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We explore anomalies in the ac transport or produced by electromagnetic wave radiation on the quantum
magnetotransport �QMT� coefficients of a two-dimensional electron system �2DES� with electrostatic modu-
lation. An applied magnetic field is perpendicular to the 2DES. The QMT coefficients are determined by the
scattering produced by the electrostatic modulation potential, the sub-Landau level eigenstates arising from the
formation of new magnetic Brillouin zones, and the ratio of the frequency � of the electromagnetic radiation
to the cyclotron frequency. For strong modulation, it is found that the Hall resistivity �xy��� is quenched and
becomes negative for low magnetic fields. The magnetic field range over which �xy��� is quenched and
negative increases as the frequency is increased. The longitudinal resistivity �xx��� has been observed experi-
mentally to have a double peak structure �commensurability of the orbits with the lattice� for strong modulation
when �=0. In the presence of electromagnetic wave excitation, we find that the double peaks are shifted to a
higher magnetic field and the resistivity is reduced.
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I. INTRODUCTION

There has recently been a considerable amount of experi-
mental work on the transport properties of the two-
dimensional electron system �2DES� when subjected to elec-
tromagnetic wave excitation at rf, microwave, and IR
frequencies in quantized magnetic fields. In each case, a cru-
cial quantity which plays a key role is the frequency and
wave vector-dependent conductivity which is determined by
Landau-level transitions. Specifically, we give three ex-
amples of the types of measurements which have been per-
formed. The first is related to the observations of some pe-
culiar effects in the 2DES in high mobility GaAs/AlGaAs
heterostructures under strong microwave radiation, i.e., the
disappearance of the diagonal conductivity without Hall re-
sistance quantization at low temperatures and low magnetic
fields.1 Also, Shubnikov–de Haas–like oscillations in milli-
meter wave photoconductivity in a high-mobility 2DES were
observed in Ref. 2. These giant oscillations in amplitude oc-
cur in a weak magnetic field and their period is determined
by the ratio of the millimeter wave to the cyclotron fre-
quency. The second example concerns the surface acoustic
waves �SAWs� in which the velocity and damping of the
SAW depend on the dynamical conductivity of the 2DES.3

Simon4 obtained an expression for the velocity shift and the
attenuation of the SAW in terms of the frequency and wave-
vector-dependent electrical conductivity of the 2DES. The
SAW is of relevance in the study of composite fermions for
which Halperin, Lee, and Read5 obtained the nonlocal con-
ductivity at half filling. The third example is the experimen-
tal work on 2D edge magnetoplasmons which were studied
in the quantum Hall effect �QHE� regime at rf frequencies.6

There have also been measurements of the microwave pho-
toconductivity of GaAs/AlGaAs heterostructures for which
resonant responses were obtained corresponding to a collec-
tive plasmon excitations in a perpendicular magnetic
field.7–10 There has been some theoretical work on the oscil-
lations of the components of the conductivity tensor of a
2DES in the presence of microwave radiation.11 The conduc-

tivity of the 2DES at magnetic fields where the usual
Shubnikov–de Haas oscillations do not appear was calcu-
lated in the semiclassical regime within the framework of the
Boltzmann transport equation.

Ever since it became possible to fabricate an array of
periodic artificial scatterers in a highly mobile 2DES at the
interface of a GaAs/AlGaAs heterostructure,12–23 many ex-
perimentalists have studied the quantum magnetotransport
�QMT� properties for a variety of imposed scatterers. This
gives rise to a class of effects. For example, for an array of
antidots18,24–26 formed by strong repulsive scatterers embed-
ded in a 2DES, the introduction of spatially modulated 2D
potentials leads to dramatic commensurability effects at low
magnetic fields and temperatures. As a function of the ap-
plied magnetic field, the distinct features in transport experi-
ments are the pronounced resistance peaks18 �the double
peak feature� which are manifest when a cyclotron orbit cir-
cumscribes a group of antidots in the square array. However,
since the potential barriers forming the antidots are continu-
ously varying functions, the cyclotron orbits are distorted.
Noncircular cyclotron orbits have been demonstrated in
transport measurements of the cyclotron frequency.23 In ad-
dition, the suppression of the commensurate Weiss oscilla-
tions, and the negative and quenched Hall resistivity have
been found in a square array of antidots.18

