy-
perfine field components across one bilayer, as obtained from the fit
of the time spectra in �b�. The full line in the distribution shows the
total 57Fe density. In all graphs dots show experimental data and the
full lines the theoretical fits. The dashed curves in �b�, not fitting the
data, show the expected time spectra assuming a spatially symmet-
ric field distribution in the Fe layers.
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reflectivity time spectrum measured near the critical angle of
total reflection �as was done in Ref. 41�.

XII. ANISOTROPY OF SCATTERING AND
POLARIZATION EFFECTS

An essential feature of the nuclear resonant scattering is
the anisotropy of the scattering and the specific polarization
of each hyperfine transition. If a magnetic hyperfine field Bhf
splits the resonant 14.4 keV transition in 57Fe into six lines,
then each hyperfine transition is characterized by a definite
state of polarization for the absorbed and reemitted � quan-
tum depending on the angle of propagation. The angular and
polarization dependencies of the nuclear resonant scattering
amplitude for separate hyperfine transitions are well known
and the appropriate expression through a rotation matrix D
was presented just after the discovery of the Mössbauer
effect.65 The perfect formalism describing the transformation
of the polarization during propagation in anisotropic Möss-
bauer medium was presented in the famous paper by Blume
and Kistner,66 who used the two-component vector of the
electrical field of radiation �Jones vector� and the 2�2 ma-
trix exponentials as the propagation matrices. Recently this
formalism was used for the description of the nuclear reso-
nant forward scattering in the time representation.67

For the exact calculations of the reflectivity we use 4
�4 propagation matrices taking into account all polarization
effects during the multiple scattering in an anisotropic
multilayer,15,35,36,46,47 equivalent to Ref. 68. So far we have
used the scalar scattering amplitudes �6� in our kinematical
approximation. It is correct only when all scattering ampli-
tudes have one and the same polarization. So our previous
consideration was good for samples where all layers are
magnetized in one direction and all different kinds of hyper-
fine transitions do not interfere �the polarization depends on
the change of magnetic quantum number M =me−mg in the
hyperfine transition between nuclear sublevels, characterized
by me and mg in the excited and ground states, respectively�.
In the energy representation the last requirement is satisfied
for well-resolved spectral lines, but in the time representation
it implies that all excited transitions should have the same
polarization of the scattered radiation. In addition, from the
previous consideration we remember that the interference of
the nuclear resonant scattering with the electronic scattering
plays an essential role in the reflectivity �contrary to the for-
ward scattering where the electronic scattering does not in-

fluence the time spectra�. The polarization of the electroni-
cally scattered radiation is the same as the incident one since
in grazing geometry we may neglect the difference in scat-
tering amplitudes for �- and �- incident polarizations and
any polarization can be chosen as an eigenpolarization. Po-
larization of the nuclear scattering amplitude is determined
by the kind of hyperfine transition and the orientation of the
incident or scattered radiation relative to the hyperfine field
Bhf. Summarizing all circumstances we conclude that the
previously presented “scalar” approximation is applicable
only to the rather restricted cases, namely, when all layers are
magnetized perpendicular to the surface or in the surface but
perpendicular to the propagation direction of the radiation.
For all other cases the interference of waves of different
polarizations appears in some ways. So for completeness it is
necessary to include the polarization dependencies of the
scattering amplitudes to our structure and Laue factors �15�,
�16�, and �21� or �36� and �37�.

