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The intrinsic mobility of AlGaN/GaN quantum wells is numerically computed, assuming that it results from
the free carrier scattering by the natural plasmon and/or phonon hybrid modes initially introduced by Varga and
which self-consistently issue from the full dielectric response of the material. We first develop a physical
approach �i� which allows us to find back in a simple way the transition probability which was initially
obtained for three-dimensional systems by Kim et al. in the frame of the second quantization formalism and �ii�
which allows us to easily extend this formalism to the case of multi subband quantum wells. Then, the full
two-dimensional dielectric function and its corresponding scattering potential is numerically computed, allow-
ing us to predict the order of magnitude that can be expected for the low-field intrinsic mobility versus free
carrier density in triangular quantum wells. We finally compare this scattering mechanism with the usual
extrinsic scattering mechanisms associated with impurities, dislocations, and interface roughness.
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I. INTRODUCTION

AlGaN/GaN heterostructures have been subjected to a lot
of experimental and theoretical studies since they offer a
unique situation where, due to the spontaneous polarization
discontinuity at the heterostructure �0,0,0,1� interface and
also to the piezoelectric polarization that appears in the
strained AlGaN layer, the interface plane bears a strong posi-
tive charge and, as a consequence, attracts free electrons that
form a two-dimensional electron gas �2DEG�, without the
need of any external doping.1–6 The total interface polariza-
tion charge is so large that one currently obtains 2D electron
gas with an areal electron density that can reach more than
2�1013 cm−2. In these circumstances, such quantum wells
are expected to have a large conductivity with good carrier
mobility �lack of impurity scattering� and are considered as
good candidates for power device applications. However, in
the current state of the art for the epitaxial heterostructure
growth of such 2D electron gas, the carrier mobility has
shown to be a strongly decreasing function of the carrier
density.7 Such a behavior could be theoretically explained in
Refs. 8 and 9 in the following terms: in order to obtain large
polarization discontinuity effects and large piezoelectric po-
larizations, one must use increasing Al compositions x of the
ternary AlxGa1−xN cap layer as well as increasing thickness
of the AlGaN cap layer. This being done, the subsequent
lattice mismatch between the AlGaN cap layer and the bulk
GaN substrate increases. Thus, a higher elastic energy is
stored in the cap layer with increasing x compositions and/or
increasing cap layer thickness. As soon as a critical elastic
energy is reached in the AlGaN cap layer, the material is then
subjected to strain relaxation mechanisms which unavoid-
ably induce the appearance of defects such as dislocation
tangles, surface cracks, alloy reordering, etc. Such defects
lead to a spatial modification of the strain field as well as of
the spontaneous polarization. Consequently, the strain relax-
ation mechanisms, occurring when large carrier densities are
wanted, induce a spatial dependent interface charge which
was called “interface electrical roughness” in Ref. 9. It was

shown that this interface electrical roughness strongly de-
creases the carrier mobility.

Obviously, the AlGaN/GaN epitaxial growth is in perma-
nent progress and daily new mobility records can be found in
literature that overcome the mean results which were pub-
lished in Ref. 9. At the time this paper was written, a room
temperature mobility of about 2000 cm2/Vs could be ob-
tained at a carrier density of 8�1012 cm−2 �Ref. 10� or again
1500 cm2/Vs at a carrier density of 2 .15 1013 cm−2 �Ref.
11�. Thus, the question is less being able to explain the bad
carrier mobility that is currently obtained, but more to pre-
dict the order of magnitude of the maximum mobility that we
may expect in perfect AlGaN/GaN quantum wells which
would only be submitted to the intrinsic scattering mecha-
nisms.

Intrinsic scattering mechanisms are essentially connected
to acoustic and optical phonons. However, similarly to the
electron-hole scattering mechanisms, direct electron-electron
interactions have frequently been considered as an intrinsic
effective scattering mechanism. Such mechanisms were ini-
tially introduced as a possible explanation of the residual
resistivity of metals at very low temperature.12–14 However, it
has been quickly recognized that the carrier-carrier interac-
tion cannot constitute by itself a relaxation process as the
other usual scattering centers �impurities, phonons� can,
since, during a two-particles collision, the whole momentum
as well as the energy are conserved. Thus, the carrier-carrier
interaction manifests only through the modifications it brings
to the other scattering mechanisms15–19 and, for instance,
through its dynamical dielectric response.

