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We propose an effective potential for an excess electron near the helium liquid-vapor interface that takes into
account the diffuseness of the liquid-vapor interface and the classical image potential. The splitting of the first
two excited states of the excess electron bound to the helium liquid-vapor interface as a function of an external
constant electric field applied perpendicular to the interface is in excellent agreement with recent experiments.
The effect of a parallel magnetic field on the energy levels are calculated. Single-electron tunneling of the
electron out of its surface state is studied as a function of the electric field applied to the system. We found that
the tunneling time has a linear dependence on the electric field.
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I. INTRODUCTION

Sommer1 pointed out that an electron could be bound to
the surface of liquid helium. Cole and Cohen2 and Shikin3

independently showed that an electron could form a surface
state outside some liquids due to the negative electron affin-
ity preventing the electron from entering the liquid and the
classical image force attracting the electron to the helium
surface. Since then, an enormous theoretical and experimen-
tal effort has been dedicated to the understanding of the elec-
tronic properties of electrons on a liquid helium surface in
several situations,4–6 such as the presence of external fields.
The presence of an electric field and a transverse magnetic
field, perpendicular and parallel to the vacuum-liquid inter-
face, respectively, changes considerably the surface states.
An applied electric field pushes the electron towards the he-
lium surface. However, if the electric field is applied in the
opposite direction, metastable states can occur.7 In addition,
the existence of a transverse magnetic field can modify sig-
nificatively the tunneling of the electron out of the surface
state.8

The main approximation used in order to calculate the
surface electronic states is that the electron is subject to a
competition of a short-range repulsion, which arises from the
requirement of the Pauli exclusion principle and is repre-
sented by a large potential step that prevents the electron
penetration into the liquid, and a long-range attraction due to
the polarization potential, represented by the classical image
potential. Cole9 proposed a model for the effective potential,
which avoided the divergence of the image potential by in-
troducing a cutoff at short distances of the order of the inter-
atomic spacing in the liquid. Grimes et al.11 and Hipólito et
al.12 introduced a parameter that shifted the divergence of the
image potential inside the liquid; the value of this shift was
obtained by fitting the difference between the ground state
and the excited state to the experimental results. Stern13 pro-
posed a model including a gradual transition between the two
dielectrics. Rama Krishna et al.14 calculated the binding en-
ergy of an electron attached to the surface of helium clusters,
and liquid helium, using a potential that consisted of a short-
range electron-helium pseudopotential and a long-range po-
larization potential. More recently, Cheng et al.15 used a

Hartree-type of effective potential that takes into account the
nonuniform liquid density profile. Ancilotto and Toigo16 also
calculated the properties of an electron inside the helium
liquid and considered a nonuniform liquid density.

Motivated by recent experiments17 on the temperature de-
pendence of the transition energies between the bound states
of the electron at the helium/vacuum interface, we revisit
these problems by proposing a simple potential that de-
scribes the electron-helium liquid interaction. We take into
account the temperature-dependent displacement of the liq-
uid helium-vapor interface, as calculated by Cole,9 which is a
measure of the diffuseness of the helium barrier. From this,
we build the electron-helium surface interaction potential,
avoiding the divergence at the vacuum-liquid He interface.
Contrary to previous theoretical studies, there are no free
fitting parameters in our model. Including an external electric
and transverse magnetic fields, we calculated the energy of
the ground and first excited states. Excellent agreement with
the experiments of Grimes et al.11 and with the recent results
of Collin et al.17 for the electric field dependence of the
transitions between the ground state and the two first excited
states is found for different temperatures.

This paper is organized as follows. In Sec. II, we discuss
the proposed potential model and the method used to solve
the Schrödinger equation. In Sec. III, we present the effects
of an external electric field applied perpendicular to and a
magnetic field applied parallel to the helium surface, respec-
tively, on the electronic levels. In Sec. IV, the probability for
electron escape when an electric and/or a magnetic field is
applied to the system is calculated as a function of time. The
electron average position is also calculated as a function of
time, and from this behavior, the effective mass is inferred.
Finally, in Sec. V, we present our conclusions.

