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This work establishes a generic model to study phonon transport and the thermal conductivity of periodic
two-dimensional nanocomposites in the longitudinal direction �along the wire axis direction�. More specifi-
cally, the generic model is applied to study the thermal conductivity of silicon-germanium composites with
simple silicon nanowire and tubular silicon nanowire inclusions in a germanium matrix, and cylindrical nano-
porous silicon materials. The results show that the effective thermal conductivity changes not only with the
volumetric fraction of the constituents but also with the radius of the nanowires and cylindrical pores due to the
nature of the ballistic phonon transport. The smaller the wire/pore diameter, the smaller is the thermal con-
ductivity of the periodic two-dimensional nanocomposites for a given volumetric fraction. Composites with
tubular nanowire inclusions have a lower effective thermal conductivity than simple nanowire composites due
to the introduction of additional surface scattering through the pores associated with tubular nanowires. Results
of this study can be used to direct the development of both high-efficiency thermoelectric materials and thermal
interface material containing high-thermal-conductivity particle or wire inclusions.
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I. INTRODUCTION

Nanocomposite and nanoporous materials are used in a
variety of applications and will play more important roles in
the future with rapid progress being made in making control-
lable nanostructures, such as nanowires, nanotubes, and
nanoparticles.1 Thermal properties of nanocomposites are
important for applications of particle-laden polymers in mi-
croelectronics as thermal interface materials2,3 and nano-
porous materials for sensor development.4,5 Our interests in
the thermal conductivity of nanocomposites arise from their
potential applications in high efficiency thermoelectric
materials.6,7 The efficiency and energy density of thermo-
electric devices are determined by the dimensionless thermo-
electric figure of merit of the thermoelectric materials ZT
=S2�T /k, where S is the Seebeck coefficient, � is the elec-
trical conductivity, k is the thermal conductivity, and T is the
absolute temperature.8 Significant advances for increasing
ZT have been made, based on new ideas on how to engineer
electron and phonon transport.9 Nanocomposites may
achieve high ZT through a thermal conductivity reduction
while maintaining essentially the same electron transport
performance.7

There are not many theoretical studies on the thermal con-
ductivity of nanocomposites despite its importance for prac-
tical applications. The prevailing approach is to include the
interface thermal resistance, or Kapitza resistance,10 with the
Fourier heat conduction theory.11–15 However, Fourier heat
conduction theory is based on the diffusion picture and is not
applicable when the phonon mean free path is longer than
the characteristic length of the nanocomposites such as the
particle diameter and/or interparticle separation distance. An-
other approach in the investigation of the nanocomposite
thermal conductivity is through the calculation of the phonon

dispersion in periodic structures16 Due to the short wave-
length of the dominant phonon heat carriers, the phonon
scattering at interfaces is often diffuse.17 The diffuse inter-
face scattering inside the nanostructure materials cannot only
reduce the phonon mean free path but can also destroy the
coherence of phonons. Due to the loss of coherence, classical
size effect models such as the phonon Boltzmann equation
are expected to be applicable to a wide range of nanostruc-
tures. In our previous article, the phonon Boltzmann equa-
tion is applied to study the classical size effect on the thermal
conductivity of periodic nanowire composites �two-
dimensional composites� normal to the wire axis direction.7

In this article, we study the thermal conductivity of periodic
two-dimensional nanocomposites with simple nanowire and
tubular nanowire inclusions, and cylindrical nanoporous ma-
terials in the longitudinal direction, i.e., along the wire axis
direction.