Microwave photoconductivity measurements �60–400
GHz� on an antidot array26 reveal that the resonant signals
were shifted to higher magnetic fields with increasing fre-
quency. We supplement the experimental result in Ref. 26
with theoretical calculations of frequency dependence of
both transverse and the longitudinal resistivities of antidots.
The motivation for revisiting this problem is due to the re-
cent experimental activity exploring anomalies produced by
elctromagnetic wave radiation on the QMT coefficients of a
2DES.1,2 In Refs. 27–29, the effect of radiation on the resis-
tivity was calculated theoretically for a homogeneous 2DES
and for the spatially modulated system in a magnetic field.
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II. FORMALISM

To investigate the commensurability effects on the
frequency-dependent photoconductivity tensor, we use a
Kubo-type formula13,30–33 which we write as a function of
frequency � through �� ,�=x ,y�

L����� = −
ie2

2A�
�

−�

�

d� f0���

�Tr�v�	�� − H�v��Ĝ�+
�
− − Ĝ�−
�

− �

− v��Ĝ�+
�
+ − Ĝ�−
�

+ �v�	�� − H�� . �1�

This expression which neglects electron-electron interaction
will be sufficient to demonstrate the effects of the lattice
scattering. In this notation, A is the sample area, f0��� is the
Fermi-Dirac distribution function, the velocity operator is

defined as v=−�i
�� −eA� /m* where m* is the electron effec-
tive mass. A= �0,Bx ,0� is the vector potential in the Landau

gauge, and Ĝ�
±=1/ ��−H± i0+� are advanced and retarded

Green’s functions. Here, we neglect the effects from the
small current and voltage leads connected to the sample by
taking the external electric field as uniform over the whole
array. This is justified since the size of a sample used in an
experiment is very small compared with the scale over which
the electric field varies. Furthermore, we assume that the
external electromagnetic field is weak so that the distribution
function may be approximated by the Fermi-Dirac function.
The results presented here are valid only when the contribu-
tion resulting from changes in the electron distribution func-
tion can be neglected.32 Dmitriev et al.33 discussed in detail
the relationship between the conductivity of a 2DES sub-
jected to a magnetic field and a random potential. They used
their calculations based on Eq. �1� to explain the experimen-
tal results of Mani et al.1 and Zudov et al.2 for the measured
photoconductivity. Durst et al.28 also used the Kubo formula
in their calculations of photoconductivity.

In a high mobility sample, and assuming a weak impurity
scattering potential, we may separate the contributions to
L����� from the subbands and a part arising from electron-
impurity scattering. In our numerical calculations, we treat
the scattering as being mainly due to the lattice which, after
a calculation using Eq. �1�, yields the following expressions
for the longitudinal and transverse conductivity:

Lxx��� = Lyy��� =
�e2
2�Ny
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In the above equation the summation with the prime means
that all terms with �� j�X0�−� j��X0��=
� must be excluded
and � j�X0� are the energy eigenvalues of the electrons in a
lattice with period a. Also, G=2� /a is a reciprocal lattice
vector, Ly =Nya is the sample length in the y direction, X0
=kylH

2 is the guiding center, lH=�
 /eB is the magnetic
length, and ky is a wave vector along the y direction. The
normalized magnetic flux is denoted by �=Ba2 /0, where
0=h /e is the flux quantum and the partial density-of-states
is Dj,X0

�E�=	�E−� j�X0��. Here, the structure factors deter-
mining the group velocities are

Fj,X0;j�,X0

�1� = Fj�,X0;j,X0

�1� = �
A

dr � j,X0

* �r�x� j�,X0
�r� ,
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where � j,X0
�r� are the eigenfunctions.34 In the Appendix, we

quote the corrections to L����� arising from electron-
impurity scattering.

