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We theoretically investigate transport in a spin-incoherent one-dimensional electron system, which may be
realized in quantum wires at low-electron density and finite temperature. Both the pure and disordered cases
are considered, both in finite wires and in the thermodynamic limit. The effect of Fermi-liquid leads attached
to the finite-length system is also addressed. In the infinite system, we find a phase diagram identical to that
obtained for a spinless Luttinger liquid, provided we make the identification g=2gc, where g is the interaction
parameter in a spinless Luttinger liquid and gc is the interaction parameter of the charge sector of a Luttinger-
liquid theory for electrons with spin. For a finite-length wire attached to Fermi-liquid leads, the transport
depends on the details of the disorder in the wire. A simple picture for the crossover from the spin-incoherent
regime to the spin-coherent regime as the temperature is varied is also discussed, as well as some physical
implications.
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I. INTRODUCTION

Low-dimensional electron systems have attracted much
attention in recent years because they provide an opportunity
to realize exceptionally rich physics not readily found in
higher dimensions. One such example is the so-called
Luttinger-liquid �LL� state of an electron gas.1,2 The LL state
is characterized by gapless excitations and, in the case of an
electron gas, by the spin-charge separation realized by the
separate collective spin and charge excitations, each with its
distinct propagation velocity. The tunneling density of states
also exhibits a characteristic power-law suppression at low
energies as a result of an “orthogonality catastrophe” at zero
energy from the rearranging of the wave functions of the
electrons to accommodate the new �tunneling� particle. Ex-
perimental evidence for the LL state in one-dimensional
electron systems is by now irrefutable with measurements
showing both the characteristic power-law suppression of the
tunneling density of states and measurements of the spectral
function providing direct evidence of spin-charge separation,
including quantitative measures of the respective collective
mode velocities.3–6

Real samples measured in experiments are not perfectly
clean, and it is important to understand the effects of impu-
rities on the electronic properties, such as transport, in one-
dimensional �1D� interacting electron systems. Work by
Kane and Fisher,7,8 and by Furusaki and Nagaosa9,10 estab-
lished the central results for transport in a single and double
impurity system in a LL, both at weak and strong impurity
strengths. Since then, beautiful numerical studies have con-
firmed these results in detail11 and extensions to include fi-
nite magnetic fields have been made.12 For a single impurity
in a spinless LL, the main result is that for repulsive electron
interactions the impurity “cuts” the LL into two semi-infinite
sections, while for attractive electron interactions, the impu-
rity is irrelevant in the renormalization group �RG� sense and
scales to zero at low energies. When spin is introduced, the
transport can be more complicated, with the spin and charge

sectors possibly behaving differently. For example, one pos-
sibility is that the spin could pass easily through the impurity
while the charge would be reflected. The double impurity
system exhibits even richer behavior, including zero-width
resonances at zero temperature. At finite temperature, the
resonance line shapes exhibit a characteristic non-Lorentzian
shape, in contrast to the case for noninteracting electrons.
When Fermi-liquid leads are attached to the end of a finite-
length 1D LL wire, a new length scale is introduced beyond
which the leads play an important role in the physics.13–20

For example, the dc conductance of a clean system is com-
pletely determined by the leads and, therefore, has a value of
2e2 /h independent of the strength of the electron interactions
in the wire.

LL theory is based on a picture of interacting electrons in
which the interaction strength is not too great. In this regime
of not too strong electron interactions, the characteristic ex-
change energy of two electrons—defined by � times the in-
verse of the time required for two electrons initially in posi-
tion eigenstates separated by the average interelectron
distance to undergo a spin flip—is typically of the same or-
der as the Fermi energy. However, at low densities, the po-
tential energy grows relative to the kinetic energy and even-
tually dominates it for sufficiently low densities when naB
�1, with n being the average density of the electrons and the
Bohr radius aB=��2 /me2, with � the dielectric constant, m
the mass of the electron, and e its charge. At these low den-
sities, there is a separation of energy scales between the mag-
netic exchange energy,21,22 J�EFe�−C/�naB�, and the Fermi en-
ergy, EF= ���n�2 /8m. Here C is a positive constant of order
unity. When the interactions between electrons are very
strong, they must tunnel through one another to exchange,
leading to an exponentially small J and a situation where J
�EF. For naB�1 it is possible to reach a regime where the
temperature T is much larger than the magnetic exchange
energy, but still much less than the Fermi energy: J�T
�EF. We refer to this energy scale hierarchy as the spin-
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incoherent or magnetically incoherent regime.
In this paper, we revisit the transport problem in an inter-

acting 1D electron gas, with an eye toward understanding the
behavior in the magnetically incoherent regime. Recently the
magnetically incoherent regime has been investigated for a
clean, infinite system by studying the one particle Green’s
function23–25 and the momentum-distribution function,26 and
for finite systems by studying the influence of incoherent
magnetic degrees of freedom on the momentum-resolved
tunneling27 and on the conductance of a clean quantum-point
contact.28,29 Our main result is that the transport in an infinite
magnetically incoherent electron gas is very much like that
of a spinless LL, except that all the quantum-phase transi-
tions of Kane and Fisher,7,8 and Furusaki and Nagaosa9,10