II. THEORETICAL MODEL AND NUMERICAL
SIMULATION

In Fig. 1�a�, a temperature gradient is applied along the
axial direction �z direction� on a periodic two-dimensional
nanocomposite with tubular nanowire inclusions. Since the
transport is periodic in both x and y directions, the transport
inside the nanocomposites can be represented by that in the
small unit cell shown in Fig. 1�b� applying the totally specu-
lar phonon reflection boundary conditions along the x and y
boundaries. However simulation of phonon transport in a
3-D unit cell shown in Fig. 1�b� is still a big challenge that
involves both Cartesian and cylindrical coordinates. As an
approximation, we further convert the outer surface of the
square unit cell into a circle, i.e., to approximate a square
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unit cell cross section as a circular cross section, as is often
used to study fluid flow problems.18,19 The problem then be-
comes phonon transport in core-shell cylindrical structures,
as shown in Fig. 1�c�. This approximation results in a 10%
error. Figure 1�c� shows the generic phonon transport model
we developed for core-shell nanostructures, which consists
of a tubular core layer and a shell layer. Here we use the
following notations: r0 is the inner radius of the core layer, r1
is the outer radius of the core layer, and r2 is the outer radius
of the shell. We assume partially diffuse and partially specu-
lar surface scattering at the inner surface of the core layer
and totally specular reflection at the outer surface of the shell
layer, to be consistent with what occurs at the outer surface
of the unit cell shown in Fig. 1�b�, i.e., to represent the pho-
non transport in nanocomposites. The specularity parameter
at the inner surface of the core layer and the outer surface of
the shell layer is represented by p1 and p2, respectively,
where p �=p1 or p2�=0 corresponds to diffuse scattering and
p=1 corresponds to specular scattering at the surface. This
generic model can be used to simulate a variety of nanocom-
posites by changing some of the input parameters. For ex-
ample, when the inner radius of the tubular core layer r0=0
and the interface specularity p1=1 at r0=0, the structure rep-
resents periodic two-dimensional composites with simple
wire inclusions as shown in Fig. 1�d�. When the same mate-
rial is used for the core and the shell layers, the interface
between the core and shell layers disappears and the inter-
face scattering at r1 dies out; the model represents the pho-
non transport inside a nanoporous medium with cylindrical
pores along the pore direction as shown in Fig. 1�e�.

Clearly the model developed here is strictly valid for pe-
riodic composites only. In reality most of composites made
might have random microstructures. Our study using Monte

Carlo simulation shows that the thermal conductivity of a
random nanocomposite is very close to a periodic
composite.20 In addition, the phonon Boltzmann transport
model is based on the following assumptions: �1� the phonon
wave effect can be excluded; �2� the frequency-dependent
scattering rate in the bulk medium can be approximated by
using an average phonon mean free path �MFP� �. Assump-
tion �1� can be well justified since the wavelength for domi-
nant phonons responsible for thermal transport is around
1 nm. The justification for these assumptions can be found in
Refs. 7 and 21. In our simulation, we used the phonon MFP
and the group velocity v listed in Ref. 21, which are obtained
by approximating the dispersion of the transverse and the
longitudinal-acoustic phonons with simple sine functions and
neglecting the optical phonon contribution to the thermal
conductivity k. This estimation leads to longer mean free
path than using simple kinetic theory expression k= 1

3Cv�,
which is consistent with experiments from Goodson’s
group.22

In terms of the total phonon intensity I,23,24 the 2-D pho-
non Boltzmann equation under the single mode relaxation
time approximation in cylindrical coordinates can be written
as

�

r

�

�r
�rIi� −

1

r

�

��
��Ii� + �

�Ii

�z
= −

Ii − Ioi

�i
, �1�

where subscript i �=1,2� denotes properties of the core and
shell material �i is the average phonon MFP. �, �, and � are
the directional cosines defined as

� = sin 	 cos �, � = sin 	 sin �, � = cos 	 , �2�

where 	 and � are the polar and azimuthal angles, respec-
tively, as shown in Fig. 2. In the phonon Boltzmann transport