II. HAMILTONIAN MODEL

The Hamiltonian for the electron surface state, including
external electric and magnetic fields, applied perpendicular
and parallel to the interface, respectively, can be written in
the following way:
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H�z� = −
�2

2m

�2

�z2 + V�z� , �1�

with the potential given by

V�z� = Vef f�z� + Vfield�z� , �2�

where the first term corresponds to the contribution of the
barrier potential, which limits the electron penetration to the
helium and the classical image potential, Vef f�z�=Vb�z�
+Vim�z�. The last term in Eq. �2� is related to the presence of
electric and magnetic fields, Vfield�z�=Vel�z�+Vmag�z�. For
the barrier potential, we propose the function

Vb�z� =
V0

exp�z/�� + 1
, �3�

where V0 is the negative of the electron affinity, which is
equal to 1 eV,1 and �=�z /4, where �z is the surface thick-
ness. The latter was calculated by Cole9 as a function of
temperature using the hydrodynamic approximation. The im-
age potential is taken to be

− Vim�z� = ��z − ��
Qe2

z
, �4�

following the model considered by Grimes et al.,11 Cole,10

and Hipólito et al.,12 with Q= ��He−1� / ��He+1� and �He

=1.05723 the helium dielectric constant. The contribution
due to the presence of an external electric field applied per-
pendicular to the helium surface is given by

Vel�z� = ± eFz , �5�

with the sign ���� associated to the field that tends to press
�pull� the electron to �from� the helium interface. The mag-
netic field parallel to the interface produces a potential given
by

Vmag�z� = mwc
2�z − z0�2/2, �6�

where wc=eB� /m0c is the cyclotron frequency; m0 the elec-
tron mass; and z0= py /wcm0, with py the canonical momen-
tum, which is a constant of motion in the Landau gauge.

The method used to calculate the electronic states, within
the effective mass approximation, is based on the solution of
the time-dependent Schrödinger equation18–20

i�
�

�t
��r�,t� = H��r�,t� . �7�

The evolution method is not limited to small perturbations
and can be used for nonlinear effects, including extreme con-
ditions created by laser pulses. Another advantage in using
this method is that only states of interest are involved and the
calculation can be made to scale linearly with the size of the
system, contrary to methods based on the linear response
formalism, which involves diagonalization of large matrices.
In general, it is not possible to perform the exponentiation of
an operator exactly, and one must bring the operators to a
diagonal form. The time evolution after one time step �t is
given by

��r�,t + �t� = e−iH�t/���r�,t� . �8�

Since the operator is unitary, the normalization of the
wave function is preserved and thus guarantees the conser-
vation of the probability and the unconditional stability of
the method. The time evolution of the wave function �Eq.
�8�� can be written as

��r�,t + �t� = e−iV�r���t/2�e−ip2�t/2�m*
e−iV�r���t/2���r�,t� + O��t3� .

�9�

The error introduced in this expression by dropping the
term O��t3� results from the fact that kinetic and potential
operators do not commute. When we study systems with
periodic boundary conditions, the exponential containing the
kinetic operator is efficiently treated by the fast Fourier
transform, since it is diagonal in reciprocal space. However,
when the system is not periodic, we use the following expan-
sion of the exponential �e.g., see Crank-Nicholson21�:

e−ip2�t/2�m*
� �1 − i

��t

4m*

�2

�x2�−1�1 + i
��t

4m*

�2

�x2� , �10�

which is correct up to the order O��t3�. The derivatives are
calculated as finite differences such that the solution is re-
duced to the inversion of a tridiagonal matrix. For a time-
independent Hamiltonian, it is time-reversal invariant and
conserves the total energy exactly. In order to obtain the
eigenstates of a time-independent Hamiltonian, the scheme
described above is applied to an initial wave packet and the
evolution is made in the imaginary time domain; that is, one
substitutes t by −i	. After a few steps, the wave function
converges to the ground state of the system. The excited
states are obtained using the same procedure, in combination
with a Gram-Schmidt orthonormalization.

