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We investigate the longitudinal spin relaxation arising due to spin-flip transitions accompanied by phonon
emission in quantum dots where the strength of the Rashba spin-orbit coupling is a random function of the
lateral �in-plane� coordinate on the spatial nanoscale. In this case the Rashba contribution to the spin-orbit
coupling cannot be completely removed by applying a uniform external bias across the quantum dot plane. Due
to the remnant random contribution, the spin relaxation rate cannot be decreased by more than two orders of
magnitude even when the external bias fully compensates the regular part of the spin-orbit coupling.
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I. INTRODUCTION

A quantum degree of freedom of an electron localized in a
quantum dot �QD�, i.e., its spin, is thought to be a useful tool
for the realization of nanoscale devices that can be used for
information processing.1,2 The interaction of spins with the
environment on the one hand allows necessary read and
write procedures but on the other hand leads to losses of the
information held by the system. Thus, a critical issue regard-
ing the possibility to convert quantum dots into a hardware
realization of quantum information devices is the the ability
to manipulate quickly the spins of electrons localized in
quantum dots and to keep them in the desired states as long
as necessary. The spin-orbit �SO� coupling in QDs plays a
crucial role for both the spin manipulation and lifetime of the
prepared spin states. For example, the SO coupling allows
the effective manipulation of spins by an external electric
field due to the fact that the electric field influences the or-
bital degrees of freedom, and, through the SO coupling, the
spin states. The most interesting example of such a manipu-
lation is the electric dipole spin resonance,3,4 the effect that
occurs when the electric field of the incident electromagnetic
wave causes spin-flip transitions resonating with the wave
frequency. In this case the electric field is a much more effi-
cient tool for manipulating the spins than the magnetic field.
The spin states in quantum dots can be prepared and con-
trolled by an external optical field5 too, thus allowing an
optical realization of the write and read operations for appli-
cations in information technologies.

The SO coupling in two-dimensional systems based on
�001�-type structures is described by the sum of the

Rashba6,7 ĤR=�R��xk̂y −�yk̂x� and Dresselhaus-originated8

ĤD
�001�=�D

�001���xk̂x−�yk̂y� terms, where �R and �D
�001� are

the coupling constants, � are the Pauli matrices, and k�

=−i�� − �e /c��A� is the in-plane momentum of the electron.
Here e is the electron charge, and A is the vector potential of

the external field. ĤR and ĤD terms arise due to the artificial
macroscopic asymmetry of the structures and due to the mi-
croscopic inversion asymmetry of the unit cells, respectively.
For holes the SO Hamiltonian is more sophisticated leading

to a more complicated spectra of spin excitations and spin
dynamics.9–13

In GaAs/AlxGa1−xAs structures14,15 and Si-based
transistors,16 the SO coupling constants typically range from
10−10 to 10−9 eV cm. It is important to mention that by ap-
plying an external bias across the quantum well, it is possible
to manipulate the magnitude of � in InGaAs/ InAlAs-based17

and GaAs/AlAs-based18–20 systems and even change its sign
by doping.21 In the asymmetric Si/Si1−xGex quantum wells
investigated in Refs. 22 and 23, where the Dresselhaus term
is absent due to the unit cell inversion symmetry and the
band gap is relatively large, the doping-induced SO coupling
is three orders of magnitude weaker than in zinc-blende
systems.24

The SO coupling not only provides an ability to manipu-
late spins with an electric field, and thus, hopefully, to design
a spin transistor,25 but also leads to spin relaxation. The
Dyakonov-Perel’ mechanism,26 which requires random scat-
tering of electrons by impurities and/or phonons, describes
the spin relaxation of nonconfined electrons in the bulk and
in two-dimensional �2D� structures where the electron mo-
mentum k is a relatively well-defined quantum number. Here
the orientation of the spin precession axis in the SO field

ĤR+ ĤD changes randomly through scattering events. The
spin ��DP� and momentum relaxation rates are inversely pro-
portional to each other in this case. The resulting spin relax-
ation rate is �DP��2k2�, with � being the momentum relax-
ation time, and � depends on �D

�001� and �R. The spin
relaxation can also arise from the random paths of electrons
in regular systems of antidots27 and the tunneling of holes in
arrays of Si/Ge QDs.28 Various mechanisms of SO coupling
and spin relaxation were reviewed recently in Ref. 29.

