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Persistent and radiation-induced currents in distorted narrow quantum rings are theoretically investigated.
We show that ring distorsions can be described using a geometrical potential term. We analyze the effect of this
term on the current induced by a magnetic flux �persistent current� and by a polarized coherent electromagnetic
field �radiation-induced current�. The strongest effects in persistent currents are observed for distorted rings
with a small number of electrons. The distortion smoothes the current oscillations as a function of the magnetic
flux and changes the temperature dependence of the current amplitude. For radiation-induced currents, the
distortion induces an ac component in the current and affects its dependence on the radiation frequency and
intensity.

DOI: 10.1103/PhysRevB.72.125348 PACS number�s�: 73.23.Ra

I. INTRODUCTION

It is well known that a static magnetic flux through a
mesoscopic ring induces a dissipationless nondecaying �per-
sistent� current at low temperature. During the last 20 years
this persistent current has been heavily investigated from
both the theoretical and experimental sides.1–22 In particular,
theoretical investigations were focused on the effects of
electron-electron interaction, disorder, spin-orbit,2 polarized
nuclear spins,3,4 and shape.19,20 More recently, the effect of
electromagnetic radiation on mesoscopic rings has been in-
vestigated. It has been pointed out that the persistent current
can be strongly affected by radiation21 and also that radiation
can induce a current at zero magnetic flux.22,23 In order to
break the clockwise-anticlockwise symmetry and obtain a
current at zero flux, a radiation with some degree of circular
polarization is needed. This can be achieved by a superposi-
tion of pairs of time-asymmetric, linearly crosspolarized pi-
cosecond pulses,23 or more simply by using circularly polar-
ized radiation.22 All these effects were mainly studied in
systems with perfect ring geometry, i.e., rings where the con-
finement potential does not depend on the azimuthal coordi-
nate. The only exceptions, to our knowledge, are Refs. 19
and 20, where the persistent current in an elliptical quantum
ring19 and the persistent current in a quantum ring on a sur-
face of constant negative curvature20 were considered.

In this paper we investigate persistent and radiation-
induced currents in distorted quantum rings. We consider a
narrow distorted ring of uniform cross section lying on a
plane �Fig. 1�. The ring can be composed by several seg-
ments of different curvature or can have any smooth curva-
ture profile. We show that the curvature of the ring enters
into the Schrödinger equation via a geometrical potential
term of the form Vgeom=−�2 / �8m*R2�, where R is the radius
of curvature. Our model differs from the one used in Ref. 19,
where a quantum ring of a nonuniform cross section was
considered. By choosing a uniform cross section the effect of
the distorsion can be described in a simpler and more trans-
parent way. Our paper is organized as follows. In Sec. II we
derive the Schrödinger equation for one electron in a dis-
torted ring in the presence of a magnetic flux. We show that,

as in the ideal case, the wave function in the distorted ring is
a periodic function of the magnetic flux � with period �0.
Next, in Sec. III, we consider a model where a distorted
quantum ring consists of four constant-curvature segments.
We find the energy spectrum of such a ring and we demon-
strate that the geometrical potential Vgeom in this case opens
gaps in the electron energy spectrum. Moreover, we show
that the geometrical potential can lead to bound states. The
oscillation of the persistent current, and the frequency and
intensity dependence of the radiation-induced currents in the
distorted ring are studied in Sec. IV. The results of our in-
vestigations are summarized in Sec. V.

II. EFFECTIVE HAMILTONIAN

We consider one electron with effective mass m* confined
by a potential V� �� denotes the characteristic width of V�� to

FIG. 1. �Color online� Distorted quantum ring consisting of a
long segment of radius r1 and three short segments of radius r2. For
a given angle �, the point C is obtained as the intersection point of
two circumferences of the radius 2r2 with the centers at A and B.
The shortest r2 corresponds to the case when A, B, and C are on the
straight line. Therefore, it is easy to find that the minimum value of
r2 is given by r2

min=sin�� /2�r1 / �2+sin�� /2��. For �=� /4, r2
min

�0.16r1.
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a closed curve C on a plane. A uniform magnetic field H
perpendicular to the plane is applied. The Schrödinger equa-
tion has the form

1

2m*�p̂ −
e

c
A�2

� + V�� = E� , �1�

where p̂ is the electron momentum operator and A�r�
= 1

2 �H ,r� is the vector potential. Using the property div�A�
=0 of this gauge, Eq. �1� can be rewritten as

1

2m*�− �2� − 2
e

c
Ap̂ +

e2

c2A2�� + V�� = E� . �2�

Our goal is to obtain an effective one-dimensional
Schrödinger equation in the limit of a strong transverse con-
finement, i.e., in the limit �→0. We follow the approach
proposed in Ref. 24 and subsequently used in Ref. 25.