�understood to be in the limit J→0, then T→0� are obtained
by replacing g by 2gc, where g is the interaction parameter of
the spinless LL and gc is the interaction parameter of the
charge sector of a LL theory for electrons with spin. This
result can be understood in the following physical terms: The
condition T�J means that the spin degrees of freedom be-
come nondynamical in that, within the “thermal coherence
time” tth�� /kBT, the spin quantum numbers of individual
electrons remain unchanged, since a spin-flip transition re-
quires a time tJ�� /J� tth to occur. Moreover, because the
energy splittings between distinct spin states are negligible
compared to kBT, all spin states are excited with equal prob-
ability. Hence, dynamically, the electron gas behaves in a
“spinless” fashion, since the spin degrees of freedom are
static and random, and do not couple to the electron coordi-
nates. More specifically, the charge degrees of freedom be-
have as a LL �because T�EF, only low-energy charge exci-
tations are important� only with effective interaction
parameter 2gc. This result can be established at the level of
the Hamiltonian so that the correspondence g=2gc in the
spin-incoherent regime is actually quite general and applies
to any particle-conserving operator. �The single-particle
Green’s function does not involve particle-conserving opera-
tors and, therefore, has a qualitatively different form from a
spinless23–25 LL.�

For a finite-length wire in the magnetically incoherent re-
gime, the transport is more subtle. Matveev has argued28,29

that for a clean wire, the conductance drops to 1
2 of its zero-

temperature value giving e2 /h rather than 2e2 /h. When dis-
order is present in the spin-incoherent region of the wire,
more careful considerations are needed. We distinguish be-
tween two cases: �i� weak and �ii� strong backscattering and
discuss features of each.

This paper is organized in the following way. In Sec. II,
we discuss important physical models, parameters, and limits
for quantum wires with low-electron density. In particular,
we show the physics of the incoherent regime is independent
of the range of electron interactions; the interactions need
only be sufficiently strong to achieve J�EF. In Sec. III, we
establish the equivalence, summarized by g=2gc, between a
spinless LL and a spin-incoherent LL for particle-conserving
charge properties. In Sec. IV, we discuss what the effects of
Fermi-liquids leads are on the transport through a finite-
length quantum wire, then, in Sec. V, we discuss some details
of the crossover from the magnetically incoherent LL to the
familiar spin-coherent LL regime. Finally, in Sec. VI, we
present our main conclusions.

II. QUANTUM WIRES AT LOW-ELECTRON DENSITY

It is useful here, in the beginning, to outline the physical
situations where we expect the spin-incoherent regime to be
realized. The physics we discuss in this paper is expected to
be present provided the interactions between electrons is suf-
ficiently strong that there is a separation of magnetic and
nonmagnetic energy scales in the problem: J�EF. �As we
show in Appendix A, this regime can also be understood in
terms of a separation of scale in the spin and charge veloci-
ties.� It is possible to reach this regime with either short-
range or long-range interactions, so it is not necessary to
have a Wigner solidlike picture in mind. �Strictly speaking,
quantum fluctuations destroy the long-range charge order un-
less the interactions are of a longer range than a Coulomb.30�
However, the Wigner solid picture does often provide a con-
venient physical picture for a one-dimensional electron gas,
and we will use it to discuss the low-density limit. In fact, as
we discuss below, the effective Hamiltonian in the Wigner
solid limit turns out to be quite universal, in the sense that its
form is independent of the range of the electron interactions,
even down to zero-range interactions.

A. Charge and spin Hamiltonians

With a Wigner solid picture in mind, we can understand
the physical state of the electron gas in classical terms as
being dominated by the Coulomb repulsion between elec-
trons, which forces the electrons to occupy discrete, evenly
spaced positions. A finite but small kinetic energy of the
electrons implies small displacements from their equilibrium
positions, and the lowest-energy displacements are long
wavelength sound modes or “phonons.” These displacements
can be described within elasticity theory in terms of the dis-
placement u�x� from equilibrium of the solid at point x, and
the momentum density p�x�.29 Adding these two contribu-
tions to the energy gives the total energy of the elastic me-
dium

Helastic =� dx� p2

2mn
+

1

2
mns2��xu�2� , �1�

where s=��n /m���2E /�n2� is the sound velocity of the
phonons.31 Here E is the energy of the resting medium per
unit length.

In order to obtain a quantum theory, the Hamiltonian �1�
can be quantized by imposing the commutation relations
�u�x� , p�x��	= i���x−x��. Then new fields can be identified
as

u�x� =
�2

n�
	c�x�, p�x� =

n�

�2
�x
c�x� , �2�

which satisfy the commutation relations �	c�x� ,�x�
c�x��	
= i����x−x��. In terms of these new fields, the Hamiltonian
�1� becomes

Hc = �vc� dx

2�
� 1

gc
��x	c�x�	2 + gc��x
c�x�	2� , �3�

where

FIETE, LE HUR, AND BALENTS PHYSICAL REVIEW B 72, 125416 �2005�

125416-2



vc = s, gc =
vF

s
, �4�

with vF=��n /2m. The attentive reader will immediately no-
tice that Eq. �3� is just the charge sector Hamiltonian that is
familiar from LL theory. Since it is well known that Eq. �3�
can be derived for weakly interacting electrons by linearizing
the kinetic energy about the Fermi points, the discussion
above shows that the Hamiltonian �3� is actually valid for
arbitrary strength interactions. In the rest of this paper, we
will assume that low-energy charge states are adequately de-
scribed by Eq. �3�.