We shall follow the Jones vector formalism66,67 and rep-
resent the electric field amplitude of the incident and re-
flected waves as a column vector. Notice that because the
angular dependencies of the amplitude and polarization of
the hyperfine transitions are rather smooth, we can suppose
�just for the polarization description� that both waves propa-
gate along the surface in grazing geometry. �It works even in
the general dynamical approximation.47� Then the bases for
the description of the polarization of both waves are the
same, horizontal �x axis� and vertical �z axis� with the direc-
tion of the wave propagation along the y axis,

E = 
Ex

Ez
� . �58�

Then the polarization of the incident synchrotron radiation is
presented by the vector � 1

0
�. The nuclear resonant scattering

amplitude is transformed to the 2�2 matrix

f̂ nuc��� = −
1

2�
�res f LMP�

i

�̂i�i/2q

� − �i + i�i/2q
. �59�

The explicit form of the polarization 2�2 matrices �̂i for
each hyperfine transition is determined by the multipolarity
of the transition and by the spins of the ground and excited
nuclear states. For each of the six hyperfine lines in the mag-
netic spectrum in the case of the magnetic dipole M1 transi-
tion between levels Ig=1/2, Ie=3/2 �as in 57Fe� we have

�̂1 =
3

8

 sin2 �

sin ��cos � cos � + i sin ��
sin ��cos � cos � − i sin ��

cos2 � cos2 � + sin2 �
� ,

�̂2 =
1

2

 cos2 � − sin � cos � cos �

− sin � cos � cos � sin2 � cos2 �
� ,

�̂3 =
1

3
�̂1

*, �̂4 =
1

3
�̂1, �̂5 = �̂2, �̂6 = �̂1

*, �60�
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the orientation of the magnetic hyperfine field being deter-
mined by the polar angle � and the azimuthal angle � in the
chosen frame of axes �Fig. 21�. We should add also that the
electronic scattering amplitude now is transformed to a diag-
onal matrix.

With f̂ nuc��� determined by Eq. �59� the structure factor
�21� also becomes a matrix, which determines in particular
the polarization of the scattered wave by one repetition pe-
riod in the simplest kinematical approximation. From Eq.
�60� it follows that for �=0 only the second and fifth reso-
nant lines appear in the reflectivity spectrum, and the polar-
ization of the scattered radiation is the same as the polariza-
tion of the incident synchrotron radiation �this case was
considered in our model calculations�. For �=90°, �=0 the
second and fifth resonant lines are not excited at all and the
other four lines have the same polarization as the incident SR
beam. For �=90°, �=90° the polarization of the first and
fourth scattered lines is right circular ��� 1

i
�� and the polar-

ization of the third and sixth lines is left circular ��� 1
−i

��,
which means that the interference term will appear only for
each pair of lines. The corresponding time spectrum of re-
flectivity will have just one beat frequency �Fig. 22�. These
specific cases were considered for the forward scattering.21,67

In Ref. 67 a nice illustration of the rotation of the resulting
linear polarization, with a beat frequency corresponding to
the frequency difference of the right and left circular scat-
tered polarizations, was presented for the last case ��
=90° ,�=90° �. Interference of the waves with orthogonal
polarization does not give any interference term in the result-
ing intensity, but leads to a variation of the polarization state.
For other angles all lines should be taken into account. So
the number of beat frequencies in the time spectrum of re-
flectivity indeed characterizes the orientation of the hyperfine
field in the investigated multilayer �some restrictions follow
from indistinguishable situations presented also in Fig. 22�.

With the help of Eqs. �59�, �60�, and �21� we can analyze
how the depth variation of the hyperfine field orientation will
reveal itself in the time spectrum of reflectivity. For example,
we can compare the two cases: when antiferromagnetic
alignment takes place within one sublayer or when two sub-
layers separated by depth distance d are antiferromagneti-
cally coupled. Supposing �=90°, �=90°, and omitting some
trivial factors and the exponential decay factor e�−�� /2q �t�,
we obtain for the single-nucleus scattering amplitude in Eq.
�21� in the time representation

f1�t� � ei�1t
1

i
� + ei�3t1

3

 1

− i
� + ei�4t1

3

1

i
� + ei�6t
 1

− i
�
�61�

since only four resonant transitions �1,3,4,6� are excited by
the �-polarized incident radiation. If a second resonant layer
in one repetition period is characterized by −Bhf ��=90° ,�
=−90° � then

f2�t� � ei�1t
 1

− i
� + ei�3t1

3

1

i
� + ei�4t1

3

 1

− i
� + ei�6t
1

i
� .