For this reason it is necessary to understand the limits to
the abilities to manipulate the electron spins in QDs, where,
due to the localization, the electron momentum is not a good
quantum number, and thus the spin dynamics,30 and hence
the spin relaxation, require a more sophisticated consider-
ation. A possible “admixing” mechanism of the spin relax-
ation in QDs arises since SO coupling mixes the electron
states with opposite spins, and, therefore, can cause spin-flip
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transitions by the emission a phonon.31–34 This effect is a
manifestation of an effective spin-phonon coupling caused
by the SO interaction. It has been shown, however, that other
mechanisms can be important for the spin relaxation. For
example, the interaction of the electron spin with the spins of
nuclei in GaAs QDs can lead to spin relaxation even if no
SO coupling in the Rashba or Dresselhaus form is present.35

This interaction limits the maximal spin relaxation time. In
Si-based QDs the spin relaxation can arise due to the modu-
lation of the electron g factor by phonons.36 However, theo-
retically considered37–39 and recently observed22,23 Rashba-
and Dresselhaus-type SO coupling in 2D Si systems can lead
to a more conventional admixing mechanism of the spin re-
laxation there. We note here that the randomness in SO cou-
pling leads to a Gaussian rather than to an exponential decay
of the spin polarization40 as well as to a serious limitation of
the operational modes of the proposed spin transistor
devices.41

Thus, the possibility to manipulate the spin states depends
on the SO coupling strength, which, therefore, plays both a
positive and negative role in the spin dynamics of QDs. A
solution to this dilemma can be found in the ability to change
the strength of the SO coupling by switching it on and off
when the desired spin states are produced and preserved,
respectively. For example, the effects of the structural asym-
metry of a quantum well can be strongly reduced17,21 and/or
the Rashba and the Dresselhaus terms can be effectively
compensated by applying an external bias.42 If realized ex-
perimentally, the suggestion of Ref. 42 is expected to open a
route for larger �up to 100 �m� size spintronic devices.41

Here we concentrate on the effect of random SO coupling
on spin relaxation in QDs arising in systems where the arti-
ficial asymmetry and, in turn, the Rashba-type SO coupling
is produced by one-sided doping. The randomness of the SO
coupling in our model arises due to fluctuations in the dopant
concentration. Because of the randomness, the SO coupling
cannot be completely compensated by applying an external
bias since the bias is uniform as a function of the in-plane
coordinate. We show that even when the bias removes the
regular part of the SO coupling, the spin relaxation rate is
still finite due to the residual random SO coupling. This ef-
fect limits a possible decrease of the spin relaxation rate to
two orders of magnitude at most. As another example of the
role of inhomogeneous SO coupling in QDs we note its in-
fluence on the localization effects43 and on spin dynamics of
electrons in quantum rings interacting with the surrounding
nuclei.44

This paper is organized as follows. Section II presents a
model of the random SO coupling in two-dimensional struc-
tures and provides us with the basis for the calculations for
QDs. In the third section we present a theory of spin relax-
ation in QDs with random SO coupling, emphasizing
InGaAs-like structures. A summary of the results and a dis-
cussion of possible extensions of this work are given in the
conclusions.

II. UNIFORM AND RANDOM SO COUPLING

In 2D systems where SO coupling arises due to one-sided
doping, the �R parameter cannot be considered as a constant

in space since fluctuations of the concentration of the dopant
cause its randomness. For doped Si and Ge bulk crystals the
importance of randomness of the SO coupling was first un-
derstood by Mel’nikov and Rashba.45 Below we consider the
dopant fluctuation-induced Rashba field in lateral QDs, cal-
culate the corresponding spin relaxation rate, and show that
for applications the randomness imposes important restric-
tions on the minimum spin-flip rate.