So far, we have neglected the spin of the electrons. Re-
turning to the Wigner solid picture again, we see that the spin
degrees of freedom will act like a Heisenberg spin chain with
lattice spacing equal to that of the electron spacing. Virtual
hopping of electrons from one site to another �occupied site�
requires the electrons to have an opposite spin, resulting in
an effective magnetic exchange for the spin chain that is
antiferromagnetic. Therefore, the Hamiltonian of the spin
sector behaves as

Hs = 

l

JS� l · S� l+1, �5�

where S� l is the spin of the lth electron and J�0 is the
nearest-neighbor exchange energy. The spin chain �5� can be
bosonized32,33 and the low-energy spin excitations can be
computed within a LL theory for the spin sector. However,
since here we are concerned with the high-energy situation
T�J �from the point of view of the spin degrees of free-
dom�, we do not pursue that direction.

B. Long-range versus short-range interactions for TšJ

All quantum wires are “quasi-1D” since there is usually
some finite width to the wire w. This provides a short-range
cutoff for the electron interactions at x�w, so that for x
�w ,V�x��1/w. On the other hand, quantum wires are often
gated so that electron separations that are large compared to
the distance to the metallic gate d �which is always present in
experiments�, electrons induce image charges in the gate to
produce a dipolar electron-electron interaction for x
d ,V�x��d2 / �x�3. A potential consistent with this form is34

V�x� =
e2

�
� 1

�x2 + w2
−

1
�x2 + w2 + �2d�2 , �6�

where � is the dielectric constant. Since we are interested in
the low-density limit where n−1�w, we can set w=0 to ob-
tain an approximate form of V�x�.

In the low-density limit, we can then argue along the lines
of Ref. 29. For n�aB /d2, Eq. �6� shows that the interaction
between two particles at a typical distance of n−1 is small
compared to their kinetic energy �EF. Here aB=��2 /me2.
On the other hand, when the distance between electrons is
sufficiently short, �x��n−1�nd2 /aB�1/3�n−1, the potential en-
ergy dominates the kinetic energy, V�x�EF. As a result, at
low densities the potential �6� can be modeled by the short-
range potential

Veff�x� = V��x� , �7�

where V is chosen to provide the same scattering phase shift
as �6�.

The model �7� is equivalent at low energies to the 1D
Hubbard model. Starting from the Hubbard model, it can be
shown35 that in the low-density limit with U / t→�, the spin
sector takes the form �5� with the exchange energy given
by36

J =
4t2

U
ne�1 −

sin 2�ne

2�ne
 , �8�

where ne is the average number of electrons per site. Recall
that we originally motivated the spin Hamiltonian �5� within
the Wigner solid picture, which relies on sufficiently long-
range interactions. Here, we show that even short-range in-
teractions lead to the spin Hamiltonian �5�. We can thus view
the Hamiltonian

H = Hc + Hs �9�

as a general form, valid in the energy hierarchy J�EF for
any temperature T�EF, including both J�T�EF and T
�J�EF. However, the dependence of J on the density de-
pends on the microscopic details21,22,37 of the electron inter-
actions with the form �8� for zero-range interactions and J
�EFe�−C/�naB� for Coulomb interactions.

In the remainder of this paper, we will study the implica-
tions of the Hamiltonian �9� in the limit J�T�EF on the
electrical transport.

III. INFINITELY LONG WIRE

In this section, we show explicitly that in the limit of
strong interactions and J�T�EF the electrons become ef-
fectively spinless �for quantities that do not directly probe
spin� and are governed by a Hamiltonian of the form �3� with
interaction parameter g=2gc. Here g is the interaction pa-
rameter of a spinless LL and gc is the interaction parameter
of the charge sector for an electron gas with spin and the
same interaction strength as in the spinless LL. We discuss
implications for the transport in such a magnetically incoher-
ent LL when impurities are present.

A. The relation g=2gc for J™T™EF

We assume that J�T�EF and take the limit J /T→0.
Since T�J, the spin degrees of freedom are nondynamical
and the system behaves as if J=0 identically �or equivalently
Hs=0 identically from �5�	. Thus, the only dynamics is in the
charge sector of the theory. This implies that if we look at
any quantity that does not depend explicitly on spin �conduc-
tance or compressibility, for example�, the system behaves as
if it were spinless.

To show this microscopically, we consider a particular
basis of states for the Hilbert space of the system. We work
in the canonical ensemble, i.e., with a fixed number of elec-
trons. Of course, dynamics in the grand canonical ensemble
can be obtained from this by summing over the sectors with
each electron number, since the intrinsic physical Hamil-
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tonian is anyway number conserving. For a fixed electron
number, a convenient real-space basis set is given by states
specifying the position xn of each electron, and the spin pro-
jection on the ẑ axis, mn, in order, from left to right across the
system

�x1 ¯ xN��m1 ¯ mN� = cm1

† �x1� ¯ cmN

† �xN��0� , �10�

where �0� is the vacuum state �no particles�.
The physics of the spin-incoherent regime is that, within

the thermal coherence time, tth�� /kBT, the probability of a
transition between states with different values of �mn� is neg-
ligible. Hence, the physics is well approximated by neglect-
ing off-diagonal matrix elements in these states. Moreover, in
the same approximation, for spin-independent interactions,
the matrix elements of H are independent of the �mn�, i.e.,

�m1� ¯ mN� ��x1� ¯ xN� �H�x1 ¯ xN��m1 ¯ mN�

� �x1� ¯ xN� �Hsl�x1 ¯ xN��m1�,m1
¯ �mN� ,mN

, �11�

where Hsl is an effective spinless identical—and “hard
core”—particle Hamiltonian that governs the �independent�
dynamics within each spin sector. Note that it is manifestly
identical, in first quantized form, to the original spinfull
Hamiltonian, if the coordinates of all particles are treated
equivalently �as some spinless particles�.