III. SURFACE STATE ENERGIES

Figure 1 shows our potential Vef f�z� in the absence of any
external fields, which describes the electron-helium surface
interaction. Notice that it has no divergence at z=0 and is
temperature dependent. The latter enters through the param-
eter �z, which is the surface displacement as calculated by
Cole9 within the hydrodynamic approximation. Since our
model potential depends implicitly on temperature, we
present Vef f�z� in Fig. 1 for several temperatures.

Notice that the depth of the potential is strongly reduced
with increasing temperature and that the effective position of
the helium surface moves to positive z. To calculate the en-
ergy, we discretized the system in an interval of 6000 Å
using a grid with 15 000 equally spaced points. The initial
wave functions were prepared using Gaussian functions and
the imaginary time propagation was used. After a few time
steps �t, the system has converged to the eigenstates of the
system. One of the advantages of the present method is that
it is only weakly dependent on the initial wave function. We
show in Fig. 2 the electron excitation energy from the ground
state to the first and second excited states, as a function of
the external electric field applied perpendicular to the helium
surface, for two values of the helium liquid temperature: T
=1.0 K �solid line� and T=1.3 K �dotted curves�. For the
temperature T=1.0 K, our results are in very good agreement
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with those obtained experimentally by Collin et al.,17 for
transitions between the ground state and the first excited
state. Increasing the temperature, we expect that the ground
state energy increases more than the two excited states and
consequently the excitation energies should decrease. The
experimental results obtained by Grimes et al.11 at 1.2 K,

extrapolated to zero field give 125.9±0.2 and
148.6±0.3 GHz for transitions from the ground state to the
first and second states, respectively. Our model gives 126.0
and 148.8 GHz for those transitions at T=1.3 K. Again, an
excellent agreement between experiment and theory is ob-
tained. The proposed effective potential is deeper for lower
temperature �see Fig. 1�, because the diffuseness of the in-
terface becomes smaller, and results in an enhanced splitting
between the states. For T=1.2 K, the disagreement between
our results and the experimental data11 is within 0.6%.

Notice also that the results of our model are in agreement
with the experimental data over the whole range of applied
electric fields and that it contains no adjustable parameter.
This is in contrast to the variational model proposed by
Grimes et al.,11 where at high fields the calculated energy
differences deviate from the measured values. Rama
Krishna14 and Cheng et al.,15 present results only for zero
electric field. In Table I we collected the principal theoretical
results obtained by different authors using adjustable param-
eters to fit the transitions to the experimental values and
compared them with the present results.

In Fig. 3 we present the temperature dependence of the
transition energy between the ground state and the first �1-2�
and second excited states �1-3�, respectively, for zero field.
The full triangles are the results at T=1.2 K, in agreement
with the extrapolated experimental results of Grimes et al.11

for zero field. These results are consistent with the ones pre-
sented in Fig. 2, where the temperature decreases the transi-
tion energies. This is a consequence of the fact that the
ground state energy increases more rapidly with the tempera-
ture than the two excited states.

In Fig. 4 we show the average position zav of the electron
above the helium interface, for the ground, first, and second
excited states, respectively, as a function of the applied ex-
ternal electric field, at the temperature T=1.3 K. As can be
seen, zav decreases with pressing electric field for all three
states, as expected. The decrease is more pronounced for the
excited states, which are less bound and more extended.

To analyze the effect of an external magnetic field applied
parallel to the helium surface, we show in Fig. 5 the transi-
tion energy between the ground state and the first �1-2� and
second excited states �1-3�, respectively, as a function of the
magnetic field, for two values of the temperature: T=0 K
�solid line� and T=1.3 K �dotted line�, in the absence of an
external electric field. The change in the potential with tem-
perature is more significant on the ground state and conse-
quently the transition energies decrease with temperature, but
this effect is small compared with the changes due to the
presence of an external electric field �see Fig. 2� or a parallel
magnetic field �Fig. 5�. In Fig. 6 we show the average dis-
placement zav from the helium interface, as a function of the
in-plane magnetic field, for the ground state, the first excited
state, and the second excited state, in the absence of an ex-
ternal electric field, for two values of the temperature: T
=0 K �solid line� and T=1.3 K �dotted line�. The magnetic
field results in an additional localization potential for the
electron and consequently we expect that the displacement
decreases with field. As observed for the excitation energies,
the temperature dependence of the average displacement is
also small. In Fig. 7 we show the dispersion relation of the

FIG. 1. Effective potential for temperatures. T=0 K �solid�,
0.5 K �dashed�, 1.0 K �dotted�, 1.5 K �dashed-dotted-dotted�, and
2.0 K �dashed-dotted� respectively.