Generally speaking, the full dielectric response of any
material is made of a lattice contribution and an electronic
contribution. In polar materials, the lattice dielectric function
is given by Refs. 20 and 21 as follows:

�L��� = ��

�LO
2 − ��� − i��

�TO
2 − ��� − i��

, �1.1�

where �LO and �TO are the longitudinal and transverse opti-
cal phonons frequencies. � is a damping frequency related to
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the phonon lifetime �ph�1/�. Notice that, in the undamped
case ��=0�, the zeros and poles of the dielectric response
correspond to natural vibration modes of the material, here:
the longitudinal and transverses optical modes. The elec-
tronic dielectric contributions are given by the Lindhard di-
electric function22 which, for a three-dimensional �3D� sys-
tem, is

�e�q,�� = 1 −
e2

�0q2 �
k,k�

�fk� − fk���k�e−iqr�k���2

�k� − �k − � + i�
= 1 − �e�q,�� ,

�1.2�

where fk is the equilibrium Fermi-Dirac occupation function.
In the Lindhard derivation, � is an infinitely small positive
number. In the particular case of metals and the small q limit,
it is standard to show that expression �1.2� reduces to

�e��� = 1 −
ne2

m�0�2 = 1 −
�p

2

�2 , �1.3�

whose zeros correspond to the usual plasmon modes. Such
plasmon modes also exist for semiconductors. Considering
the full material dielectric response given by

�T�q,�� = �L��� − �e�q,�� , �1.4�

Varga23 was the first to point out that its zeros were natural
vibration modes associated with hybrid phonon and/or plas-
mon boson particles, which should be considered self-
consistently as the intrinsic scattering centers. The transition
probability W�k ,k�� associated with such particles and, there-
fore, with the self-consistent response of the material was
calculated in the case of 3D systems in the pioneer work of
Kim et al.24 and is given by

W�k,k�� =
e2

V�0q2	k�,kq�
−�

�

Im	N��� + 1/2 ± 1/2

�T�q,�� 

�	��k� − �k ± ��d� , �1.5�

where N��� is the Bose-Einstein statistics and k and k� are
free electronic states. The aim of this paper is to derive the
corresponding expression in the case of a 2D multisubband
electronic system in view to calculate the intrinsic mobility
that may be expected in AlGaN/GaN quantum wells.

II. THE INTRINSIC TRANSITION PROBABILITY

A. A simple way to recover the 3D Kim’s formulation

Expression �1.5� was obtained using a very heavy deriva-
tion based on the use of the second quantization formalism.
Although such a development should also be done in the
2DEG case, it would lead to very tedious steps. Instead, we
present physical but very simple arguments allowing us to
find back Eq. �1.5� and then to find a simple way to adapt it
to the 2D case. Note that our intuitive development can sim-
ply be considered as a physical interpretation of the Kim et
al. derivation. For doing this, we consider an elementary
charge distribution moving with a velocity v through a 3D
dielectric medium and whose density is 
ext�r , t�=e	�r−vt�,
leading to an elementary current density j=
v. The charge
density Fourier transform is


ext�q,��� = e2�	��� − qv� = e2�	��� − �� , �2.1�

where we have defined the angular frequency �=qv charac-
terizing the moving particle. This perturbation is responsible
for the appearance of an induced electric field Eind�r , t� due
to the dielectric medium response. The time average of the
power density jEind lost by the moving particle through this
induced field is given by

�jEind�time = lim
T→�

1

T
�

−T/2

T/2


ext�r,t�vEind�r,t�dt . �2.2�

In the following, we will omit the symbol “lim” for sim-
plifying the notations. Expression �2.2� may also be given in
terms of time Fourier transforms, which leads to

�jEind�time =
1

T�2�� � 
ext�r,− ���vEind�r,���d��.