A structure consisting of a 2D channel where the QDs are
formed and a narrow dopant layer with a 2D concentration
n�r� of dopants with charge �e� is considered, with r
= �rx ,ry� being the 2D in-plane radius vector. As the factor
that determines the local strength of the SO coupling, we
consider the z component of the electric field of the dopant
ions Ez��� at a point with 2D coordinate � in the well sym-
metry plane. We assume that the SO coupling is a linear
function of Ez��� with �R���=�SO�e�Ez���, where �SO is a
system-dependent parameter that includes the influence of
the electric field on the polarization of the electron wave
function in a quantum well.48,49 The z component of the Cou-
lomb field of the dopant ions is given by

Ez��� =
�e�
�
� n�r�f��,r�d2r , �1�

where � is the dielectric constant. The integration is per-
formed over the dopant layer. The function f�� ,r� has the
form

f��,r� =
z0

��� − r�2 + z0
2�3/2 . �2�

Here �= ��x ,�y� is a two-dimensional vector characterizing
the electron positions in the conducting layer. We assume
that the correlation function of the dopant concentration is
“white noise” in the form

	�n�r1� − n̄��n�r2� − n̄�
 = n̄	�r1 − r2� . �3�

Here n̄= 	n�r�
, and 	¯
 stands for the average. The fluctua-
tions are taken to obey Gaussian statistics, as is commonly
considered in the theory of doped semiconductors.46 With the
increase of the distance between the layers, the fluctuations
of �R��� become smaller and smoother. The total
asymmetry-induced Rashba parameter is a sum of a regular
average 	�
a and a random term comprising the zero mean
�-independent contribution:

�R��� = 	�
0 + �rnd��� , �4�

with 	�
0=2
�SOn̄e2 /�. For the 	�z−z0� doping considered
here the magnitude of the random term is given by �	�rnd

2 

=�SOe2�
n̄ /�z0.38 By comparing this result with 	�
0 one
concludes that randomness of the SO coupling becomes im-
portant when �	�rnd

2 
�	�
0, that is, at n̄z0
2�0.1, which is a

typical parameter value for zinc-blende quantum wells.50,51

We assume that by applying an external bias V across the QD
plane the mean asymmetry-induced term 	�
a is decreasing
as 	�
a= 	�
0�Vc−V� /Vc and that a critical bias Vc, which is
of the order of a few V olts,17,21 fully compensates the mean
SO coupling.
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The Hamiltonian of the coordinate-dependent SO cou-
pling has to be written in the symmetrized Hermitian form

ĤR =
1

2
��x�k̂y,�R��� − �y�k̂x,�R���� , �5�

where �k̂i ,�R��� stands for the anticommutator.
Quantitatively, the spatial behavior of �R��� is character-

ized by the correlation function F����̃12�, where �̃12

���1−�2� /z0, of the random Rashba parameter determined
by

	�R��1��R��2�
 = 	�rnd
2 
F����̃12� . �6�

For the Gaussian fluctuations �see, for example Refs. 37 and
46�, the correlation function in Eq. �6� necessary for describ-
ing spin relaxation of semiclassically moving itinerant
electrons37 is

F����̃12� =
2



� 1

�r2 + 1�3/2��r − �̃12�2 + 1�3/2d2r . �7�

For the following investigations of the spatially random
SO coupling in quantum systems47 described by the Hamil-
tonian in Eq. �5� we need additional correlation functions of
the random Rashba field and its derivatives, namely �i , j are
the Cartesian indices x ,y�,

��R��1�
��R��2�

��2
�i� � � 	�rnd

2 

F��i

��̃12�

z0
,

� ��R��1�
��1

�i� �R��2�� � 	�rnd
2 


F�i�
��̃12�

z0
,

� ��R��1�
��1

�i�
��R��2�

��2
�j� � � 	�rnd

2 

F�i�j

��̃12�

z0
2 . �8�

The dimensionless correlators can be calculated, for ex-
ample, as follows:

F��x
��̃12� =

6



� rx

�r2 + 1�5/2��r − �̃12�2 + 1�3/2d2r ,

F�y�x
��̃12� =

18



� ry�r − �̃12�x

�r2 + 1�5/2��r − �̃12�2 + 1�5/2d2r . �9�

Other components of the correlation functions can be ob-
tained from x↔y permutations. We mention two important
properties of the correlators concerning their behavior at
small and large distances. The first property is that F��i

-type
correlators vanish at �1=�2. The second property is the fast
decay of the long-distance asymptotic of the correlators
given, for example, by

F����12 � 1� �
1

�̃12
3 ,

F��x
��12 � 1� �

n12
x

�̃12
4 ,

F�x�y
��12 � 1� �

n12
x n12

y

�̃12
5 , �10�

with the unit vector n12= �̃12/ �̃12. The correlation functions
shown in Fig. 1 decay at �12�1, and therefore establish a
general spatial nanoscale for the lateral and the z-axis direc-
tions.