FIG. 1. �Color online� �a�. Periodic two-
dimensional nanocomposite �composite with tu-
bular nanowire inclusions�; �b� cross-sectional
view of a unit cell: a square unit cell cross section
is approximated as a circular cross section; �c� by
the approximation in �b�, the transport in nano-
composites becomes phonon transport in core-
shell cylindrical structures; �d� periodic silicon
nanowire composites; and �e� cylindrical nano-
porous silicon material.
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equation �Eq. �1��, there are two coordinate systems �shown
in Fig. 2�: spatial coordinates �r, �c, and z� and directional
coordinates �	 and �� for the transport, which correspond to
the movement of carriers in spatial and momentum space. As
a phonon travels through a curved geometry such as in the
cylindrical coordinates, the propagating direction is con-
stantly varying, even though the phonon does not physically
change its direction. This is why an additional term, the sec-
ond term of the left-hand side in Eq. �1�, exists. The diffi-
culty of numerical simulation is also due to this term. There
exist many procedures to address this term in the neutron
transport literature.25 Ioi in Eq. �1� is determined by the Bose-
Einstein distribution of phonons and depends on the local
equilibrium temperature. In nanostructures, local equilibrium
cannot be established and thus the temperature obtained
should not be treated in the same way as in the case of local
thermal equilibrium. An energy balance shows that Ioi can be
calculated from26

Ioi�r,z� =
1

4

�

4


Ii�r,��d�

=
1

4

�

0

2
 �
0




Ii�r,z,	,��sin 	d	d� �3�

and the corresponding temperature obtained is a measure of
the local energy density.

Equation �1� is similar to the photon radiative transport
equation �RTE�.26 The key is to solve for the intensity distri-
bution I�r ,��. A variety of solution methods are available in
the thermal radiative transfer literature.25,27 For phonon
transport in nanostructures, the challenge is to reduce the
“ray effect,” which often happens similarly in thermal radia-
tion in optical thin limit. In our previous work,28 double
Gauss-Legender quadratures have been used to replace the
conventional SN quadratures for the discrete ordinate method
and this approach was shown to successfully resolve the ray
effect problem in our phonon transport simulation in nano-
structures. In the present work, we extend the previous work
in Cartesian coordinates to cylindrical coordinates. The
method separately discretizes the integrating points in �
=cos 	 �the angle 	� and in the angle � using the Gauss-
Legender quadrature. To obtain high accuracy, � is dis-
cretized into 120 points from −1 to 1 and � is discretized

into 24 points for 0 to 
 �not 0 to 2
 due to symmetry�. Then
Eq. �3� can be written in discrete form as

I0i�r,z� =
2

4

�
m

�
n

Ii�r,z,�n,�m�wnw�m. �4�

The weights wn and wm� satisfy �m�nwnwm� =2
.
Following the conventional artifice of Carlson and

Lathrop25 and Lewis and Miller,29 which maintain phonon
radiative energy conservation and permits minimal direc-
tional coupling, the angular derivative term can be written as
follows:

�

��
��nmIi

nm� =
�n,m+1/2Ii

n,m+1/2 − �n,m−1/2Ii
n,m−1/2

wnwm�
, �5�

where wnw�m is a weight and �n,m±1/2 is the coefficient for
the angular derivative term determined from the nondiver-
gent flow condition as following the recursive equation:

�n,m+1/2 − �n,m−1/2 = �wnwm� ��n,m. �6�

For this work, we are only interested in the size effect
occurring in the radial direction, not in the wire axis direc-
tion. However, because heat flows along the axial direction,
the simulation requires choosing a proper length and the cor-
responding boundary conditions at the two ends along the
transport direction. When heat is enforced to flow in the axial
direction, the temperature is different in the two ends. How-
ever, simply assuming the temperature difference in the two
ends might induce artificial size effect in the axial direction.
To get rid of the artificial size effect in the axial direction, the
periodic boundary condition on the phonon distribution de-
viation proposed in our earlier work7 is used. This periodic
boundary condition requires that the deviation of phonon in-
tensity in each direction at each point in one boundary is the
same as the deviation in the corresponding point and direc-
tion in the other boundary of the simulation domain in the
heat transport direction. The equation can be expressed as

I�r,LZ,	,�� − I0�r,LZ� = I�r,0,	,�� − I0�r,0� , �7�

where LZ is the simulation domain length. It can be proved
that the temperature difference between the two ends should
be independent of r and can be related to