It is important to recognize that this reduction to a spin-
less particle problem is extremely general. In particular, no-
where do need we to assume that the system is even spatially
uniform, only that exchange processes are everywhere neg-
ligible, i.e., J�T throughout the system; that there are no
explicit spin-dependent interactions in the Hamiltonian; and
that electrons are not added or removed from the system
during the dynamics. The equivalence to a spinless problem
continues to hold in the presence of arbitrary potentials,
weak links, etc.

With this understanding, we now address the remaining
question of exactly which spinless theory describes the
charge dynamics in the bulk of the spin-incoherent wire. By
the usual LL arguments �as given above for instance for the
Wigner solid�, the spinless particle system is described at
low energies �T ,E�EF ,EFrs� by the bosonized Hamiltonian

Hincoh = �v� dx

2�
�1

g
��x	�2 + g��x
�2 , �12�

with characteristic “zero-sound” velocity v and interaction
parameter g. Here we follow one standard convention, in
which the normalization of the fields is fixed by the relation
�x	�x�=���x� with ��x� the fluctuation in electron density at
position x, and the commutation relation �	�x� ,�x�
�x��	
= i����x−x��. In such a spinless gas, power-law charge den-
sity correlations occur at wave vectors which are multiples of
QCDW=2�n �the reciprocal lattice vector of the incipient

Wigner solid�, and we define QCDW=2k̃F, which gives k̃F
=�n.

Upon crossing over from the spin-incoherent regime, T
�J, to the ultimate low-energy limit, T�J, we expect the
description of the system to change to the more “conven-
tional” spinful LL theory. This theory exhibits, as is well

known, spin-charge separation, so the charge dynamics can
be discussed independently. Again, standard arguments give
the bosonized effective charge Hamiltonian �including the
effects of rather arbitrary interactions� exhibited in Eq. �3�
with vc=vF /gc, vF=�kF /m, and kF=�n /2. Normalization is
fixed here by �x	c�x�=��c�x� /�2, and 	c ,
c are taken to
obey the same commutation relations as 	 ,
 above. The
value of the undetermined “LL parameter” gc depends in
detail upon the nature of interactions in the electron system,
but takes the value gc=1 for independent electrons and gen-
erally decreases with the strength of repulsive interactions.

Comparing Eqs. �12� and �3�, one sees a strong similarity.
In fact, in the limit J�EF, we expect that they can indeed be
identified. This is because, with exchange energy so small
compared to the characteristic energies of the individual
electron �and hence charge� dynamics, we do not expect the
presence of these weak additional exchange interactions to
substantially modify the charge dynamics itself �except for
the emergence of 2kF correlations—see Sec. V—which is in
fact a “weak” effect in this limit�. Thus, up to corrections of
O�J2 /EF

2�, we expect that the same charge Hamiltonian
should govern charge dynamics both for T�J and T�J.
Comparing the different normalization conventions �relating
the fields to the physical charge density ��x�=�c�x�	, we see
that we must equate

	 = �2	c, �13�


 = 
c/�2. �14�

Requiring identity of Hsl and Hincoh, we immediately find v
=vc and g=2gc as promised. We also obtain k̃F=2kF, which

implies the absence of 2kF= k̃F oscillating correlations in the
charge density in the spin-incoherent regime. Their emer-
gence at low temperature is discussed in Sec. V.

B. Transport through single and double impurities

Having established in Sec. III A that for properties that do
not depend explicity on the spin, such as the conductance, a
low-density electron gas in the regime J�T�EF behaves
effectively as a spinless LL with g=2gc, we are now ready to
address transport properties of an infinitely long wire. Fortu-
nately, most of the work has been done for us already by
Kane and Fisher7,8 and by Furusaki and Nagaosa.9,10 All that
needs to be done is to substitute g=2gc into their formulas
for spinless electrons. For completeness, we summarize the
important results here.

For a single impurity in a spinless LL, the result found
earlier was that for repulsive �attractive� interactions, g
�1�g�1� the impurity became relevant �irrelevant� in the
renormalization group �RG� sense at the lowest energies.
Thus, in the spin-incoherent regime the critical value of gc is
1
2 . In particular, this implies that for 1

2 �gc�1 the transpar-
ency of a single barrier should increase rather than decrease
under the RG flows for J�T�EF. More generally, in the
spin-incoherent regime, we expect that for weak tunneling
�strong backscattering�
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G�T� =
dI

dV
� T�1/gc�−2, �15�

and for weak backscattering �strong tunneling�

G0 − G�T� � T2�2gc−1�, �16�

where G0=2gce
2 /h is the bare conductance of the spin-

incoherent �J=0� wire with no impurities.
For the two-impurity problem, the results can also be car-

ried over directly. As in the case of the spinless LL with two
impurities, the double impurity nature of the problem will
only be relevant at energy scales below ��vc /d where d is
the separation between the two barriers, since at larger ener-
gies the two barriers will not add coherently. We remind the
reader that the main results from the spinless LL case are that
the double barrier exhibits behavior in striking contrast to the
noninteracting electron liquid, which has temperature-
independent resonances with a Lorentzian line shape at low
T: For repulsive interactions the LL has non-Lorentzian
resonances with a width that vanishes as T→0. These line
shapes are determined by a universal scaling function8

G�T,�� = G̃�c�/T�� , �17�

where � is a small parameter to tune away from the reso-
nance, c is a dimensionful constant, and

� = 1 − 2gc. �18�

Defining X�c� /T�, we see that for X→0

G̃�X� = G0�1 − X2 + O�X4�	 , �19�

while for X→�,

G̃�X� � X−1/gc. �20�

We note that at a low temperature, Eq. �20� applies, explic-
itly showing that the tails of the resonance are non-
Lorentzian.