�2.3�

The expected value of the power loss density calculated for
any k state is

�k�jEind�k� =
1

T�2�� � �
k�

�k�
ext�r,− ����k��

��k��vEind�r,����k�d��. �2.4�

Transforming the integral over �� into a sum and making the
variable change ��=�k�−�k=�k�k we have

�k�jEindd�k� = �
k�,�k�k

1

T2 �k�
ext�r,− �k�k��k���k��vEind�r,�k�k��k� . �2.5�

Introducing spatial Fourier transforms of Maxwell equations and making use of the dielectric function ��q ,�� of the medium,
the induced field may be written
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Eind�q,��� = − iqVind�q,���

= − iqVext�q,���	 1

��q,���
− 1


= − iq

ext�q,���

�0q2 	 1

��q,���
− 1
 . �2.6�

Using �2.6�, the nonvanishing real part of Eq. �2.4� is given
by

�k�jEind�k� =
1

T2V2 �
k�,�k�k

�
ext�q,�k�k��2

�0q2 qv

Im	 1

��q,�k�k�

��k�e−iqr�k���2. �2.7�

This last expression shows that the time averaged power den-
sity expected value for any k state is the result of k to k�
transitions which correspond each to the exchange of energy
quanta �k�k with the time probability W�k ,k��. For the whole
crystal of volume V, considering �2.1�, the probability per
unit time is then given by

W�k,k�,�� =
4�2

T2V

e2

�0q2 Im	 1

��q,�k�k�

��k�e−iqr�k���2

�	2��k�k − �� . �2.8�

Since the imaginary part of the inverse dielectric function
is maximum when its real part vanishes, the transition prob-
abilities expressed by �2.8� are due to the natural vibrations
of the material corresponding to hybrid phonon and/or plas-
mon particles. Thus, to get a final formula, it is also neces-
sary to distinguish between the absorption and emission pro-
cess and to weight formula �2.9� by the corresponding Bose-
Einstein statistics. Finally, integrating over the whole
frequency range and setting one of the two Dirac functions to
the value 	��=0�=T /2�, we obtain the intrinsic transition
probability given by

W±�k,k�� =
1

V

e2��k�eiqr�k���2

�0q2 �
−�

�

Im	N��� + 1/2 ± 1/2

��q,�� 

�	��k� − �k ± ��d��� �2.9�

as previously found in Ref. 24.

B. Case of two-dimensional multisubband systems

We now consider a 2D system whose subbands are char-
acterized by a series of envelop functions Zn�z�. Such a sys-
tem is disturbed by an incoming particle moving with a ve-
locity v within the 2D Oxy plane. Its density is of the form

ext�r ,z , t�=e	�r−vt�	�z−z0� where r is now a 2D vector
and z0 a particular position along the Oz axis of the quantum
well. Its Fourier transform is then


ext�q,qz,��� = e2�	��� − qv�eiqzz0 = e2�	��� − ��eiqzz0,

�2.10�

where we have introduced the angular frequency �=qv char-
acterizing the moving particle in the 2D plane. Following the
steps introduced in Sec. II A, the power density matrix ele-
ment expected value calculated for any �n ,k� state is now
given by

�n,k�jEind�n,k�

=
1

T2�2��6 �
n�,k�,�k�k

� 
ext�q�,q�z,− �k�k�vEind�q,qz,�k�k�

��n,k�e−i�q�r�+q�zz���n�,k��

��n�,k��e−i�q�r+qzz�n,k�d2q�d2qdq�zdqz. �2.11�

The matrix elements appearing in �2.11� are

�n,k�e−i�qr+qzz��n�,k�� = 	k�,k+q� Zn
*�z�Zn��z�e−iqzzdz

= 	k�,k+qGn,n��qz� . �2.12�

The above expression �2.12� also defines the function
Gnn��qz�. Thus, the �n ,k� state expected value of the power
density is

�n,k�jEind�n,k� = �
n�k�,�k�k

	k�,k+q

T2S2�2��2 � 
ext�− q,q�z,− �k�k�

�vEind�q,qz,�k�k�Gn,n��q�z�Gn�n�qz�dq�zdqz.

�2.13�

Introducing the notation

Fn,n��q,�� =
1

2�
� Gn,n��qz�F�q,qz,��dqz, �2.14�

expression �2.13� becomes

�n,k�jEind�n,k�

= �
n�,k�,�k�k

− i
	k�k+q

T2S2 
n�,n
ext*�q,�k�k�vqVn�n

ind �q,�k�k� .