In zinc-blende-based structures the Dresselhaus SO term
arising from the unit cell inversion asymmetry has to be
added to the Rashba term. In the �001� structures the cou-
pling parameter �D

�001�=�c�
 /w�2, where �c is the bulk
Dresselhaus coupling constant ��25 eV Å3 in GaAs and
InAs �Ref. 51��, and w is the quantum well width. We con-
sider below a model where the random contribution to the
Rashba coupling 	�rnd

2 
 is much larger than ��D
�001��2, which is

possible for sufficiently broad quantum wells, and, therefore,

neglect the ĤD
�001� term in the calculation procedure and sub-

sequently discuss the role of this term in relation to our re-
sults.

Another possibility is provided by �011� QWs, where the
Dresselhaus term8 has the form

HD
�011� = �D

�011�ky�z�1 − �ky
2 − 2kx

2�w2
2� . �11�

Here the z axis is perpendicular to the QW plane and the

in-plane axes are x= �100� and y= �01̄1�, and �D
�011�

=�c�
 /w�2 /2. The HD
�011� coupling proportional to �z does

not lead to electron spin flip, and, therefore, the main contri-
bution to the spin relaxation rate comes from the random-
ness.

The strength of the Dresselhaus coupling can be consid-
erably decreased by the strain induced in QWs by a mis-
match in the parental lattices, which, therefore, can decrease
the contribution of the Dresselhaus terms in the spin relax-
ation rate in �001� structures.52

III. LONGITUDINAL SPIN RELAXATION RATE

First, we briefly review the influence of the random SO
coupling on the spin relaxation of nonconfined electrons in
quantum wells. The spin precession rate and direction at a

FIG. 1. Correlation functions of the random SO coupling param-
eter �R��� and its derivatives: F����̃12� �solid line�, F��x

��̃12�
�dashed line�, F�x�y

��̃12� �dash-dotted line�; �̃12 is parallel to the
�110� axis.
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point � are determined by the random local coupling �R���.
As a result, the spin precession is random even for a carrier
moving straightforwardly and the total spin of the electron
ensemble relaxes even if the regular term 	�
a vanishes as a
result of applying either an external bias or equivalent dop-
ing at the other side of the conducting layer.37

Now we consider a single-electron QD produced by ap-
plying a lateral bias to a 2D electron gas �see Fig. 2� leading
to electron localization. From the experimental point of view,
we shall concentrate on In0.5Ga0.5As-like systems, where the
ability to manipulate the SO coupling by a moderate bias
applied across the structure has been clearly proven.17,21

The spectrum of an electron in the QD, En,�z
, is deter-

mined both by the confinement potential m*�2�2 /2 �Fig. 2
shows two quantum dots on the random Rashba SO coupling
background� and the uniform static magnetic field B � z with
the axial gauge A= �B ,r� /2, respectively, leading to

En,�z
= − �z

�2

2m*lB
2 +

�2

2m*a2 �1 + ��z� + 2n� ±
g�B

2
B , �12�

where m* is the lateral electron effective mass, �z is the z
component of the orbital momentum, n is the radial quantum
number, and the corresponding wave function

n�z
����s
 =

1
�2
a

exp�− �2/4a2�Ln�z
��/a�ei�z��s
 . �13�

Here � is the azimuthal angle, the magnetic length lB

=��c / �e�B, Ln�z
�� /a� is a Laguerre polynomial, and the spa-

tial scale a= l0lB�l0
4+ lB

4�−1/4, with l0=�� /2m*� being the “os-
cillator” length in the absence of a magnetic field due to the
lateral confinement forming the QD, �� is the separation of
the energy levels at B=0, and �s
= �↑ 
 , �↓ 
 is the spin state.
With the increase of magnetic field, En,�z

changes from the
spectrum of a single-electron QD to the spectrum of a free
electron in a magnetic field.