The most important results are summarized in the phase
diagram shown in Fig. 1. As in the case of the spinless LL,
we expect there to be a line of Kosterlitz-Thouless separa-
trices between the zero conductance and perfect conductance
�on resonance� regions of the phase diagram.

IV. FINITE-LENGTH WIRE CONNECTED
TO FERMI-LIQUID LEADS

Transport through a finite-length segment of a spin-
incoherent LL connected to Fermi-liquid �FL� leads is more
subtle than the case discussed in Sec. III B in which the
system is infinite in length. Here we have in mind a situation
where the finite-length segment is adiabatically connected to
the leads so that no backscattering occurs due to the slowly
changing background potential itself. Matveev has recently
argued28,29 that for a clean wire adiabatically connected to
FL leads the conductance is reduced by a factor of 2 when
J�T�EF compared to T�J ,EF, resulting in a conductance
of e2 /h rather than 2e2 /h for a single-mode wire. The phys-
ics of this result appears to be that when an electron with

energy �T from the lead enters the spin-incoherent LL por-
tion the spin modes are reflected because there are no spin
states of energy �T�J, while the charge modes have states
up to energy �EF�T and, thus, are able to pass through.

Here we discuss some additional considerations when
there are impurities in the finite length spin-incoherent LL.
We begin with the simplest case—a single impurity in the
center of the wire. As in the infinite system, there are two
limits to consider: �i� weak backscattering and �ii� weak tun-
neling. The weak tunneling limit is the most straightforward
of the two. We also discuss the case of more than one impu-
rity.

A. Weak tunneling through a finite wire

Let us first discuss the case of a very strong potential
barrier in the center of the wire. In this limit, an infinite
one-dimensional system is cut into two semi-infinite pieces
and electrons tunnel between these two semi-infinite sys-
tems. The tunneling can be described by the Hamiltonian

Htun = t0

±

��1±
† �0��2±�0� + H.c.	 , �21�

where t0 is the tunneling amplitude for an electron to hop
from side 1 to side 2. Using Eq. �21�, the current I through
the barrier can be computed via Fermi’s Golden Rule as

I =
et0

2

2��
� d���1

�����2
��� − eV� − �1

��� − eV��2
����	 ,

�22�

where ������ is the tunneling density of states for adding
�removing� an electron at the end of the wire. The two are
related by �����=���−��. The subscripts on the density of
states refers to the two semi-infinite segments of the 1D sys-
tem. Clearly then, computing the current depends on know-
ing the tunneling density of states at the end of the wires.
The energy dependence will depend on the energy itself: For

FIG. 1. Phase diagram �in the limit J→0, then T→0� for a
spin-incoherent Luttinger liquid with a double barrier structure.
Here V denotes the strength of the backscattering for weak impuri-
ties, and t0 the strength of the tunneling for strong impurities. The
conductance off resonance is denoted by G and the conductance on
resonance is denoted by G*. The dashed line at gc= 1

2 is the fixed
line for transmission off resonance separating the regions where
electrons will �gc�

1
2

� or will not �gc�
1
2

� propagate through the
double barrier structure. The dashed line at gc= 1

8 separates the re-
gions of zero �gc�

1
8

� and nonzero �gc�
1
8

� conductance on reso-
nance at vanishing energies. The solid line between gc= 1

8 and 1
4 is a

line of Kosterlitz-Thouless separatrices. Compare with Fig. 3 of
Ref. 8.
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a wire of length L, for ����vc /L the Fermi-liquid leads
will not be felt and we can use the tunneling density of states
of an infinite spin-incoherent wire near a boundary, while for
����vc /L the energy dependence of the tunneling density
of states will be dominated by the FL leads.

For eV��vc /L, we can use the tunneling density of states
in the spin-incoherent regime for a semi-infinite system com-
puted in Ref. 27 from the Green’s function, G�

��0,��
= ����0,����

†�0,0��,

G�
��0,�� � �ei�
c�0,��−
c�0,0�	/�2� = e−�
̃c

2�/4 � �1

�
1/2gc

,

�23�

where 
̃c=
c�0,��−
c�0,0�. The correlator �
̃c
2� was evalu-

ated using the Hamiltonian �3� subject to the boundary con-
dition �x
c�x=0�=0, i.e., that no current passes through the
barrier. �Finite current comes from �21�.	 See Appendix B for
details.

After Fourier transforming the Green’s function �23� to
the frequency domain, the frequency dependence of the tun-
neling density of states at the end of the wire is obtained

����� � Re�G��0,��	 � �1/�2gc�−1. �24�

Note that for gc�
1
2 the density of states diverges. This

should be contrasted with the result obtained for the infinite
system in which �������1/�4gc�−1 and, therefore, diverges
for gc�

1
4 .25 Substituting the result �24� into Eq. �22� gives

the following result for the conductance of the wire �for T
V, where V is the voltage�:

G�T� =
dI

dV
� t0

2T�1/gc�−2, T,eV  �vc/L . �25�

This reproduces the expected result of Eq. �15� obtained
through the indentification g=2gc.