�2.15�

In a 2D system, owing to the lack of translation invari-
ance along the Oz axis and to the presence of several sub-
bands, it is no more possible to describe the electronic di-
electric response by a single function. Instead, it was shown
in Ref. 25 that a dielectric function tensor must be introduced
so that

�
n,n�

�m,m�
n,n� �q,��Vn,n�

tot �q,�� = Vm,m�
ext �q,�� , �2.16�

where Vn,n�
tot �q ,�� and Vm,m�

ext �q ,�� are defined as in �2.14� and
where the dielectric tensor matrix elements are given by
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�m,m�
n,n� �q,�� = �L���	m

n 	m�
n�

−
e2

�0
�
qz

Gm,m��qz�Gn,n�
* �qz�

�q2 + qz
2�

�n,n�
e �q,��

�2.17�

with

�n,n�
e �q,�� = �

k

fn�,k+q − fn,k

�n�,k+q − �n,k − � + i�
. �2.18�

The dielectric function tensor may be easily reversed numeri-
cally owing to the finite number of subbands. Thus, introduc-
ing the reversed dielectric tensor, we obtain

Vn�n
ind �q,�� = �

n,n�

��−1�q,��
n�,n
m�,mVm�,m

ext �q,�� − Vn�,n
ext �q,�� .

�2.19�

Since the incoming charge does not work in its own field,
after having retained the real nonvanishing part only, the
matrix element �2.15� becomes

�n,k�jEind�n,k�

= �
n�,k�,�k�k

	k�,k+q

T2S2

�Im�
n�,n
ext*�q,�k�k�vq �

m,m�

��−1�n�,n
m�,mVm�m

ext �q,�k�k�� .

�2.20�

Using �2.10� and following the same development as in
Sec. II A, we deduce the following transition probability

W±�n,k,n�,k�� =
L

S

e2	k�kq

�0
Im �

m,m�
� Gn�,n

* �q�z�Gm�,m�qz�ei�qz−q�z�z0

q2 + qz
2 dqzdq�z

��
−�

�

��−1�q,��
n�,n
m�,m	N��� +

1

2
±

1

2

	��k� − �k ± ��d��� . �2.21�

The remaining parameter z0 is arbitrarily chosen as the z
position at which the electronic density is maximum in the
quantum well. Expression �2.21� constitutes the straightfor-
ward extension of the 3D transition probability to the case of
a multisubband 2D system. The complexity of �2.21� pre-
vents any simple comparison with the formula proposed in
Ref. 26 and straightforwardly deduced from the 3D Kim’s
result in the case of a single subband quantum well without
any justification.

III. THE LINEARIZED BOLTZMANN EQUATION

A. The relaxation time

Restricting the present derivation to the case of an exter-
nal electric force F=eE only, the Boltzmann kinetic equation
for a given �n ,k� state and a given spin leads to Ref. 9

	 �fn,k

�t



coll
=

�f0

��n,k
vn,kF . �3.1�

The collision term results from the simultaneous action of
the various elastic scattering mechanisms that are present in
the material �impurities, dislocations, acoustic phonons, etc.�
and of the hybrid optical phonon and/or plasmon interaction.
The first class of scattering mechanisms are in the following
represented by the transition probability Wn,n�

elas �k ,k��
=Wn�,n

elas �k� ,k�, while for the second class we separate explic-
itly the emission and absorption processes. The time varia-
tion of a k state occupation function due to collisions is then
obtained by weighting the transition probabilities by the oc-
cupation rate fnk of the initial state and the empty occupation
rate 1− fnk of the final state, by writing fnk= f0nk+	fnk and
keeping first-order terms. This leads to

	 �fnk

�t



coll
= − 	fnk �

n�k�

�Wn,n�
elas �k,k�� + �Wn,n�

+ �k,k�� + Wn,n�
− �k,k��
�1 − f0n�k�� + �Wn�,n

+ �k�,k� + Wn�,n
− �k�,k�
f0n�k��

+ �
n�,k�

�Wn,n�
elas �k,k�� + �Wn,n�

+ �k,k�� + Wn�,n
− �k�,k�
f0nk + �Wn�,n

+ �k�,k� + Wn�,n
− �k�,k�
�1 − f0nk��	fn�k�. �3.2�
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We define