Let us introduce the orthonormal coordinate system �s ,q�,
where s is the arc length parameter and q is the coordinate
along the normal n�s�. The curve C is then described by a
vector r�s� as a function of the arc length s. In a vicinity of
C the position is therefore is described by

R�s,q� = r�s� + qn�s� . �3�

For the sake of simplicity25 we assume that V� depends only
on the q coordinate describing the displacement from the
reference curve C only.

The Laplacian � in the curvilinear coordinates s and q is
given by

�s,q =
1

h

�

�s

1

h

�

�s
+

1

h

�

�q
h

�

�q
, �4�

with

h = 1 − k�s�q , �5�

where k�s�=R−1�s� is the curvature. Using the transformation
to the new wave function ��s ,q� via ��s ,q�=��s ,q� /�h
�note, that ��s ,q� is properly normalized�, we can rewrite Eq.
�2� as

1

2m*	− �2� �

�s

1

h2

�

�s
−

hss

2h3 +
5hs

2

4h4 +
�2

�q2 +
k2

4h2�
+ 2i

e�

c

As�s,q�� �

�s
+

ksq

2h
�

+ Aq�s,q�� �

�q
+

k

2h
�� +

e2

c2A2�� + V�� = E� , �6�

where hs=�h /�s, hss=�2h /�s2, ks=�k /�s, Aq�s ,q� and
As�s ,q� are the components of A along the q and s direc-
tions. Next, we make the substitution

� = exp
i
e

�c



0

q

Aq�s,q��dq���̃ ,

and expand h ,Aq�s ,q� ,As�s ,q� in series in q keeping only the
zero-order terms in q, as in Refs. 24 and 25. The Schrödinger
equation �6� can then be easily separated by setting �̃�s ,q�
=	�q�
�s�. The usual procedure yields

−
�2

2m*

�2	

�q2 + V�	 = Et	 , �7�


−
�2

2m*

�2

�s2 + i
e�

m*c
As�s,0�

�

�s
−

�2k2

8m* −
ie�

2m*c

�
�Aq�s,0�

�q
+ i

e�

m*c
Aq�s,0�

k

2
+

e2

2m*c2As
2�s,0��
 = El
 .

�8�

In order to further simplify Eq. �8�, we perform the transfor-
mation


�s� = exp
i
e

�c



0

s

As�s�,0�ds��
̃�s� ,

which gives


−
�2

2m*

�2

�s2 −
�2k2

8m* −
ie�

2m*c

�As�s,0�
�s

− � ie�

2m*c

�Aq�s,q�
�q

�
q=0

+ i
e�

m*c
Aq�s,0�

k

2
�
̃�s� = Et
̃�s� . �9�

Notice that in the curvilinear coordinates �s ,q� the diver-
gence of A is given by

div A =
1

h

�

�s
�1

h
As� +

1

h

�

�q
�hAq� �

�

�s
As +

�

�q
Aq − kAq = 0.

�10�

Consequently, Eq. �9� reduces to

−
�2

2m*

�2
̃

�s2 −
�2k2�s�

8m* 
̃ = El
̃ . �11�

Therefore, we have derived two decoupled equations: one
describing the transverse confinement of electrons in the ring
�Eq. �7��, and the second describing the longitudinal motion
of the electron in the ring �Eq. �11��. The vector potential A
does not explicitly appear in these two equations. However it
will appear in the solution of Eq. �11� because of the bound-
ary conditions on 
̃ specified below. The spectrum of Eq. �7�
depends on the particular shape of the confinement potential
V�. In this paper we assume that the electrons occupy only
the lowest subband of the transversal confinement. There-
fore, the position of this energy subband is not important.
The curvature of C enters into Eq. �11� through the geometri-
cal potential term −�2k�s�2 /8m*.