Let us now suppose we go to sufficiently low tempera-
tures and voltages that the “charge dephasing length” �this is
not strictly proper terminology, but it will do� is longer than
the spin-incoherent wire, i.e., T ,eV��vc /L, but still J�T.
Then clearly, the charge excitations are modified on these
energy scales by the absence of interactions in the leads. In
an ordinary LL, where the spin and charge energy scales are
comparable, the condition T��vc /L also implies T
��vs /L, so that in this regime all excitations become con-
trolled by the leads. In that more familiar situation, the tun-
neling density of states crosses over to a constant value, as is
appropriate for a Fermi liquid. This is not the case for the
spin-incoherent wire. One may understand this by the fact
that, in a time �� /T, the spin disturbance created by the
tunneling event has not propagated to the leads and remains
within the spin-incoherent region.

A naïve approach to the behavior in this regime is simply
to recalculate G�

��0,�� in Eq. �23� by assuming a spatially
dependent gc�x�, with gc�x�→1 for x outside the wire �in the
leads�. This gives a decay at long times, G�

��0,���1/��.
Matching this to Eq. �25� for T��vc /L, one finds

G =
dI

dV
� t0

2��vc

L
1/gc−1 1

T
, T,eV � �vc/L , �26�

valid so long as one is in the weak tunneling limit, G
�e2 /h. Remarkably, the conductance does not become con-
stant for such temperatures, but actually diverges more
strongly with decreasing temperature than for an infinite
spin-incoherent wire. This is because the spin excitation cre-
ated by the tunneling event is still within the wire, so the
enhancement of the density of states is still operative, while
the competing suppression of the density of states due to
“charging” is no longer in effect once the charge disturbance
has exited the wire. A crossover to true Fermi-liquid behav-
ior, therefore, is only expected once the spin disturbance has
had time to reach the leads, requiring T�J.

Similar reasoning applies to the case when two impurities
are present in the short wire, but it is more involved. We
expect the same results as we found for the infinite spin-
incoherent wire for T ,eV�vc /L, that is the Kane-Fisher
and Furusaki-Nagaosa results with g=2gc. For low energies,
T ,eV��vc /L, the leads again play an important role in the
conductance, the precise nature of which remains to be de-
termined.

B. Weak backscattering in a finite wire

For J�T�EF and a weak impurity, we are asking about
corrections to the simpler problem, attacked by Matveev, for
the clean wire. It is clear that, even in the clean case, the
spin-incoherent region constitutes a strong deviation from
the usual regime of ideal conduction quantization, Gideal
=2e2 /h. Matveev has given arguments that suggest the con-
ductance is reduced to

G�T� =
e2

h
+

e2

h
F�J/T� , �27�

where F�x�→0 for x→0 and F�x�→1 for x→�, so that
G�T��e2 /h for J�T deep in the spin-incoherent limit.

Strictly speaking, the impurity corrections in this limit
should be calculated using perturbation theory starting from
known correlation functions of the clean “Matveev prob-
lem.” Unfortunately, it is not clear from the analysis of Refs.
28 and 29 how to carry out such a perturbative calculation.
Lacking this, we do not discuss this problem in detail. A
general remark is that, in this limit, the corrections to the
conductance due to the impurity are small and, hence, re-
quire precision to observe. Once the corrections are no
longer small �which will occur at a low enough temperature
for gc�

1
2 , provided the thermal length does not first exceed

the wire length�, the perturbative approach has broken down.
Can we guess the nature of the first perturbative correc-

tion? Let us assume that the �charge� thermal length is less
than the length of the �spin-incoherent� wire, �vc /T�L, for
simplicity. A naïve extension of the arguments of Refs. 28
and 29 then gives a suggestion. The arguments, therein, pro-
ceed by determining the power radiated to infinity by the
spin-charge separated modes in a bosonized formulation of
the leads. This dissipated power, calculated for an imposed
�charge� current I, is proportional, by definition, to I2R,
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where R is the physical resistance. In this formulation, it
appears that the charge and spin resistances are added to-
gether, R=Rc+Rs, since the charge and spin sectors provide
separate channels for energy to radiate, and we are interested
in the total rate of radiation. Naïvely, a weak impurity in the
spin-incoherent region, which has the form of a potential,
couples only to the charge density. Therefore, we may
naïvely estimate its effect by calculating the leading order
increase in Rc by the impurity. Thus, one expects a �small�
additive contribution to the resistance, whose scaling form
�e.g., power-law dependence on temperature, etc.� is that of a
spinless LL with spinless Luttinger parameter g=2gc, i.e, the
right-hand side of Eq. �16�.

V. CROSSOVER TO SPIN-COHERENT REGIME

In order to better understand the physics �including and
beyond electrical transport� to be expected in the spin-
incoherent LL regime, it is worthwhile to elaborate on some
features of the crossover between J�T�EF and T�J�EF.
A discussion of the approach to the spin-incoherent LL from
a finite-temperature LL is discussed in Appendix A. A dis-
cussion of the changes to the spectral function �obtained by
Fourier transforming the Green’s function, for example� are
given in Refs. 25 and 27. The main result is that the propa-
gating spin mode of the LL theory is lost and the charge
mode excitation is broadened in momentum space to an
amount of the order of the Fermi wave vector. For short-
range interactions, there is also a shift in the “edge” of the

momentum distribution from kF=�n /2 to k̃F=2kF=�n as T
goes from below to above J.26 Moreover, there is also a
crossover from 2kF to 4kF oscillations in the density-density
correlation function.38 This can be seen by introducing mag-
netoelastic coupling in the spin Hamiltonian �5� by making
the magnetic exchange J depend on the displacement from
equilibrium of neighboring electrons �assuming the Wigner
solid picture we discussed earlier�, ul+1−ul, as