The lattice potential UL�r� for the scatterers can be taken
as having the following form:34,35

UL�r� = V0	cos2�x

a
�cos2�y

a
�
2N

, �4�

where V0 is either a positive �or negative� amplitude for the
quantum antidot �or dot� regime of the artificially imposed
positive �or negative� periodic modulation potential, N is the
power for determining the size of the quantum antidot �or
dot� potential. We will introduce a dimensionless quantity

V̄0=m*V0a2 /21/2�
2. The reason for taking 2N as an expo-

nent is to ensure a positive �or negative� potential when V̄0 is
taken as a positive �or negative� value. The value of N de-
scribes the gradient or degree of modulation of the potential.
Equation �4� has been used to simulate antidots35 when N is
large �N�10�. One of the reasons we are interested in this
potential is that we can adjust both the strength of the poten-

tial V̄0 as well as the steepness of the modulation potential by
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suitably choosing the 2N power. We now present numerical
results for the longitudinal and transverse resistivities for an
array of antidots in the absence and presence of electromag-
netic wave radiation. The experimental measurements of the
Hall and longitudinal resistivity were carried out on samples
of high mobility. Consequently, it is reasonable to exclude
impuritues as the cause of the observed effects. In the low
magnetic field regime, many-particle interactions are known
not to give rise to any peculiarities in the magnetotransport
coefficients for a homogeneous 2D electron gas. Thus, the
Coulomb interactions between electrons will be neglected.
Consequently, we will only calculate numerically the band
part of the conductivity, since the impurity scattering is weak
compared with the lattice scattering. As a matter of fact, the
contribution to the resistivity due to electron-impurity effects
to leading order does not significantly affect our results.

III. NUMERICAL RESULTS AND DISCUSSION

In Figs. 1�a� and 1�b�, we have plotted the energy eigen-
values as a function of the wave vector ky for N=10 in the
scattering potential in Eq. �4� �see Ref. 34 for details of the
calculation�. The dispersion becomes more significant with
increasing subband level. As � is reduced �to ��0.05�,

there is little dispersion near the center of the Brillouin zone.

For negative V̄0, the energy eigenvalues could be negative.
Figure 1�b� shows the dependence of the energy eigenvalues
as a function of magnetic flux for a chosen strength of scat-

tering potential. Here, we chose kya=�, N=10, and V̄0=5.0.
When the magnetic field is weak, there are large band width
oscillations as a function of magnetic field. Although there is
no overlap between different Landau levels for weak scatter-
ing, our calculations show that the coupling between Landau
eigenstates cannot be ignored. This can be deduced from the
expansion coefficients for the eigenfunctions which are ob-
tained by numerical diagonalization of the coefficient
matrix.34 This coupling leads to substantial modification of
the group velocities. When the lattice potential is increased,
the energy levels are shifted upward at low magnetic fields
and the band width oscillations are greatly suppressed as
shown in Fig. 1�b�. When the lattice scattering is further
increased, the Landau levels overlap at low magnetic fields.

In Figs. 2 and 3, we plot the longitudinal and transverse

Hall resistivity as functions of � for two values of V̄0 and �
with n2Da2=1, where n2D is the areal electron density. The
magnetoresistance is calculated from the tensor inversion of

Eqs. �2� and �3�. At low magnetic fields, when V̄0 is in-

FIG. 3. The same as Fig. 2 except that V̄0=100.0.

FIG. 1. �a� The energy eigenvalues as functions of kya for �

=0.15, V̄0=1.23. �b� For kya=�, the eigenvalues are plotted as

functions of � when V̄0=5.0. The parameters used in the calcula-
tion are given in the text.

FIG. 2. The longitudinal �solid line� and Hall resistivity �dashed
line� at T=0 K as a function of the flux � in units of the flux

quantum 0=h /e for n2Da2=1, N=10, 
�=EF and V̄0=1.23. In the
inset, we chose �=0 and all other parameters the same.
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creased, large-amplitude, plus-to-minus oscillations are pro-
duced in �xy��� for ���th, where �th is a threshold where
the cyclotron radius is small compared to the lattice spacing
and the system behaves like a homogeneous 2DES. The be-
havior at low � is a result of the strong mixing of the Landau
levels and the Landau orbits with different guiding centers
when V̄0 is large. A negative �xy��� occurs when electrons
are scattered resonantly from the periodic lattice of scatter-
ers. At these values of �, the net scattering force overbal-
ances the Lorentz force. However, these large-amplitude os-
cillations are suppressed when � is increased. At large
electron density, the peaks for �xy��� are shifted to large
magnetic fields.