The boundary conditions for 
̃ are obtained from the re-
quirements of continuity of the wave function 
�s� and its
derivative, i.e., 
�0�=
�L�, �
�0� /�s=�
�L� /�s �L is the
ring circumference�. Using Stokes’ theorem we finally obtain


̃�0� = ei2���/�0�
̃�L�,
�
̃�0�

�s
=

�
̃�L�
�s

. �12�

Here � is the magnetic flux through the area confined by C
and �0 is the magnetic flux quantum. Eqs. �12� imply that all
equilibrium physical properties of a narrow closed loop are
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periodic in � with period �0, as in the case of a perfect
ring.8

III. ELECTRON ENERGY SPECTRUM

In this section we consider the electron spectrum in a ring
with a dent-type distortion as shown in Fig. 1. Geometrically,
the curve C of such a ring consists of four smoothly con-
nected circular segments. The radius of the long segment is
r1, the three short segments have the same radius r2 �we
assume here that r2�r1�. The angles 
 and � are related to �
�for the definition of these angles see Fig. 1� as 

=2 Arcsin�sin�� /2��r1−r2� / �2r2��, �=� /2+
 /2. The ad-
vantage of a distortion with constant curvature segments is a
constant geometrical potential in each segment. The picture
is even more simple since the geometrical potential does not
depend on the direction of bending, i.e., Vgeom is the same for
the three short segments in Fig. 1. Therefore, we write Eq.
�11� for the long segment and three short segments as

−
�2

2m*

�2
1

�s2 − U0
1 = El
1 for 0 � s � l , �13�

−
�2

2m*

�2
2

�s2 = El
2 for l � s � L , �14�

where l= �2�+
�r2 is the total length of the short segments,
L= �2�−��r1+ l, U0= ��2 /8m*��1/r2

2−1/r1
2�. The general so-

lution of Eqs. �13� and �14� reads


1 = b1eik1s + b2e−ik1s, �15�


2 = c1eik2s + c2e−ik2s, �16�

where k1=��2m* /���El+U0� and k2=��2m* /��El. The wave
functions 
1�2� are connected at s= l via 
1�l�=
2�l�,

�
1�l� /�s=�
2�l� /�s and at l=0,L via Eqs. �12�. From these
boundary conditions we obtain a transcendental equation de-
fining the energy spectrum for unbound states El�0

2 cos�2�
�

�0
� + 
 k1

k2
+

k2

k1
�sin�k1l�sin�k2�L − l��

− 2 cos�k1l�cos�k2�L − l�� = 0 �17�

and for bound states −U0�El�0

2 cos�2�
�

�0
� + 
 k1

k̃2

−
k̃2

k1
�sin�k1l�sinh�k̃2�L − l��

− 2 cos�k1l�cosh�k̃2�L − l�� = 0. �18�

Here, k̃2=��2m* /���−El�.
The calculated energy levels for weakly and strongly dis-

torted rings as a function of the flux are given in Fig. 2. It is
well known that in perfect rings the energy levels are inter-
secting parabolas. In distorted rings, gaps are opened at the
points of intersection of the parabolas. This effect is qualita-
tively similar to the effect of disorder.8 We emphasize that
for a fixed radius of distortion, the gap decreases for larger
values of the intersection point energy. At a fixed point of
intersection, the gap increases by decreasing the radius of
distortion �i.e., the gap is larger in more distorted rings�.
Notice finally that due to the distortion the effective circum-
ference of the ring increases. This produces negative shifts of
the energy levels which are larger at higher energy. Notice in
the spectrum the presence of bound states with El�0. Simi-
lar bound states were already discussed in elliptical quantum
rings.19 It is interesting that the transition from unbound to
bound states in the ring is smooth: the shallow bound states
are still sensitive to the magnetic flux �Fig. 2, r2 /r1=0.25�. In
contrast, deep bound states have a weak sensitivity to the
magnetic flux �Fig. 2, r2 /r1=0.17�. Correspondingly, there is
a finite contribution to the persistent current from the shallow
bound states, while the contribution from the deep bound
states is small.