Jl = J0 + J1�ul+1 − ul� + O��ul+1 − ul�2	 . �28�

To the second order in J1 one finds

���x���x����2� � �J1�2

l,l�
�

0

�

d�1�
0

�1

d�2�S� l+1 · S� l��1�S� l�+1 · S� l�

���2���0����x���x����0�, �29�

where ���x���x����0� is the density-density correlation func-

tion for J=J0 identically and �S� l+1 ·S� l��1�S� l�+1 ·S� l���2���0� is
the dimer correlation function for J=J0 identically and ��x�
=
l��x−al−ul�. In the limit of strong interactions �J�EF�
considered here, ���x���x����0� contains only 4kF oscillations.
However, at the second order the dimer correlation function
enters and for T�J a small lattice distortion can lower the
energy by allowing singlet pairs to form on adjacent pairs of
sites. This produces a 2kF oscillation in the dimer correlation
function which enters the density-density correlation func-
tion at the second order and, thus, produces 2kF oscillations
in that quantity as well. When T�J the dimer correlations

are lost and only the 4kF oscillations will remain in the
density-density correlation function.

The loss of 2kF oscillations in the density-density corre-
lation function as T rises above J will have implications for
electrical transport and drag between parallel quantum wires.
In particular, if there is some potential V�x� acting on the
electrons in the wire �either static due to impurities or dy-
namic due to electrons in another nearby wire in the drag
geometry� with significant 2kF Fourier components coupling
to the electron density, these components of the density os-
cillations will be lost when T�J. This could lead to a sharp
temperature dependence of the electrical transport.

VI. CONCLUSIONS

The main conclusion of this paper is that the physics of
particle-conserving quantities that do not explicity depend on
spin are described by a spinless Hamiltonian with g=2gc, in
the regime J�T�EF where g is the interaction parameter of
the spinless LL and gc is the interaction parameter of the
charge sector in the usual LL theory of electrons with spin
that describes when T�J. Physically this follows from the
condition J�T, which renders the spins effectively nondy-
namical. The condition T�EF allows the charge sector to be
described by an effective low-energy LL theory.

As an application, we discuss single and double impurity
problems of an infinitely long 1D electron gas and a finite-
length system coupled to Fermi-liquid leads. In the infinite
case, all of the phase diagrams for a spinless LL can be
directly used to obtain the behavior of the spin-incoherent
1D system by using the identification g=2gc. For a finite-
length spin-incoherent LL of length L, and for energies larger
than �vc /L the transport behaves much like the infinite case.
However, for lower energies the effects of the FL leads
dominate the transport.

We have discussed how the condition J�EF implies that
the electron interactions must be very strong and that this
separation of magnetic and nonmagnetic energy scales does
not depend on the range of the interactions. We have also
discussed how a 1D Wigner solid picture of electrons at low
density provides a clear physical picture of how the physics
we discuss in this paper may arise, and we have shown how
the physical results of interest obtained within the Wigner
solid picture are actually quite general since they can also be
shown to hold for models with very strong, but short-range
interactions, such as the Hubbard model.

We have also discussed general features of the spin-
incoherent regime and which properties are expected to
change as a function of temperature when J�T or when J
�T. For example, the 2kF oscillations of the density-density
correlation function are lost at T�J and this may affect the
coupling of the density to a background potential and, hence,
the transport or any other quantity that depends on density
variations in the electron gas.
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APPENDIX A: FINITE-TEMPERATURE
LUTTINGER-LIQUID THEORY FOR vs™vc

The approach to the spin-incoherent regime J�T�EF
from the LL state can be understood in the limit of vanishing
spin velocity39 relative to charge velocity vs /vc→0 at finite
temperature.

We assume that the spin and charge Hamiltonians are
given by the LL forms

Hc = �vc� dx

2�
� 1

gc
��x	c�x�	2 + gc��x
c�x�	2� , �A1�

Hs = �vs� dx

2�
� 1

gs
��x	s�x�	2 + gs��x
s�x�	2� , �A2�

where the charge �c� and spin �s� fields are

	c =
1
�2

�	↑ + 	↓�, 	s =
1
�2

�	↑ − 	↓� , �A3�


c =
1
�2

�
↑ + 
↓�, 
s =
1
�2

�
↑ − 
↓� , �A4�

so that ��x	��x� ,
��x��	=−i���x−x����,�, where � ,�=c or
s.

Let us consider the one particle Green’s function in imagi-
nary time

G��x,�� = ����x,����
†�0,0�� , �A5�

where the average is taken at finite temperature. Neglecting
the rapidly oscillating pieces coming from R→L and L→R
scattering, we have

G��x,�� = ���
R�x,����

R†�0,0�� + ���
L�x,����

L†�0,0�� .

�A6�

Substituting

�±
R�x� =

1
�2�a

ei�kFx+	c�x�/�2�ei
c�x�/�2e±i�	s�x�/�2�e±i
s�x�/�2,

�A7�

�±
L�x� =

1
�2�a

e−i�kFx+	c�x�/�2�ei
c�x�/�2e�i�	s�x�/�2�e±i
s�x�/�2,

�A8�

where � ��� refers to spin ↑ �↓�, using the imaginary time
path integral representation, and the Gaussian action that fol-
lows from �A1� and �A2�, we find