FIG. 2. Transition energy between ground state and first �1-2�
and second excited states �1-3�, respectively, as a function of an
external electric field applied perpendicular to the helium surface,
for two values of the helium liquid temperature, T=1.0 K �solid
line� and T=1.3 K �dotted line�. The experimental results obtained
by Grimes et al. �see Ref. 11� at T=1.2 K �circles�, and by Collin et
al. �see Ref. 17� at T=1.0 K �triangles�, respectively, are also
shown.
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electron, as a function of the momentum parallel to the he-
lium surface Ky, in the presence of an in-plane magnetic field
�B� =1.5 T�, for the ground state, first excited state, and sec-
ond excited state, in the absence of an external electric field,
at T=1.3 K. In the absence of an in-plane magnetic field, this
energy dispersion is a single parabola �2ky

2 /2m for all the
electron bound states. Taking the second derivative of this
dispersion relation we obtained the electron effective mass
parallel to the liquid surface, for the ground state m1

�

=1.022me, first excited state m2
� =1.105me, and second ex-

cited state m3
� =1.143me, where me is the free electron mass.

IV. TUNNELING PROCESS

Up to now we considered only external electric fields that
press the electron to the helium surface and studied the stable
ground and excited states. In this section we will analyze the
electron behavior as a function of time, when it escapes from
the surface due to an electric and/or a magnetic field applied
to the system. We consider now the case in which the electric
field is applied along the z direction such that it pulls the
electron away from the helium surface. There is now a com-
petition between the attractive effective potential and the re-
pulsive electric field potential, which ultimately will favor

the electron to tunnel out of its bound state. There is a non-
zero probability that the electron will tunnel through the po-
tential barrier separating the bound state and the unbound
state at z=0. In order to study the ionization of an electron
bound to the He surface, we start with initial electron states
as obtained at zero electric field and use the time evolution
�Eq. �8�� to investigate the electric field induced tunneling
towards an unbound state. Let us now define the tunneling
probability as

P�t� = 1 − R�t� , �11�

where R�t�= 	
��r� ,0� 	�F�r� , t��	2, with �F�r� , t� the wave
function at time t in the presence of the electric field, and the
tunneling time is being defined as, the smallest t for which
P�t�=1. In Fig. 8, we present the tunneling probability as a
function of time for the three lowest states, in the presence of
an external electric field of F=300 V/cm. As expected, the
excited states are ionized more quickly than the ground state,
since they are less strongly bound. Another important physi-
cal quantity was calculated: electron average position from
the interface zav as a function of time, which is shown in Fig.
9 for T=1.0 K and F=300 V/cm. These parabolic-like
curves show an accelerated motion from which it is possible

TABLE I. Electron excitation energy from the ground state to the first �E12 and second excited state �E13 in the absence of external
fields: experimental results of Grimes et al. �see Ref. 11� �A�; Hydrogenic model �B�; Stern �see Ref. 13� �C�; Rama Krishna �see Ref. 14�
�D�; Cheng et al. �see Ref. 15� �E�; This work at T=1.2 K �F� and T=1.3 K �G� respectively.

A B C D E F G

�E12�GHz� 125.9±0.2 132.3 125.5 125.0 122.1 126.6 126.0

�E13�GHz� 148.6±0.3 156.5 148.3 148.3 144.4 149.5 148.8

FIG. 3. Transition energy between ground state and first �1-2�
and second excited state �1-3�, respectively, as a function of the
temperature, in the absence of external fields. The full triangles are
the experimental results at T=1.2 K.