We consider below the QD in only the orbital ground state
with the function

00��� =
1

�2
a
exp�− �2/4a2� . �14�

The spin-flip transitions such as 00����↑ 
→00����↓ � with-
out change of the orbital quantum numbers occur at a fre-

quency �= �g��BB /� and the transition energy is released to
an acoustic phonon with momentum q= �g��BB /c��, where
c� is the sound velocity for the given phonon branch � with
�= � and �=� for the longitudinal and the transverse modes,
respectively. The electron-phonon coupling Hamiltonian for

acoustic phonons Ĥe-ph has the form

Ĥe-ph = �
�

�Ĥe-ph,P
��� + Ĥe-ph,D

��� � ,

arising due to the piezoeffect �Ĥe-ph,P
��� � and due to the defor-

mation potential �Ĥe-ph,D�. These terms have the form �as-
suming the crystal volume equal to 1�

Ĥe-ph,P
��� = �2


�14

��

e

�
�
q,e

1
�qc�

�exeyd
z + ezexd

y + eyezd
x�

��e−iq·rb̂�,q,e
† + H.c.� ,

Ĥe-ph,D
��� =

D��

�2�c�

�
q,e

�q�d · e��e−iq·rb̂�,q,e
† + H.c.� , �15�

where the summation is taken over the phonon momenta q
and polarization e. The propagation direction d=q /q, �14 is
the strength of the piezointeraction, D is the deformation
potential, � is the crystal density, � is the dielectric constant,

and b̂�,q,e
† is the phonon creation operator. Ĥe-ph,D

��� is nonzero
for the longitudinal phonon mode �d·e=1� only. At finite
temperature, the application of Fermi’s golden rule yields the
mean value of the spin relaxation rate 	�1
�	T1

−1
, where T1

is the relaxation time, with respect to the spin flip as

	�1
 =
2


�
�nB + 1��

�

�ph
�����g��BB�	�	s̃��̃gr����Ĥe-ph

��� �̃gr���

��s̃
�2
d,e, �16�

where nB= �exp��g��BB /T�−1�−1 is the Bose-Einstein pho-
non occupation factor. We consider below only the zero-
temperature case for simplicity. The phonon density of states
�ph

������=�2 /2
2��c��3, and 	¯
d,e stands for the average
over the phonon directions and polarizations. The spin-flip

matrix element of Ĥe-ph is nonzero due to the admixing of the

upper n�z
����s
 states to the ground state �̃gr���s̃
, where �s̃


shows that spin is an approximate quantum number due to
the SO coupling. Here we have neglected the spin splitting of
the states g�BB in comparison to the energy corresponding
to the orbital degrees of freedom, ��n�z

. The approximation
is a reasonable one despite the large g factor in In0.5Ga0.5As
�g�4.0� quantum wells, since a small effective mass �m*

=0.04m0� leads to g�BB /��n�z
�0.2. We mention here that

due to the random coordinate dependence of the Hamiltonian

ĤR, there are no symmetry-related selection rules for n and

�z in the matrix elements 	s��n�z
����ĤR�00����s
 that are

responsible for the formation of the spin relaxation rate, in
contrast to the case of regular SO coupling.32 Since the

Hamiltonians Ĥe-ph
��� and Ĥe-ph,D

��� have drastically different

FIG. 2. �Color online� Two quantum dots on a template with a
random Rashba SO coupling. The arrows show schematically the
spin orientations. The gates form the confining in-plane potential.
The scale on the right represents the Rashba parameter in units of
10−9 eV cm, 	�
=0.5�10−9 eV cm, n̄=2.5�1011 cm−2, and z0

=10 nm.
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phonon momentum dependencies, the relative contribution
of the deformation potential mechanism increases with an
increase in the magnetic field.53 Due to the large g factor, this
mechanism already dominates at B=0.1 T.