IV. EFFECT OF THE DISTORTION ON THE CURRENT

A. Persistent currents induced by a magnetic flux

We consider a system with a fixed number of spinless
electrons N and calculate the current using the standard
approach.26,27 At nonzero temperature T, the current in the
ring is given by

I = −
�F

��
. �19�

Here, the free energy F=−kBT ln Z, where kB is the Boltzman
constant, T is the temperature, and Z=�n exp�−�n / �kBT�� is
the partition function defined through the energies of many-
particle states �n.

In Fig. 3, we show the effect of distortion on the persistent
current in quantum rings with three electrons. These results
were obtained numerically using Eq. �19� with the energy
spectrum determined from Eqs. �17� and �18�. At zero tem-

FIG. 2. �Color online� �a� Electron energy levels �in units of �
=�2 / �2m*r1

2�� as a function of flux in quantum rings with different
degrees of distortion at �=� /4. �b� Geometrical shape of the dis-
torted quantum rings whose electron energy levels are shown in �a�.
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perature the persistent current oscillations in a perfect ring
have a sawtooth form. The distortion of the ring produces a
smoothing of the oscillations due to the opening of energy
gaps at the intersection points. Figure 3 shows that the
smoothing increases for larger distortions. Notice that the
persistent current as a function of the magnetic field flux in
the distorted ring at T=0 looks similar to the persistent cur-
rent in a perfect ring at T�0.

The distortion of the ring changes the temperature depen-
dence of the current amplitude. The temperature dependence
of the persistent current and its amplitude in a perfect ring
with a fixed number of electrons at low temperatures was
derived using a two-level approach, which takes into account
contributions from the ground and first excited levels to the
partition function. It was found that at low temperatures the
persistent current can be written as

I =
2N�

�0

 sinh �

1 + cosh �
− 2� �

�0
−

�

2
�� , �20�

where �=2N��� /�0−� /2� / �kBT�, �=�2 / �2m*r2�, �=0 if N
is even and �=1 if N is odd, and the overall factor 2 takes
into account the spin degeneracy. The temperature depen-
dence of the amplitude of the persistent current oscillations is
given by

Imax =
2N�

�0
��1 − 2

kBT

N�
−

kBT

N�
arccosh
 N�

kBT
− 1�� .

�21�

The comparison of the temperature dependence of the per-
sistent current amplitude in the perfect and distorted rings is
shown in the inset of Fig. 3. While the persistent current
amplitude in the perfect ring starts to decrease at T=0, the
temperature dependence in the distorted ring shows an acti-
vation energy behavior in the vicinity of T=0 due to the gaps
in the energy spectrum.

In quantum rings with many electrons, the main contribu-
tion to the persistent current is due to the electrons near the
Fermi level. Since the energy gap disappears for large values
of the intersection point energy, the persistent current at

T=0 will not be smoothed. Consequently, the persistent cur-
rent in a distorted ring with a large number of electrons will
be as in a perfect ring with a radius r*=L / �2�� in a weaker
�for the case of a dent� magnetic field B*=BS /S*, where S is
the area of the distorted ring and S*=2�r*2.

B. Current induced by circularly polarized radiation

In a recent paper,22 a mechanism for current generation in
quantum rings was proposed. It was suggested that in the
presence of a circularly polarized continuous-wave �cw� ra-
diation, the light-dressed ground state of the ring is charac-
terized by a nonzero current. The purpose of this section is to
study the influence of the ring distortion on this radiation-
induced current.

Let us consider an electron confined in a distorted ring in
the presence of circularly polarized cw radiation. The single
electron Hamiltonian in the dipole approximation reads

H = H0 + V�t� = −
�2

2m*

�2

�s2 + Ugeom�s� + eE�t�r�s� , �22�

where E�t�=E0 cos��t�x̂±E0 sin��t�ŷ is the circularly polar-
ized electric field, E0 is its amplitude, and � corresponds to
�± radiation. The distorted quantum ring is considered again
as made of four constant curvature segments, which allows
us to use the energy spectrum and wave functions of H0
obtained in Sec. III at �=0. Assuming that the radiation
frequency is close to the transition between the ground and
two first excited levels, we restrict our attention only to these
three levels, with energies given by E0, E1 and E2.