Io�r,LZ� − Io�r,0� =
Civi�T�r,LZ� − T�r,0��

4

= const. �8�

In our simulation, we superimposed T�r ,LZ�−T�r ,0�=1 K in
the above equation. If we do not superimpose such a
temperature difference in the program, Eq. �7� will automati-
cally converge to a constant temperature difference
T�r ,LZ�−T�r ,0� value. The converged value varies with
simulated structures. But the final results of the thermal con-
ductivity value do not depend on whether the temperature
difference is superimposed. However, the calculation is
much faster when the temperature difference value is super-
imposed. Other than the temperature difference shown in Eq.
�8�, Eq. �7� is apparently a more demanding boundary con-
dition, which ensures directional heat flux conservation in
the two boundaries along the transport direction. For trans-

FIG. 2. Phonon transport in cylindrical coordinate.
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port along the axial direction, the periodicity is arbitrary. So
we can choose an arbitrary length LZ and use the periodic
boundary condition to obtain thermal conductivity values
that are independent of LZ. If the boundary conditions at the
two ends are assumed as emitted temperature condition,28

one often needs to simulate a domain more than three times
longer than the phonon mean free path, which can be many
times longer than the size in the radial direction. With the
proposed boundary condition, the simulation domain length
can be adjusted according to the size of the structure in the
radial direction. We also note that the nature of the Boltz-
mann equation requires iterations to obtain convergent re-
sults with the boundary conditions we have defined.

As in previous work, a nonuniform grid system and the
step scheme is used for spatial discretization to accurately
capture the physics of the transport phenomena and to mini-
mize the calculation time. The step scheme is used for spatial
discretization. The equation is solved by iteration over the
value of the equivalent equilibrium intensity I0i�r ,z�
= �2/4
��m�nIi�r ,z ,�n ,�m�wnwm� . Assuming constant spe-
cific heat over a wide temperature range, we can write effec-
tive temperature, which is a measure of the local energy
density inside the medium, as

T�r,z� =
4
I0�r,z�

Ci�vi�
. �9�

The heat flux along the axial direction at every point can be
accordingly written as

qz�r,z� = �
m

�
n

I�x,y,�n,�m��nwnwm� , �10�

The surface heat flux in the axial direction can be calculated
as

Qz�z� = �
0

r2

qz�r,z�2
rdr . �11�

When the simulation is converged, Qz�z�=const. After local
effective temperature distribution and heat flux are obtained,
the thermal conductivity calculation is straightforward. The
effective thermal conductivity k of the core-shell structure
can be obtained as

k =
QzLZ


r2
2�T�r,LZ� − T�r,0��

. �12�

III. RESULTS AND DISCUSSIONS

Figure 3 shows results for the thermal conductivity of a
silicon-germanium nanocomposite which consists of a ger-
manium matrix with silicon wire inclusions �as shown in Fig.
1�d�� as a function of the silicon wire radius and the volu-
metric ratio of Si, Si=r1

2 /r2
2, which can be related to the

atomic ratio �Si through �Si=Si / �Si+ �1−Si�asi /aGe�,
where a is the lattice constant. The phonon scattering at the
silicon-germanium interface is assumed to be diffuse and the
phonon transmissivity at the interface can be calculated as30

Td12�T� =
U2�T�v2

U1�T�v1 + U2�T�v2
, �13�

where U is the volumetric internal energy. In a bulk Si-Ge
composite, the effective thermal conductivity increases lin-
early as the cross-sectional area or volumetric ratio of Si
�Si� increases since Si has much higher thermal conductiv-
ity than Ge. For Si-Ge nanocomposites, the effective thermal
conductivity decreases as the radius of wire inclusion de-
creases due to the relative increasing interface scattering area
per unit volume. When the radius of the wire inclusion is
larger than 500 nm, the effective thermal conductivity ap-
proaches asymptotically that of macroscale composites. This
means that the interface scattering is negligible compared to
the internal thermal resistance in Si wires and the Ge matrix
and the effective value can be predicted by the Fourier law.
For nanowire composites with the wire inclusion radius less
than 150 nm, there exists a minimum thermal conductivity as
the volumetric ratio of Si changes. The trend is similar as
those predicted for core-shell Si-Ge nanowires. When the
volumetric ratio of Si �Si� in the composites is large, the
effective thermal conductivity has the same trend as that of
the macroscale composite. When the volumetric ratio of Si
�Si� in the composites is small, the effective thermal con-
ductivity increases as the fraction of the low thermal conduc-
tivity component increases, which is contrary to the behavior
of bulk composites. This is because the effective thermal
conductivity of the Si wire keSi is decreased to well below the
bulk Ge thermal conductivity due to interface scattering. The
effective thermal conductivity of the Ge matrix keGe in-
creases as �r2−r1� /r1 increases, since the scattering surface
per unit volume of Ge decreases. The effective thermal con-
ductivity of the core-shell structure can be written as
�keSi