By using the approach suggested in Ref. 31 and taking
into account the Gaussian character of the fluctuations, after
some algebraic transformations we obtain for the deforma-
tion potential contribution using the notation 0��0,0� ,1
��n1 ,�1

z� ,2��n2 ,�2
z�

	�1
 =
�g�B�5

4�4

D2

�c�
5B5�

1,2

1

�n1,�1
z

2
�n2,�2

z
2 �	K−�1�K−

*�2�


�	g��0;1�g�
*�0;2�
d + 	K−�1�K+

*�2�
	g��0;1�g�
*�2;0�
d

+ 	K+�1�K−
*�2�
	g��1;0�g�

*�0;2�
d + 	K+�1�K+
*�2�


�	g��1;0�g�
*�2;0�
d� . �17�

The correlators are given by

	K−�1�K−
*�2�
 = Kyy + Kxx − iKxy + iKyx,

	K+�1�K+
*�2�
 = Kyy + Kxx + iKxy − iKyx,

	K−�1�K+
*�2�
 = Kyy − Kxx − iKxy − iKyx,

	K+�1�K−
*�2�
 = Kyy − Kxx + iKxy + iKyx,

with the matrix elements averaged over the disorder:

Kji = 	�rnd
2 
 � n2�2

z��2�n1�1
z��1� � �F����12�P̄

ˆ
j
�2�P̂i

�1� +
i

z0
�F�j�

��12�P̂i
�1� − F��i

��12�P̄
ˆ

j
�1�� +

F�j�i
��12�

z0
2 �

� 00��2�00��1�d2�1d2�2 + 	�
a
2� n2�2

z��2�n1�1
z��1�P̄

ˆ
j
�2�P̂i

�1�00��2�00��1�d2�1d2�2. �18�

The operators P̂i
�1� , P̂j

�2� in Eq. �18� are defined according to

Px
�1� = −

�1y

lB
2 − 2i

�

��1x
, Py

�1� =
�1x

lB
2 − 2i

�

��1y
, �19�

and act on the wave functions 00��1� and 00��2�, respec-
tively.

The matrix elements g��n ,�z ;0� of the phonon emission
due to electron-phonon coupling are

g��n,�z;0� =� 0
2�z�n,�z

* ���eiq�·r00���d3r , �20�

where 0�z� corresponds to the z-axis quantization and is
assumed here for simplicity to be the rigid-wall wave func-
tion 0�z�=�2/w sin�
z /w�. Since we consider broad quan-
tum wells, where the size quantization energy is relatively

small and the electron wave function weakly penetrates into
the interfaces, the rigid-wall boundary conditions are justi-
fied.

We now consider two applications of the model described
above. First, we consider the effect of the fully compensated
Rashba coupling �V=Vc� such that we are left only with the
random contribution �rnd��� with 	�rnd���
=0. Figure 3 pre-
sents the results of numerical calculations �including a small
contribution of the piezoeffect interaction� of spin relaxation
rate for In0.5Ga0.5As quantum dots as a function of the mag-
netic field B using Eqs. �12�–�18� assuming D=7.5 eV,54

�14=−0.1 C m−2,55 and sound velocities c� =4.7�105 cm/s
and c�=2.8�105 cm/s for the longitudinal and transverse
phonons, respectively.55 As can be seen, the spin-flip rate
increases very rapidly with the applied field, analogous to the
case of regular SO coupling.31,53

Second, we investigate the bias dependence of the spin
relaxation rate 	�1�V�
 corresponding to the linear depen-
dence of the mean Rashba parameter 	�
a on the applied
bias. In this case, it follows from Eq. �18�, that this depen-
dence can be presented in the form

FIG. 3. Logarithm of the spin relaxation rate as a function of
applied magnetic field for different z0 in the case of total compen-
sation of the regular SO coupling by an external bias �V=Vc�; z0

=10 nm �solid line�, z0=20 nm �dashed line�, and l0=15 nm. The
relationship between the doping n̄ and Rashba constant 	�
 corre-
sponds to the experimental data of Ref. 21.
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	�1�0�

	�1�V�


=
	�1�0�


	�1�Vc�
 + �	�1�0�
 − 	�1�Vc�
���Vc − V�/Vc�2 .

�21�

Figure 4 shows the 	�1�0�
 / 	�1�V�
 ratio for the two struc-
tures presented in Fig. 3. As can be seen in Fig. 4, the result-
ing 	�1�Vc�
 �when there is full compensation �	�
a=0�� for
z0=10 nm is approximately 60 times smaller than 	�1�0�
.
The residual relaxation rate decreases rapidly with the in-
crease of the dopant-plane layer distance, corresponding to a
decrease in the random fluctuations of the SO coupling.