��±
R�x,���±

R†�0,0��

� eikFxe−�1/4���	̃c�x,��2��e−�1/4���
̃c�x,��2��e−�1/2��	̃c�x,��
̃c�x,���

�e−�1/4���	̃s�x,��2��e−�1/4���
̃s�x,��2��e��1/2��	̃s�x,��
̃s�x,���,

�A9�

where the 	̃c�x ,��=	c�x ,��−	c�0�, etc. The corresponding
formula for ��±

L�x ,���±
L†�0,0�� has kF→−kF and

�	̃�x ,��
̃�x ,���→−�	̃�x ,��
̃�x ,��� for both the spin and
charge sectors. All of the correlators in �A9� can be evaluated
by doing Gaussian integrals. They are

�	̃c�x�2� = 2��gcvc� dk

2�
T


�n

1 − ei�kx−�n��

�n
2 + vc

2k2

=
gc

2
ln� cosh�2�Tx/vc� − cos�2�T��

�2�T/vc��2 � ,

�A10�

where � is a large momentum cutoff. The other correlators
are computed likewise

�
̃c�x�2� =
1

2gc
ln� cosh�2�Tx/vc� − cos�2�T��

�2�T/vc��2 � ,

�A11�

and

�	̃c�x�
̃c�0�� =
1

2
ln� tanh��Tx/vc� + i tan��T��

tanh��Tx/vc� − i tan��T��� ,

�A12�

with the corresponding formulas for the spin sector obtained
by replacing vc→vs and gc→gs.

As the density of the electron gas is lowered, the ratio
vs /vc→0 with decreasing density for n−1=a�aB. Consider
the equal time Green’s function where �=0. According to
Eqs. �A10�–�A12�,

G��x,0� � �eikFx + e−ikFx�e−�1/4���	̃c�x�2��e−�1/4���
̃c�x�2��

� e−�1/4���	̃s�x�2��e−�1/4���
̃s�x�2��

= �eikFx + e−ikFx�� �2�T/vc��2

cosh�2�Tx/vc� − 1
��gc+gc

−1�/8	

� � �2�T/vs��2

cosh�2�Tx/vs� − 1
��gs+gs

−1�/8	

. �A13�

For very small temperatures we recover the LL result,

G��x,0� � �eikFx + e−ikFx�� �1/��2

x2 ��gc+gc
−1�/8	

� � �1/��2

x2 ��gs+gs
−1�/8	

. �A14�

For finite temperatures, the Green’s function is cut off at
large x when 2�Tx /v�1 where v is either the charge or spin
velocity. Since for low-electron density, we have vs�vc, it is
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possible to have 2�Tx /vs�1, but 2�Tx /vc�1. In this pa-
rameter range, the Green’s function behaves as

G��x,0� � � �1/��2

x2 ��gc+gc
−1�/8	�2�T

vs�
��gs+gs

−1�/4	

e−�x�/�s,

�A15�

where the spin-coherence length is given by �s=4vs / ���gs

+gs
−1�T	. Luttinger-liquid theory is valid only on length

scales that are long compared to the lattice spacing, which in
the present case is the mean electron separation. Thus, we
expect that the minimum coherence length occurs when �s

*

�a. This implies a T*�vs /a�J where J is the characteristic
interparticle exchange energy. LL theory, therefore, only ap-
plies down to temperatures in the range J�T�EF. When
J�T and T�EF, we expect qualitatively new physics. It is
precisely this regime that we focus on in this paper.

APPENDIX B: EVALUATION OF CORRELATORS
APPEARING IN BOSONIZED FORMULAS

FOR INFINITE AND SEMI-INFINITE SYSTEMS

For an infinite system, the 	c and 
c correlators are
readily evaluated using the Hamiltonian �A1� and then going
to a path integral representation which results in Gaussian
integrals. The finite-temperature correlators have already
been computed in Eqs. �A10�–�A12�, from which the zero-
temperature results �valid for T�EF� are readily extracted

�	̃c�x�2� =
gc

2
ln��x2 + �vc��2�/a2	 , �B1�

�
̃c�x�2� =
1

2gc
ln��x2 + �vc��2�/a2	 , �B2�

�	̃c�x�
̃c�0�� =
1

2
ln� x + ivc�

x − ivc�
� . �B3�

An important correlator that appears in the problem of
strong barriers is �
̃c�x�2� at the end of a semifinite wire.
This correlator can be readily evaluated using the following
expansion of the fields in a Fourier series:

	c�x,�� = 

m=1

�

i�gc

m
sin�m�x

L
�bme−�m� − bm

† e�m�� + 	�0��x� ,

�B4�


c�x,�� = 

m=1

� � 1

gcm
cos�m�x

L
�bme−�m� + bm

† e�m�� + �c,

�B5�

where the zero-mode term 	c
�0��x���x /L��� /�2�N, the bm

satisfy �bm ,bm�
† 	=�mm� and the operators N and �c satisfy

�N ,�c	=1. We have assumed that the electrons are confined
to a wire of length L. The fields must satisfy the boundary
conditions �x
c�x=0,L�=0 and 	c�L�−	c�0�=�N /�2 where
N is the total number of electrons.

Using Eq. �B5� it is readily found that at the boundary

�
̃c�x = 0�2�boundary =
2

gc
ln�vc�/a	 . �B6�

By comparing the boundary value of the correlator �B6�
with the expression for the infinite system for x=0 �B2�, we
see that the effect of the boundary is to “double” the expo-
nent of e−�
̃c�x = 0�2�. This exponent “doubling” can be under-
stood quite simply by going to a chiral fermion basis valid on
the whole real axis, rather than the basis we have used here
so far, which is only valid for the positive half line. The
resulting chiral action contains an overall factor of 1

2 the
difference from the nonchiral case and this factor translates
into the factor of 2 that “doubles” the exponent of the infinite
case.
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