FIG. 4. Average displacement zav from the interface as a func-
tion of the applied external electric field. Ground state �solid line�,
first excited state �dotted line�, and second excited state �dashed
line� for T=1.3 K.
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to extract the electron effective mass in the perpendicular
direction with respect to the helium surface. For the consid-
ered parameters, we found m1

�=1.188me, m2
�=1.059me, and

m3
�=1.028me, for the ground state, first excited state, and

second excited state, respectively. Notice that these perpen-
dicular masses decrease with increasing excitation state,
which is opposite to the parallel masses found in the previ-

ous section, which were defined through their response to a
parallel magnetic field.

Considering only the ground state, in Fig. 10 we show the
behavior of the tunneling probability as a function of time,
for different values of the external electric field. As the field
intensity increases the tunneling time decreases. The
electron-helium surface bound-state lifetime can also be
studied by the projection of the wave function at time t on

FIG. 5. Transition energy between the ground state and first
�1-2� and second excited states �1-3�, for T=0 K �dotted line� and
T=1.3 K �solid line�, respectively, as a function of the external
parallel magnetic field, in the absence of an external electric field.

FIG. 6. Average displacement zav from the helium interface, as a
function of the external in-plane magnetic field, for the ground state
�1�, first excited state �2�, and second excited state �3�, in the ab-
sence of an external electric field. Solid line �dotted line� corre-
sponds to a helium temperature of T=0 K �T=1.3 K�.

FIG. 7. Dispersion relation of the electron in the ground state
�solid line�, first excited state �dotted line�, and second excited state
�dashed line�, respectively, as a function of the momentum parallel
to the helium surface Ky, in the presence of an external in-plane
magnetic field B� =1.5 T and at the temperature T=1.3 K, without
an external electric field, with a0 the Bohr radius.

FIG. 8. Tunnel probability P�t� as a function of time for T
=1.0 K and F=300 V/cm. Solid line: ground state; dashed line:
first excited state; dotted line: second excited state.
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the initial state t=0. We have done this by calculating the
electron lifetime for several electric fields and fitting the
wave-function projection to an exponential function; that is,
R�t�=exp�−
t /��. The result for 
 is shown in Fig. 11, for
the temperature T=1.0 K. It is clear that R�t� is an exponen-
tial function to which 
�F� exhibits a linear dependence with
two slopes with crossing point at the electric field F
=700 V/cm. Below 700 V/cm we found d
 /dF=3.87
�10−4 meV/ �V/cm�, and above this electric field we found

d
 /dF=3.29�10−4 meV/ �V/cm�. Finally, in Fig. 12 we
show a typical time evolution of the electron ionization un-
der the action of the electric field, the electron probability
density is plotted as a function of the z-coordinate for several
times. In this case, for an external electric F=500 V/cm and
temperature T=1.0 K, the electron gradually leaves the he-
lium interface and tunnels through the potential barrier to
infinity. The electron leaves the barrier after 12 ps.

FIG. 9. Average displacement from the interface zav as a func-
tion of time for T=1.0 K and F=300 V/cm. Solid line: ground
state; dashed line: first excited state; dotted line: second excited
state.

FIG. 10. Tunnel probability P�t� of the ground state as a func-
tion of time for T=1.0 K, for the external electric field: F
=200 V/cm �solid line�, F=300 V/cm �dashed line�, F
=500 V/cm �dotted line�, F=700 V/cm �dashed-dotted line�, and
F=1000 V/cm �short-dashed line�.

FIG. 11. Electron-helium surface bound-state lifetime of the
ground state as a function of the external electric field for T
=1.0 K. The curves are linear fits.