1

�n,k
0 = �

n�k�

Wn,n�
elas �k,k�� + �Wn�,n

+ �k,k�� + Wn�,n
− �k,k��
f0n�k�

+ �Wn,n�
+ �k,k�� + Wn,n�

− �k,k��
�1 − f0n�k�� �3.3�

and

Gn,n��k,k�� = Wn,n�
elas �k,k�� + �Wn,n�

+ �k,k�� + Wn,n�
− �k,k��
f0nk

+ �Wn�,n
+ �k�,k� + Wn�,n

− �k�,k�
�1 − f0nk� . �3.4�

With such notations, Eq. �3.1� leads to

	fnk = −
�f0,nk

��nk
vkF�n,k, �3.5�

where, in the case of isotropic scattering centers

�n��k� = �n
0��k�	1 + �

n�k�

Gn,n��k,k��
f0,n�k��1 − f0,n�k��

f0,nk�1 − f0,nk�
k�

k

�cos�k,k���n���k��
 . �3.6�

Transforming the k� sum into an integral, one also obtains

�n��k� = �n
0��k�	1 + �

n�
� Fn

n���k,�k���n���k��d�k�

�3.7�

with

Fn
n���k,�k��

=
m*

4�2 � Gn,n��k,k��
f0,n�k��1 − f0,n�k��

f0,nk�1 − f0,nk�
k�

k
cos���d� .

�3.8�

Note that the various matrix elements Fn
n���k ,�k�� only

require one angular integral and, therefore, a low computa-
tional demand. The remaining energy integral equation �3.7�
may be transformed into a matrix inversion problem by lim-
iting the energy integration range by a maximum value �max
and then dividing the energy domain into N elementary steps

�, so that � j = j
� and

�n,i
0 = �

n�,j

�	n
n�	i

j − 
��n
0��i�Fn

n���i,� j���n�,j = �
n�,j

Mn
n��i, j��n�,j ,

�3.9�

where each square Mn
n� matrix is N�N. The final solution of

equation �3.9� is obtained as follows. The following vectors
are defined

� = ��1�� j�
�2�� j�
etc.

� and �0 = ��1
0�� j�

�2
0�� j�
etc.

� . �3.10�

Thus, Eq. �3.9� transforms into a matrix equation

�M1
1�i, j� M1

2�i, j� etc.

M2
1�i, j� M2

2�i, j� etc.

etc. etc. etc.
� � ��1��i�

�2��i�
etc.

� = ��1
0�� j�

�2
0�� j�
etc.

� .

�3.11�

The maximum �max value �i.e., the N value� must be chosen
in order to get a convergent result �in our calculations �max

=7�LO�. Then, the above matrix equation M� � X̄= V̄ is solved
using standard numerical matrix inversion procedures.

IV. NUMERICAL RESULTS AND DISCUSSION

Usually, for the sake of simplicity in transport calcula-
tions, the wave functions needed for the evaluation of the
various matrix elements are chosen under the form of trial
analytical functions,7,27,28 which, in practice, only allow the
description of the first subband and prevent to consider ex-
change and correlation potentials. However, various self-
consistent numerical approaches including Coulomb, ex-
change, and correlation potentials have been established in
the past decades in order to obtain a true description of the
energy states and their corresponding wave functions as for
instance in Refs. 29–31 In the present work, in order to simu-
late the quantum well mobility and to check the effect of the
carrier confinement on the various scattering mechanisms,
we have determined numerically the energy states and their
associated wave functions, adapting methods usually used in
ab initio calculations to the establishment and the resolution
of the envelop function equation. The Coulomb interaction
and the exchange and correlation contributions,32–34 as well
as the Ben Daniel-Duke kinetic energy operator35 accounting
for the spatial dependence of the effective mass were intro-
duced in the Kohn-Sham-like envelope equation. Our nu-
merical method is based on the following assumption: Since
the quantum well states are localized, it is assumed that their
corresponding wave functions vanish at the extremities of a
segment of length L in which the quantum well potential is
imbedded. Thus, the wave functions may be expressed as a
Fourier series of planes waves that are naturally defined by
the segment length L. In this plane wave basis, the envelop
function Kohn-Sham equation transforms into a matrix
where the Coulomb as well as the exchange and correlation
potentials are automatically calculated using the fast Fourier
transform technique. The Kohn-Sham Hamiltonian matrix
eigenelements are then numerically solved using an iterative
procedure and their eigenvalues allow, finally, to calculate
the full quantum well energy ET�L�, which turns out to be a
function of the parameter L. This last value L is chosen in
order to minimize ET. This variational procedure, already
used in Refs. 36 and 37, allows us to get precise numerical
results with a relatively low number of planes waves ��50 in
the present one-dimensional localized case�.