Figure 2 shows that when the modulation strength is de-
creased, the double peak �commensurability� structure at a
low magnetic field in the longitudinal resistivity is sup-
pressed. As Fig. 3 indicates, when the modulation potential is
strong, the effect of finite frequency is to enhance the double
peaks, corresponding to the reduced mobility at low B. When
� decreases, there is a quenching and negative value of �xy,
as observed experimentally at zero frequency. Our results
show that we also have quenching at finite frequency and
that as seen in Fig. 2, the quenching and negative resistivity
occur for larger � when the frequency is increased. The
obtained results also indicate that the effect of finite fre-
quency for weak modulation on �xx is to produce a suppres-
sion of the magnetoresistivity over a range of magnetic fields
where �xy is quenched. Comparing our results, we find that
larger V̄0 causes �xy to decrease in magnitude for large �.
The longitudinal resistivity is decreased as the frequency is
increased for either weak or strong modulation. This means
that the lattice enhances the forward scattering of electrons at
low magnetic fields in the presence of electromagnetic exci-
tation. Our calculations also show that as n2D is increased,
�th becomes large and the negative �xy is greatly reduced.
For ���th, the negative peaks in �xy are determined by the
collimated states with �xy�0.

IV. CONCLUDING REMARKS

In summary, we have calculated the Hall and longitudinal
resistivities for a 2DES with electrostatic modulation in the

classical low magnetic field regime. The experimental results
in Ref. 26 showed how �xx is affected at microwave frequen-
cies. Our results qualitatively agree with these results. In
addition, we demonstrated how the quenching of the Hall
effect as well as the related anomalous peaks in the longitu-
dinal resistivity within the quenching regime for a square
array of scatterers could be affected by the presence of elec-
tromagnetic excitation. Our results clearly demonstrate the
effect of finite frequency on forward scattering which in-
creases the conductivity.

In this paper, we did not consider the nonequilibrium or
nonlinear collective excitation effects on the electron trans-
port in the 2DES. Such effects were included in some of the
quoted references in the text. For example, Dietel et al.29

presented a detailed calculation of the microwave photocon-
ductivity of a 2DES in the presence of a static periodic po-
tential. These authors found that the combination of this po-
tential, a perpendicular magnetic field and the microwave
radiation may give rise to an anisotropic negative conductiv-
ity of the 2DES which they attribute to nonlinear excitation
effects. Also, it was shown by Dmitriev et al.32,33 that the ac
conductivity can be used to describe nonlinear effects. In the
present paper, no such nonlinear effects were included in our
calculations. An equilibrium Green’s function approach was
used and the negative resistivity which we report arises from
backscattering off the lattice. We hope that this study will
stimulate experiments to verify our predictions.
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APPENDIX: EFFECT DUE TO IMPURITY SCATTERING

In this appendix, we quote the results for the corrections
to the conductivity arising from electron-impurity scattering.
We have at frequency �

	L����� = −
e2

4��A
�
M,N

v�
MNv�

NM�
−�

�

d�f0��� � ��G�,N
0 �G�+
�,M
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�� − G�−
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where G�,M
0± =1/ ��−�M ± i�� and v�

MN= �M�v��N� is a velocity matrix element for eigenstates �M� and �N�. Also, �G�,M
0 =G�,M

0+

−G�,M
0−

If we assume that the distribution of the impurities is not dense and uncorrelated,21 the scattering potential is short ranged
due to screening by the electrons,4,10,21 and the self-energy is independent of all quantum numbers.4,10 In this limit, we can
easily include impurity scattering effects and obtain the self-consistent equation for the self-energy, i.e.,

GODFREY GUMBS PHYSICAL REVIEW B 72, 125342 �2005�

125342-4



�±�E� =
2�
2u0nI

m* 	1 −
2�
2u0Ny�

m*A
�

j
�

−GlH
2 /2

GlH
2 /2 dX0

a
 1

E ± i� − Ej�X0� − �±�E��
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, �A2�

where nI is the impurity density and u0 is an impurity scattering amplitude. In this result, one includes multiple scattering from
a single scatterer self-consistently. Since 	L����, we neglect it for the low impurity concentration nI and the weak electron-
impurity scattering compared with the lattice potential, i.e., u0�V0.
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