FIG. 12. Time evolution of the ground state wave function when
F=500 V/cm and T=1.0 K.
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V. CONCLUSION

In this paper we presented an effective potential model
with no fitting parameters that takes into account the diffuse-
ness of the liquid-vapor interface �see Eqs. �3� and �4��, and
consequently the helium temperature. The transition energies
calculated from this potential between the first �ground state�
and the two excited states are in excellent agreement with
recent experiments. The numerical results for the energies
are obtained from the time evolution method, which is not
limited to small perturbations, and the time evolution can be
made in the imaginary or the real time domain. With imagi-
nary time propagation, we obtained the eigenstates and the
eigenvalues of the first three levels. In the presence of an
in-plane magnetic field, we obtained a parallel effective mass
that is different from the one perpendicular to the helium
surface, obtained by using real time propagation. In addition,
the evolution method in real-time can be used to calculate

the electron tunneling. The tunneling time was determined as
a function of the strength of the perpendicular electric field.
A linear dependence on the electric field was found with
different slopes for F�700 V/cm and F
700 V/cm. The
calculation presented here is limited to thick helium films;
i.e., bulk liquid helium. In order to obtain the effective po-
tential for thin helium films, we must extend Cole’s
calculation.2 However, notice that for thin helium films, the
electron-helium surface states depend considerably on the
substrate and temperature.22 Such a calculation is beyond the
scope of the present paper and is postponed for future work.

ACKNOWLEDGMENTS

M. H. D. and G. A. F. are supported by the Brazilian
National Research Council-CNPq. Part of this work was sup-
ported by the Flemish Science Foundation �FWO-Vl�, and
the EU-RTNetwork on “Surface electrons.”

*Electronic address: degani@fisica.ufc.br
†Electronic address: gil@fisica.ufc.br
‡Electronic address: francois.peeters@ua.ac.be
1 W. T. Sommer, Phys. Rev. Lett. 12, 271 �1964�.
2 M. Cole and M. H. Cohen, Phys. Rev. Lett. 23, 1238 �1969�.
3 V. B. Shikin, Sov. Phys. JETP 31, 936 �1970�.
4 F. M. Peeters, in The Physics of Two-Dimensional Electron Gas,

edited by J. T. Devresse and F. M. Peeters �Plenum, New York,
1987�.

5 Two-Dimensional Electron Systems, edited by E. Y. Andrei �Klu-
wer, Dordrecht, 1997�.

6 Yu. Z. Kovdrya, Low Temp. Phys. 29, 77 �2003�, and references
therein.

7 J. A. Northby and C. Kim, Physica B 194–196, 1229 �1994�.
8 L. Menna, S. Yucel, and E. Y. Andrei, Phys. Rev. Lett. 70, 2154

�1993�.
9 M. W. Cole, Phys. Rev. A 1, 1838 �1970�.

10 M. W. Cole, Phys. Rev. B 2, 4239 �1970�.
11 C. C. Grimes, T. R. Brown, M. L. Burns, and C. L. Zipfel, Phys.

Rev. B 13, 140 �1976�.

12 O. Hipólito, J. R. D. de Felicio, and G. A. Farias, Solid State
Commun. 28, 365 �1978�.

13 F. Stern, Phys. Rev. B 17, 5009 �1978�.
14 M. V. Rama Krishna and K. B. Whaley, Phys. Rev. B 38, 11839

�1988�.
15 E. Cheng, M. W. Cole, and M. H. Cohen, Phys. Rev. B 50, 1136

�1994�.
16 F. Ancilotto and F. Toigo, Phys. Rev. B 50, 12820 �1994�.
17 E. Collin, W. Bailey, P. Fozooni, P. G. Frayne, P. Glasson, K.

Harrabi, M. J. Lea, and G. Papageorgiou, Phys. Rev. Lett. 89,
245301 �2002�.

18 M. H. Degani, Appl. Phys. Lett. 59, 57 �1991�.
19 M. H. Degani and J.-P. Leburton, Phys. Rev. B 44, 10901 �1991�.
20 M. H. Degani, Phys. Rev. B 66, 233306 �2002�.
21 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-

ling, in Numerical Recipes—The Art of Scientific Computing
�Cambridge University Press, Cambridge, 1989�, p. 642.

22 D. Cieslikowskia, A. J. Dahm, and P. Leiderer, Phys. Rev. Lett.
58, 1751 �1987�.

BOUND STATES AND LIFETIME OF AN ELECTRON ON… PHYSICAL REVIEW B 72, 125408 �2005�

125408-7