The numerical method described above is valid for any
shape of quantum well binding potential. In the particular
case of AlGaN/GaN quantum well, it is supposed that the
quantum well arises because of an intrinsic positive charge
�, issuing from the spontaneous polarization and from the
piezoelectric response of the strained AlGaN cap layer. This
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FIG. 1. Scattering strength map showing the function H11�q ,�� �multiplied by q2 in order to avoid too large values at small q� associated
with hybrid bosons. The spectrum separates into a nondispersive phonon-like branch and a plasmon branch. �a1� and �b1� correspond to
ns=2.1012 cm−2; �a2�, �b2� correspond to nS=1.2 1013 cm−2; �a3�, �b3� correspond to nS=2 1013 cm−2.
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charge is localized at the interface and creates an attractive
potential given by

WQW�z� =
2��

�L
�z� . �4.1�

Associated with the AlGaN/GaN band offset, such a bare
potential creates an attractive triangular quantum well. In the
present calculation, we have supposed that the electronic
density ns contained in the well is equal to �, leading to a
globally neutral quantum well. However other situations can
be considered.

Making use of such wave functions, the scattering
strength associated with hybrid particles could be numeri-
cally computed in the case of triangular AlGaN/GaN quan-
tum wells. As an example, Fig. 1 shows, for various free
carrier densities, the numerical computation of the function
H11�q ,�� whose general expression is given by

Hn,n��q,�� = Im� �
m,m�

��−1�q,��
n�,n
m�,m

�� Gn�,n
* �q�z�Gm�,m�qz�ei�qz−q�z�z0

q2 + qz
2 dqzdq�z� .

�4.2�

The dielectric tensor components were numerically com-
puted using �1.1�, �2.17�, and �2.18� with a damping phonon
coefficient equal to �=0.0035�LO �Refs. 26 and 38 and the
plasmon damping frequency was set to �=2/ ��B� where ��B�
is the mean relaxation time.39

Figures 1�a1�–1�a3� and 1�b1�–1�b3�, respectively, repre-
sent the 3D view and the top view for convenience. Figures
1�a1� and 1�b1� are obtained for a carrier density equal to 2
�1012 cm−2. The frequency spectrum is mainly made of a
nondispersive optical phonon-like branch contribution.
Nonetheless, a weak dispersive plasmon contribution starts
to be visible. For lower densities the phonon and/or plasmon
hybrid contribution to scattering becomes negligible and
phonons alone should constitute the main scattering mecha-

nisms, a situation that is expected, for instance, in the clas-
sical AlGaAs/GaAs quantum wells whose carrier densities
are of the order of �1011 cm−2. For larger densities the pho-
non and plasmon branch-like contribution and their coupling
are clearly seen in Figs. 1�a2� and 1�b2� obtained for a carrier
density equal to 1.2�1013 cm−2 and in Figs. 1�a3� and 1�b3�
obtained for a carrier density equal to 2�1013 cm−2. This
behavior where plasmon and/or phonon hybrid particles scat-
tering is no more negligible appears to be a particularity of
AlGaN/GaN quantum wells capable of storing very high
carrier densities.