The external radiation causes transitions between these
levels. The electron dynamics in the ring can be conveniently
described using the a density matrix approach similar to the
one used in Ref. 28 for quantum dots. The evolution of den-
sity matrix � is given by

i��̇ = �H,�� − ���� , �23�

where ���� represents relaxation terms. In the rotating wave
approximation the corresponding equations for the density
matrix elements are

�̇00 = v01−�̃10 + v02−�̃20 − �̃01v10+ − �̃02v20+ + �20�22 + �10�11,

�24�

�̇11 = v10+�̃01 − �̃10v01− − �10�11 + �21�22, �25�

�̇22 = v20+�̃02 − �̃20v02− − �20�22 − �21�22, �26�

�̇̃01 =
E0 − E1 + ��

i�
�̃01 + v01−�11 + v02−�21 − �00v01− − �01�̃01,

�27�

�̇̃02 =
E0 − E2 + ��

i�
�̃02 + v01−�12 + v02−�22 − �00v02− − �02�̃02,

�28�

�̇12 =
E1 − E2

i�
�12 + v10+�̃02 − �̃10v02− − �12�12, �29�

FIG. 3. �Color online� Persistent current in the ring at T=0, �
=� /4, N=3. Inset: temperature dependence of the persistent current
amplitude in the perfect and distorted ��=� /4, r2 /r1=0.17� rings.
kBT is in units of �.
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�̇̃10 =
E1 − E0 − ��

i�
�̃10 + v10+�00 − �11v10+ − �12v20+ − �10�̃10,

�30�

�̇̃20 =
E2 − E0 − ��

i�
�̃20 + v20+�00 − �21v10+ − �22v20+ − �20�̃20,

�31�

�̇21 =
E2 − E1

i�
�21 + v20+�̃01 − �̃20v01− − �21�21. �32�

Here, the transformations �01=ei�t�̃01, �02=ei�t�̃02, �10
=e−i�t�̃10, and �20=e−i�t�̃20 were used, �ij is the relaxation
rate of diagonal density matrix elements, and �i,j is the
dephasing rate of the off-diagonal coherences �ij. vij±
= �i�V�t��j�e±i�t / �i��, where �. . .� denotes an averaging over a
period of V�t�. For example, in the case of �+ radiation we
obtain

v01− =
1

i�

eE0

2
�0�x +

y

i
�1� , �33�

v10+ =
1

i�

eE0

2
�1�x −

y

i
�0� . �34�

The persistent current is calculated using I=Tr�� ĵ�, where

ĵ is the standard quantum mechanical current operator, and �
is the steady-state solution of Eqs. �24�–�32�. We find that in
the distorted rings the current operator matrix has a form

ĵ = � 0 0 j02

0 0 j12

j20 j12 0
� , �35�

with jij = j ji
* . Correspondingly, the persistent current is given

by

I = 2 Re��21j12 + �20j02� = 2 Re��21j12 + e−i�t�̃20j02� .

�36�

The first term in the right-hand side of Eq. �36� is time-
independent and will be referred to as the dc component of
the current, the second term in the right hand side of Eq. �36�
is the ac component of the current. In a perfect ring j20=0,
thus an ac component in the current is a signature of ring
distortion.

Figures 4 and 5 show the dc component 2 Re��21j12� and
the amplitude of the ac component 2�Re��̃20j02�� of the
radiation-induced current for two values of the radiation in-
tensity and different distortion radii. The exact steady state
solutions of Eqs. �24�–�32� for these plots were found nu-
merically. In the case of a high excitation power �Fig. 4�
broad current peaks are observed. In the almost perfect ring
�r2 /r1=0.99 curve in Fig. 4�a�� the dc component has a
single resonance peak. As the distortion degree increases,
this peak shifts to a higher energy and its amplitude de-
creases �see r2 /r1=0.75 curve�. For a stronger distortion
�r2 /r1=0.5� a second peak appears at a lower energy, which

is related to the lower energy split level E1. At r2 /r1=0.25
and r2 /r1=0.17 an additional negative current peak is ob-
served. The amplitude of the ac component of the persistent
current is zero in the perfect ring. This amplitude becomes
different than zero in distorted quantum rings with a maxi-
mum located in the region of the E2−E0 resonance �Fig. 4�.
The complex dependence of the dc and ac persistent current
components on the radiation frequency indicates that signifi-
cant quantum-interference effects are occurring.