�62�

Constructing the structure factor �21� we should add Eqs.
�61� and �62� with the appropriate space phase shift � ac-
cording to Eq. �31�. If �=0, as for an antiferromagnetic
alignment within one sublayer, then all frequencies in the
scattered radiation are linear � polarized and we have mul-
tifrequency beats in the time spectrum �see Fig. 23�.

For �=� all components in the scattered radiation are
again linear polarized, but along the z direction, the spectrum
of reflectivity being the same. But if �=� /2 we obtain

F�t� � �1 + i�	ei�1t
1

1
� + ei�3t1

3

 1

− 1
� + ei�4t1

3

1

1
�

+ ei�6t
 1

− 1
�� �63�

so the first and fourth lines have a linear polarization rotated
by 45° relative to the x ,z axes �see Fig. 24�, and the third and
sixth components are also linearly polarized but orthogonal
to the linear polarization of the first and fourth lines. The
time spectrum of reflectivity will have a single quantum beat
frequency �Fig. 23�. This is a clear example of how the space

FIG. 21. �Color online� Angles for determination of the Bhf ori-
entation relative to the reflectivity geometry.

FIG. 22. Time spectra of reflectivity from the resonant
multilayer �57Fe/Cr�26 calculated for the exact Bragg angle with
different directions and types of magnetic alignment.
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phase shift can change not only the phase or intensity of
different contributions but also the state of polarization. The
structure information will in this situation be even richer
�especially if we select the polarization state of the reflectiv-
ity�.

For the general kinematical approximation the transfor-
mation of the polarization state of the radiation, during its
propagation through the sample, should be considered in ad-
dition to the refraction and absorption corrections and the
formula �11� should be generalized to

R̂ =
1

4 sin2 �
�
j=1

L

eiQzj−1e��/sin ��	̂�1
d1e��/sin ��	̂�2

d2
¯

�e��/sin ��	̂� j−1
dj−1�	̂�j−1

− 	̂�j
�

�e��/sin ��	̂� j−1
dj−1

¯ e��/sin ��	̂�2
d2e��/sin ��	̂�1

d1.

�64�

Here the reflectivity is calculated as a sum of the reflectivi-
ties at each jth boundary in a multilayer with the additional
�to the simplest eiQzj−1� phase shift, absorption, and polariza-
tion transformation determined by the matrix exponentials
e��/sin ��	̂�ndn, sequentially in all layers above the jth layer:
n=1,2 , . . . j−1. If the structure contains several kinds of hy-
perfine fields and the structure factor does not commute with
the 2�2 propagation matrices e±i�̂�z then factorization of

Eq. �57�, as of Eq. �17�, is unfortunately impossible. At that
point any qualitative description of the reflectivity process is
practically impossible. We can only add that exactly as it
occurs for the resonant dependence of the reflectivity, the
polarization transformation of the waves with depth implies
that the electronic charge scattering will participate in the
creation of a polarization state of the reflected radiation dif-
ferent from the incident one.

The kinematical approach gives us anyway only a quali-
tative picture of the interaction. So finally we present here
the correct dynamical formula of reflectivity which we have
used in our fit programs of the reflectivity. It is a generaliza-
tion of the Parratt recurent algorithm45 for the case when the
transformation of polarization states of radiation should be
taken into account:

R̂j = r̂ j + t̂ j��1 − R̂j+1
up r̂ j��

−1R̂j+1
up t̂ j , �65�

where

R̂j+1
up = e−i�̂j

−�djR̂j+1ei�̂j
+�dj �66�

and r̂ j, t̂ j, r̂ j�, and t̂ j� are the 2�2 matrices �planar tensors� of
the reflection and transmission for the boundary between su-
blayers j−1 and j and the prime indicates the propagation in
the backward direction, and �̂ j