Using the above numerical results, the intrinsic mobility
could be determined and Fig. 2 exhibits the intrinsic mobility
versus carrier density obtained at room temperature by com-
bining the effect of polar phonon and/or plasmon hybrid
scattering with the usual intrinsic scattering mechanisms as-
sociated with acoustic phonons �through the deformation po-
tential and the piezoelectric coupling�. This figure shows also
the important role of intersubband transitions at low carrier
densities �where more than one subband is noticeably occu-
pied by electrons�: the dashed line is obtained by neglecting
the second subband, while the full line is obtained by taking
into account the two first subbands of the quantum well. In
any case, Fig. 2 shows a relatively important decrease of the
room temperature mobility with increasing carrier densities
that may be interpreted by the following arguments:

�i� An increasing carrier density obviously leads to a
stronger carrier-carrier interaction �through the appearance of
a more efficient plasmon contribution to scattering�.

�ii� An increasing carrier density also leads to a stronger
and stronger confinement of the quantum well wave func-
tions resulting into a larger uncertainty of the qz wave vector
of the wave functions. Thus, more and more hybrid particles
are involved in the scattering efficiency, as a consequence of
the Heisenberg inequality.

�iii� The efficiency of the hybrid particle scattering is im-
portant at room temperatures, but it decreases at lower tem-
peratures because of the presence of the Bose-Einstein sta-
tistics.

In order to point out the relative importance of the intrin-
sic scattering versus the other usual extrinsic scattering

FIG. 2. Theoretical calculation of the room temperature intrinsic
mobility versus carrier density in neutral triangular AlGaN/GaN
quantum wells �dashed line: mobility calculated taking into account
only the first subband; full line: mobility calculated taking into ac-
count the two first subbands�.

FIG. 3. Room temperature mobility versus carrier density lim-
ited by individual scattering mechanisms given for various param-
eters as indicated on the figure. The full lines correspond to the
parameters chosen in the following for the calculation of total
mobility.
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mechanisms, we have combined the effect of hybrid particles
and acoustic phonons with the one of impurities, disloca-
tions, and interface roughness in the relaxation times calcu-
lation. For that purpose, the following apply:

�i� impurities have been considered as uniformly distrib-
uted in the whole heterostructure with a density of
1017 cm−3.

�ii� Threading dislocations have been considered acting
through their possible linear charge �filling factor chosen as
0.3 and density as 1–3�109 cm−2�, although other scatter-
ing mechanisms can be associated with dislocations such as
deformation potential, quantum box-like behavior, as it will
be discussed in a following paper.

�iii� The interface geometrical roughness, resulting from
the presence of islands at the AlGaN/GaN interface, has
been introduced using the scattering potential already de-
scribed in Ref. 9 in which the covering ratio has been set up
to 25%, the island thickness to one monolayer and the cor-
relation length either to 15 A or to 20 A.

�iv� The so called “electrical roughness,” associated with
the fact that the interface charge may not be uniform because
of various elastic relaxation mechanisms �including thus, in a
phenomenological way, the possible presence of misfit dislo-
cation tangles, interface cracks, alloy reordering, etc.�, has as
well been introduced in our calculation with a covering ratio
set up to 25%, the average local charge variation to 25%, and
the correlation length either to 60 A or to 80 A.

The individual effects of each extrinsic scattering mecha-
nism on the mobility are represented in Fig. 3, as well as the
one of intrinsic scattering �hybrid optical phonon and/or
plasmon particles and acoustic phonons�. This figure clearly
demonstrates that intrinsic scattering mechanisms are, at
room temperature and at high carrier densities, the most ef-
ficient scattering centers. As it was already shown in Ref. 9,
impurities and dislocation mainly act at low carrier densities
because of weaker screening effects, while the interface geo-
metrical and electrical roughness efficiency increases with
the carrier density. Thus, the total mobility versus carrier
density resulting from the simultaneous action of extrinsic
and intrinsic scattering mechanisms goes through a maxi-
mum, as it is experimentally observed for instance in Ref.
40, but whose theoretical position obviously depends on the
various parameters introduced in the calculation �dislocation
densities and dislocation linear charge, correlation lengths
and covering ratio for the interface roughnes, etc.�. Such a
simultaneous effect of the various scattering centers on the
total mobility is visible in Fig. 4 �c�: here, the calculations
are done with a choice of parameters allowing us to repro-
duce, at best, the recent experimental results shown in Ref.
41 for which the maximum mobility versus carrier density
occurs at relatively low carrier density.
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