* r1
2+keGe

* �r2
2−r1

2�� /r2
2, thus accounting for the existence

of a minimum value.
As stated in the Introduction, most past studies on the

thermal conductivity of nanocomposites were based on the
Fourier diffusion theory together with consideration of the
thermal boundary resistance. To examine the validity of such

FIG. 3. Thermal conductivity of silicon germanium nanocom-
posite which is comprised of a germanium matrix with silicon wire
inclusions as a function of the silicon wire radius and the volumet-
ric ratio.
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an approach, we compare the effective thermal conductivity
obtained from the Boltzmann equation with that of the effec-
tive medium approach �EMA� developed by Nan et al.,
which gives the anisotropic effective thermal conductivity
values of nanowire composites as13

k11 = k22 = km
kP�1 + �� + km + P�kP�1 − �� − km�
kP�1 + �� + km − P�kP�1 − �� − km�

,

�14�

k33 = �1 − P�km + PkP, �15�

where k11 and k22 are the effective composite thermal con-
ductivity across the wire axis direction, k33 is the effective
thermal conductivity in the longitudinal direction, km is the
thermal conductivity of the host material, kP is the bulk ther-
mal conductivity of the nanowire inclusion materials, P is
the volume fraction of nanowire inclusion, and � is a dimen-
sionless parameter defined as a=ak /ap for nanowire compos-
ites. ap is the radius of nanowire inclusions and ak=Rkm,
where R is the interface thermal resistance which can be
calculated as21

R =
4

Td12U1v1
�

4�U1v1 + U2v2�
U1v1U2v2

. �16�

Apparently, Eq. �15� shows that the EMA model does not
consider the size effect on the thermal conductivity for nano-
wire composites in longitudinal direction, i.e., when the tem-
perature gradient is applied along the wire axis direction.
Such a result is clearly contrary to the solution of the Bolt-
zmann equation presented above that shows a strong size
dependence. We further compare k11, the thermal conductiv-
ity perpendicular to the wire axis, with our previous
calculations.7 As our previous calculation was done for
square wire inclusions, an effective diameter D=2ap
=4AC / P is used, where AC is the cross-sectional area and P
is the perimeter of the cross section, to convert the square
geometry into a circular geometry. Figure 4 compares the
thermal conductivity in nanowire composites perpendicular
to wire axis obtained from the phonon Boltzmann equation
simulation and the effective medium approximation �EMA�.
As we can see, the effective medium approach based on
incorporating the thermal boundary resistance into the solu-
tions of the Fourier heat conduction law leads to erroneous
results that underpredict the size effects.

The same code can be used to simulate the thermal con-
ductivity of a nanoporous medium. Figure 5 shows results
for the thermal conductivity of porous silicon along the cy-
lindrical pore direction �as shown in Fig. 1�e��. Here r0 is the
pore radius and the shell thickness �r2−r0� is determined by
the porosity as o=r0

2 /r2
2. For simplicity, only the results

assuming diffuse surface scattering at the pore surface are
reported. For macroscale porous materials, the effective ther-
mal conductivity decreases linearly as the porosity increases.
When the pore radius is less than two to three times the
phonon mean free path in the silicon matrix, the effective
thermal conductivity is not only a function of porosity, but
also a function of pore radius. For composites with the same
porosity, the effective thermal conductivity decreases as the

pore radius decreases since the scattering area per unit vol-
ume increases. The implication of this study is that nanop-
ores can possibly be used to further reduce the thermal con-
ductivity of nanowire composites. In a recent report, Zhao et
al. showed that the effective thermal conductivity is further
reduced and thus the thermoelectric figure of merit ZT is
increased in a Bi2Te3 composite with tubular Bi2Te3 nano-
wire inclusions.31