± are the tensors of the normal
refraction for the waves in the forward and backward
directions.46 Notice in conclusion that the calculations by
this formula give exactly the same result as calculations with
the 4�4 propagation matrix method.47,68

XIII. EXPERIMENTAL APPLICATION: †Fe/Cr‡26

The time spectra of reflectivity, measured for the sample
glass/Cr�50� / �57Fe�1.7� /Cr�1.6��26/Zr�10� �nominal thick-
ness in nanometers�, having a rather high reflectivity at the
first Bragg peak, can be a good illustration of the influence of
the standing waves and polarization mixing on the reflectiv-
ity spectra.62–64 The time spectra were measured for several
angles in vicinity of the Bragg angle �13.2, 13.6, 13.8, and
14.0 mrad� at room temperature without external magnetic
field �Fig. 25�. It was clearly seen �and confirmed by the
Fourier analysis� that the time spectra measured with a very
small change of the incident angle �0.2 mrad� are rather dif-
ferent.

The most surprising thing was the appearance of new beat
frequencies at angles slightly different from the exact Bragg
angle. We supposed that the contribution from the middle
part of the 57Fe layer is enhanced in the time spectra mea-
sured at the exact Bragg angle 13.58 mrad while the time
spectra measured with some shift from the exact Bragg angle
characterize mostly the interface regions. The depth distribu-
tion of the magnitude and orientation of the hyperfine fields
Bhf,i�z� on the scale of one bilayer was obtained by a fit of
the experimental time spectra �Fig. 26�.

For the description of the orientation of the hyperfine field
Bhf in each sublayer three states were used. They were �i�
definite values of polar � and azimuth � angles for Bhf, �ii�
“random,” which means random in 4� solid angle, and �iii�
“in plane,” a random distribution of Bhf in the surface plane.

FIG. 23. Time spectra of the Bragg reflectivity �left� and their
Fourier transforms �right� calculated for the multilayer
�V/ 57Fe/ 56Fe/ 57Fe�30 with the two antiferromagnetically ordered
�Bhf along the beam� resonant 57Fe sublayers at different positions
in the repetition period: �=� �top�, � /2 �middle�, and 0 �bottom�.

FIG. 24. Addition of the right and left or left and right circular
polarizations with the space shift �. If �=� /2 the resulting linear
polarizations are orthogonal.
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Notice that the in-plane state is ambiguous since several
other orientations of Bhf give exactly the same time spec-
trum. They are �1� an antiferromagnetic ordering of the mag-
netic moments �or domains� along any direction in the sur-
face plane and �2� a perpendicular orientation of Bhf to the
radiation beam but still in the surface plane. The best fit was
obtained with Bhf,i in the middle part of 57Fe layers lying in
the surface plane at an angle �40° with the direction of the
beam, but with some fraction of the Bhf,i in the interface
regions having random orientation in the plane ��40% � and
even in space ��20% �. Hence, we revealed the noncollinear
magnetic ordering in our multilayer.

As it could be expected the smaller value of Bhf was de-
tected to be preferably situated in the interface regions of the
57Fe/Cr bilayer �Fig. 26�. We clearly observed also an asym-
metry of the Fe-on-Cr and Cr-on-Fe interfaces characterized
by the thickness of the Fe-on-Cr interface �1 nm, but the
Cr-on-Fe interface by only �0.2 nm. That evidenced that the
roughness of the chromium surfaces is larger than that of the
iron surfaces in our structure. Remember that the investiga-
tions of the difference of the interfaces by means of one 57Fe
probe monolayer �see, e.g., Refs. 3 and 4� are rather ambigu-
ous because it is practically impossible to prepare two iden-
tical samples with 57Fe at different interfaces or layers �un-

less wedged samples are produced�. By means of the
standing waves we may investigate both interfaces in one
and the same sample.