The current peaks are narrower in the case of low radia-
tion power �see Fig. 5�. Figure 5�a� shows that the dc com-
ponent is suppressed in quantum rings with strong distortion.
In contrast, the amplitude of the ac component becomes non-
zero in the distorted rings and increases with the distortion
�Fig. 5�b��. The maximum of the ac component is located in
the region of the E2−E0 resonance, as in the case of the high
radiation power. We note that the sign change of Re��̃20j02� is
responsible for the vertical lines in the peak centers in Fig.
5�b�.

In the regime of low radiation power we can find an ap-
proximate solution of Eqs. �24�–�32�. Eq. �31� gives the fol-
lowing expression for �̃20 in the first order in E0:

�̃20 = −
i�

E2 − E0 − �� − i��20
v20+�00. �37�

Similarly, from Eq. �27� �̃01 in the first order in E0 can be
found. This expression for �̃01 together with Eq. �37� and Eq.
�32� yields in the second order in E0

FIG. 4. �Color online� �a� dc component and �b� the amplitude
of the ac component of the radiation-induced current vs photon
energy for different distorted rings with the distortion parameter �
=� /4 at high radiation power. Curves other than r2 /r1=0.99 were
displaced for clarity. These plots were obtained using the param-
eters values �i,j =0.001� /�, �i,j =0.001� /�, eE0r1 /�=0.1.
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�21 =
i�

E2 − E1 − i��21

 i�

E2 − E0 − �� − i��20

+
i�

E1 − E0 − �� − i��01
�v01−v20+�00. �38�

We have found that the persistent current components calcu-
lated from Eqs. �36�–�38� with �0,0=1 perfectly coincides
with the persistent current components calculated numeri-
cally in Fig. 5. In the case of a perfect ring, the current can
be seen as a X2 effect. The presence of a distorsion induces a
X1 term which corresponds to the ac component.

V. CONCLUSIONS

In conclusion, we have investigated persistent and
radiation-induced currents in quantum rings with distortions.

We have derived an effective Schrödinger equation describ-
ing electrons in a narrow distorted quantum ring �closed
loop� in the presence of an external magnetic field flux. We
have shown that the electron energy spectrum is a periodic
function of the magnetic flux. The ring curvature enters into
the effective equations through a geometrical potential term.
We have solved the equations in the case of a distorted ring
consisting of four constant-curvature segments. We have
considered the effect of the ring distortion on the magnetic
flux-induced and radiation-induced currents. It was found
that the effect on the flux-induced persistent current is more
pronounced in quantum rings with a small number of elec-
trons and lower chemical potential. The gaps at the points of
intersection of the energy levels lead to a smoothing of the
persistent current oscillations and to a different temperature
dependence. The persistent current in a distorted ring with a
large number of electrons behaves as it does in a perfect ring
with a different radius in a renormalized magnetic field. Our
choice of the distortion shape leads to a geometrical potential
that corresponds to a square well in the curvilinear coordi-
nates. For more realistic distortion shapes we expect some
quantitative deviations in the results. However, in the persis-
ten current case, the square well can be considered as an
effective potential which describes a more complicated geo-
metrical potential. In fact, the length and depth of the well
can be chosen in such a way to reproduce the energy of the
shallow bound states of a real distortion. This considerably
simplifies the calculation of the current.

We have also found that the ring distortion affects
radiation-induced currents. Using a density matrix approach
and the rotating wave approximation, it was found that the
current in distorted quantum rings acquires an ac component,
in addition to the dc component characteristic of perfect
rings. The frequency dependence of the dc component is
modified by the distortion and shows several peaks of differ-
ent sign. The frequency of the ac component is equal to the
radiation frequency while its amplitude increases with the
distortion. Finally, we remark that the nontrivial dependence
of the dc persistent current component on the radiation fre-
quency can be useful for quantum control schemes involving
localized spins, as suggested in Ref. 22.
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