We note that the randomness of �rnd��� leads to an inho-
mogeneous broadening ��=Š��1− 	�1
�2

‹

1/2 of the spin-flip
transitions making the relaxation rate dependent on the QD
position. For the Gaussian fluctuations the broadening ��

becomes of the order of the mean value of �1 at full com-
pensation �V=Vc�. The effect of inhomogeneous broadening
can be seen clearly when the lateral confinement of the wave
function a is considerably smaller than the spatial scale of
the fluctuations of the random potential z0. In this case each
QD in the ensemble interacts mostly with the local Rashba
field ���0�, where �0 is the position of the QD, which in this
case varies weakly on the spatial scale of a. In the case of
full compensation, the relaxation rate for each QD is propor-
tional to the local �rnd

2 ��0� leading to an inhomogeneous
width of the transition of the order of 	�rnd

2 
, being, therefore,
of the order of 	�1
 itself. Experimentally, this situation can
be realized, for example, in strong magnetic fields B�10 T,
where the magnetic length lB�10 nm. In the a�z0 limit the
ratio of the relaxation rates, which can be found from the
discussion following Eq. �4�, becomes 	�1�Vc�
 / 	�1�0�

= 	�rnd

2 
 / 	�
0
2=1/8
n̄z0

2.
We now discuss the relative roles of the random Rashba

and Dresselhaus SO interactions since both effects con-
tribute to the relaxation rate at V=Vc. In an In0.5Ga0.5As
quantum dot of the width w=15 nm, as presented in Figs. 3
and 4, the Dresselhaus term �D

�001� is approximately 1.25
�10−10 eV cm. At the same time, the one-side doping with
n̄=8�1011 cm−2 leads to 	�
0�10−9 eV cm, giving in this

case 	�1�0�
 / 	�1�Vc�
�60. Therefore, the Dresselhaus and
the random Rashba terms give similar contributions to the
spin relaxation under these conditions. The ratio of these
contributions depends on the applied magnetic field, and nu-
merical analysis shows that the random part can dominate
over the regular one. For �011� structures the random part
gives the major contribution.

IV. CONCLUSIONS

In this analysis we have found that due to fluctuations of
the SO coupling, the spin relaxation in QDs does not vanish
even in the case of full compensation of the mean value of
the SO coupling by an external bias. The residual spin relax-
ation rate is of the order of a few percent of the spin relax-
ation rate in the case of a noncompensated field and strongly
depends on the system properties, the size of the dot, and the
applied magnetic field. In the case of full compensation, the
inhomogeneous linewidth of the spin-flip transition is of the
order of the mean line frequency, and, therefore, one has a
broad distribution of the relaxation rates over the ensemble
of QDs. The effect of the random Rashba SO coupling is
comparable to or larger than the effect of the Dresselhaus
coupling. The ratio of the contributions of these SO coupling
mechanisms to the spin relaxation rate is compound and
structure dependent, and shows that the importance of the
randomness of the Rashba SO coupling.

We concentrated here on the longitudinal spin relaxation
time T1=�1

−1 that is related to the energy release to the
acoustic phonon bath in the spin-flip process. However, the
spin ensemble dephasing time T2, describing the motion of
the spin component perpendicular to the magnetic field, and
which may not be related to the energy transfer from the spin
system to the lattice, is an important characteristic of a QD
ensemble. As was recently found theoretically, the physics
behind these two relaxation processes in systems of QDs
coupled to phonons is similar.56 Therefore, the randomness
of the SO coupling considered above also influences the
dephasing time T2. This is an interesting problem which will
be investigated separately. The role of the magnetic field
parallel to the plane57 of the QD would be another extension
of the results presented here.

In this paper we have discussed zinc-blende quantum dots
only. However, some remarks concerning Si-based structures
need to be given. If the admixing mechanism of spin relax-
ation in these structures becomes important, the arguments
discussed above concerning the role of the randomness could
be applied there to an even larger extent due to the absence
of the Dresselhaus term. A quantitative analysis of this prob-
lem necessitates a comparison of the effectiveness of differ-
ent mechanisms of spin relaxation in Si-based QDs, which is
a separate interesting issue.
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FIG. 4. The ratio of longitudinal spin relaxation rates
	�1�0�
 / 	�1�V�
 as a function of the applied bias that is gradually
compensating the SO coupling. The applied magnetic field B
=1.5 T.
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