XIV. INTERFACE AND LAYER INHOMOGENEITIES AND
THE REFLECTIVITY SPECTRUM

In previous sections we have discussed the influence of
the depth distribution of the hyperfine fields on the reflectiv-
ity spectrum. Real samples, however, are usually not uniform
along the interfaces. Initial stages of film growth are often
characterized by island formation, monocrystalline films
have steps, terraces, and so on. Such inhomogeneities are
always characterized by specific hyperfine fields �that is why
the Mössbauer spectra of thin films and even monolayers
have such a complicated spectral content�. It is well known
that the surface and interface roughness as well as the vol-
ume inhomogeneities �such as magnetic domains� create a
diffuse scattering and decrease the specular reflectivity. Such
influence on the reflectivity can be described by Debye or
Nevot-Croce damping factors or by introducing an interface
layer with a density gradient between the sublayers. Such a
description is good in the ordinary x-ray reflectivity, but it is
not sufficient for the coherent reflection spectroscopy.

If we are interested in the different resonant contributions
to the reflectivity spectrum we should realize that one and
the same amount of a given hyperfine contribution will be
present in the reflectivity spectrum with different weights
depending on the degree of the distribution smoothness of
the corresponding nuclei along the layer plane.

Figure 27 illustrates this idea. If resonant nuclei are col-
lected in small irregular grains �with zero correlation length�,
then their contribution to the coherent reflectivity signal will
be negligible �Fig. 27�b��. The contributions from “island
regions” at the interfaces will be more essential �Fig. 27�c��
but smaller than those from from the uniform layers �Fig.
27�a��.

FIG. 25. �Color online� Prompt and delayed reflectivity for
0.086 nm SR near the Bragg peak �top� and the experimental time
spectra �left� with their Fourier transforms �right� for four angles in
the vicinity of the Bragg peak �marked by vertical dashed lines�.
Insets show the standing-wave pattern for the chosen angles calcu-
lated at the delay time 11.8 ns. Vertical dotted lines across the Fou-
rier spectra show the quantum beat frequencies corresponding to the
interference between the Mössbauer lines in �-iron, numbered in
the bottom panel. Theoretical �solid� curves are the result of the fit.
The obtained model for the spatial field distribution is shown in Fig.
26.

FIG. 26. �Color online� The obtained depth distribution of the
Bhf values �a� and Bhf orientations �b� in one 57Fe/Cr bilayer. Hori-
zontal dotted lines in �a� and �b� are the normalization values; cor-
responding to the density of pure �-iron. The normal CEMS spec-
trum and its fit is shown in �c�. �d� shows the angles � and � and the
obtained preferred magnetic moment orientation in our 57Fe/Cr
superstructure.
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In addition, we should remember that the size of the de-
tector slits could substantially change the relative amount of
different resonant contributions by measuring some part of
the diffuse scattering. The exact theory of such suppression
or enhancement of the different hyperfine contributions has
not been developed yet, but qualitatively we can interpret the
decrease of some hyperfine field fractions, as derived from
the reflectivity spectrum compared to a corresponding CEMS
spectrum, as due to the nonuniform in-the-layer or interface
distribution of these components.

XV. CONCLUSIONS

Coherent nuclear resonance reflectivity spectroscopy dif-
fers from the conventional absorption �e.g., Mössbauer�

spectroscopy in many aspects and the interpretation of the
experimental spectra may be rather intricate. However, one
advantage is the sensitivity to the depth distribution of dif-
ferent hyperfine fields and it is an alternative method to the
57Fe probe monolayer method3,4 for such depth-selective in-
vestigations.

The presented analysis of the basic features of the coher-
ent spectroscopy at Bragg reflections from periodic multilay-
ers mainly refers to the nuclear resonant scattering of SR.
However, the here revealed peculiarities in the energy repre-
sentation are general properties of the reflectivity process and
may also be applied to the data interpretation of any kind of
reflectivity spectroscopy, in particular for resonant x-ray
scattering.
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