The model has also been used to study the thermal con-
ductivity of tubular nanowire composites as shown in Fig.
1�a�. Again the results shown here assume a totally diffuse
surface scattering at the pore surface. The effective thermal
conductivity of tubular nanowire composites is a function
of the pore radius inside the tubular silicon wire r0, the
outer radius of the silicon shell r1 �silicon shell thickness is
defined as r1−r0�, and the volumetric ratio of silicon
Si= �r1

2−r0
2� / �r2

2−r0
2� in the composites. Figure 6 shows

the effect of the silicon core layer thickness of the tubular

FIG. 4. Comparison of the thermal conductivity of nanowire
composites in the direction perpendicular to the wire axial direction
obtained from phonon Boltzmann equation simulation and from the
effective medium approximation �EMA� based on the Fourier law
and thermal boundary resistance, demonstrating that the EMA un-
derpredicts size effects.

FIG. 5. �Color online� Thermal conductivity of porous silicon
along the cylindrical pore direction as a function of the pore radius
and porosity.
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silicon wire inclusions on the effective thermal conductivity
of the nanocomposites. From Fig. 6, the effective thermal
conductivity is smaller when the Si core layer thickness is
thinner for the same volumetric ratio of Si and same inner
pore radius. A smaller Si shell thickness means smaller Ge
shell thickness. This gives a smaller effective thermal con-
ductivity for both the Si and Ge layers and thus a smaller
effective thermal conductivity of the nanocomposites. Com-
parison of Figs. 6�a� and 6�b� shows that the effective ther-
mal conductivity of the composites decreases as the radius of
the inner pores increases for fixed Si shell thickness and
volumetric ratio of Si due to the increase of surface scatter-
ing area per unit volume.

Figure 7 shows that the tubular Si nanowire composite
has lower solid thermal conductivity than that of simple
nanowire composite due to the additional surface scattering
introduced through the inner pore surface. Here the solid
thermal conductivity kS is defined as kS=QL /AS�T, where Q
is the heat flux, L is the length of the simulation domain
along the direction where the temperature difference �T is
applied, and AS is the solid part of the cross-sectional area

As=
�r2
2−r0

2�. For comparison, the Si wire radius �or outer
shell radius of the tubular nanowire� is fixed. Figure 7 also
shows that the solid thermal conductivity decreases as the
pore radius increases due to the increasing surface scattering
per unit volume.

IV. CONCLUSION

We study in this paper the thermal conductivity of peri-
odic two-dimensional nanocomposites along the wire axis
direction, including simple nanowire composites, nano-
porous medium, and composites with tubular nanowire in-
clusions. The results show that the effective thermal conduc-
tivity changes not only with the volumetric fraction of the
constituents but also the radius of the nanowire, pore, and
tubular nanowire inclusions due to the nature of the ballistic
phonon transport. These results are in contradiction with the
existing theory on the thermal conductivity of composites,
which lead to effective transport properties depending only
on the volume fraction but independent of size. The smaller
the wire/pore diameter, the smaller is the thermal conductiv-
ity of periodic two-dimensional nanocomposites for a given
volumetric fraction. Composites with tubular nanowire inclu-
sions have both lower effective and solid thermal conductiv-
ity than simple nanowire composites due to the introduction
of surface scattering through the pores. We also show that the
effective medium approach based on incorporating the ther-
mal boundary resistance into the solution based on the Fou-
rier heat conduction law leads to erroneous results that un-
derpredict the size effects. Results of this study can be used
to direct the development of both high efficiency thermoelec-
tric materials and thermal interface materials with high ther-
mal conductivity particle or wire inclusions.
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FIG. 6. The effect of the silicon core layer thickness and the
pore size of tubular silicon wire inclusions on the effective thermal
conductivity of the nanocomposites.

FIG. 7. The solid thermal conductivity of the composites de-
creases as the pore radius increases due to the increasing surface
scattering per unit volume.
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