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We study theoretically and experimentally the electron-drag effect in silicon metal-oxide-semiconductor
field-effect transistors with thin oxide layers. According to a former theoretical prediction the drag effect had
to be significantly enhanced by the plasma resonance. However, recent experiments of Solomon and Yang did
not confirm this prediction. We show that under the experimental conditions �the doping of the gate 1019 cm−3

and more� and room temperature the decay of plasma waves appears to be large and smears the resonance. The
electron scattering in the gate is so strong that the energy uncertainty is larger than the temperature and regular
microscopic transport theory for gate electrons cannot be used. For the calculation of the drag effect we make
use of the method of correlators and describe transport in the gate with the help of phenomenological param-
eters. This approach gives good agreement with the experiment.
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I. INTRODUCTION

The drag effect was first observed by Solomon et al.1

between two-dimensional �2D� and 3D electron gases and
Gramila et al.2 between two 2D electron gases. Since that
time, the drag effect has been measured between two 2D
electron gases,3–6 between two 2D hole gases,7,8 and between
2D electron and hole gases.9,10 There were also a number of
measurements of the drag between two 2D electron gases in
magnetic field.10,11 Recently it became clear that the effect is
important not only for the study of the physics of interacting
electron layers but also for applications.

The physical origin of the drag effect is the interaction
between electrons in different layers that leads to electron
momentum transfer between the layers.12,13 Flensberg and
Hu noticed that the electron-electron scattering probability
proportional to V2�q� /��� ,q�, where V�q� is bare Coulomb
interaction between different layers and ��� ,q� is the inter-
layer dielectric function, could be very large near plasmon
resonances where ��� ,q� is zero.14 The corresponding en-
hancement of the drag effect has been confirmed
experimentally.15,16 Fischetti and Laux calculated the channel
electron mobility in Si metal-oxide-semiconductor �MOS�
devices, taking into account scattering of channel electrons
by gate electrons. They found significant degradation of the
mobility for oxide thicknesses below �2–3 nm and ascribed
this degradation to resonant scattering by surface
plasmons17,18 However, in recent experiments Solomon and
Yang did not find any enhancement of the drag effect in Si
MOS devices with thin oxide layers.19 The experimental
value of the channel-gate electron relaxation rate appeared
by about two orders of magnitude smaller than calculated in
Ref. 18.

The purpose of the present paper is to point out the physi-
cal reason for this discrepancy and to demonstrate that an
adequate description of the electron gas leads to a correct
estimate of the drag effect.

To understand the physical reason for the discrepancy it is
necessary to check the applicability of the theoretical results
to the experiment. Strong plasma resonance leading to a sig-
nificant enhancement of the drag effect implies a weak decay
of plasma waves. In other words, the imaginary part of the
plasma frequency ��q� is small, Im ��q� / ���q���1. This
condition is met in an electron gas with weak scattering. The
situation in Si MOS devices typically is quite different. Spe-
cifically, in the experiment of Solomon and Yang19 the gate
was polycrystalline with the size of grains agr�5 nm. It was
doped above 1019 cm−3, and measurements were performed
at room temperature. At this doping and temperature the
electron mobility in crystalline Si, �cr�80 cm2/ �V s�, and is
very weakly dependent on doping.20,21 This corresponds to
the relaxation time �g=1.5�10−14 s, so that the energy un-
certainty � /�g=44 meV is larger than the temperature and of
the order or larger than the Fermi energy �for three samples
of four, EF varied from 17 meV to 48 meV and in the fourth
sample it was around 98 meV�. The same relation can be
written as kFlg	1 where kF is the Fermi wave vector and lg
is the mean free path. That is, even if the scattering is elastic
or quasielastic, it changes the electron wave functions so
dramatically that the wave vector uncertainty is larger or of
the order of the wave vector itself, and the gate electron
system cannot be considered as a free electron gas. The scat-
tering by grain boundaries can only increase the wave vector
uncertainty. That is, results obtained in the gas
approximation14,17,18 are not applicable in this case.

Contrary to this, the gas approximation is valid for chan-
nel electrons. Therefore the dissipation of surface plasmons
originated from the channel is small. But this situation
changes at small oxide thicknesses—i.e., exactly at region of
parameters when plasmons can substantially affect the drag.
If the separation between the channel and gate is of the order
of or smaller than the characteristic plasmon wavelength, the
whole plasma spectrum is strongly modified by the interac-
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tion between gate and channel electrons. In this case the
condition Im ��q� / ���q���1 is not met for any branch of the
spectrum and the plasmon enhancement of the drag effect
does not take place.

Unfortunately, for the calculation of the drag effect in Si
MOS devices we cannot make use of existing theoretical
results. First calculations of the drag effect used the Boltz-
mann approximation.22–25 Later the transconductivity and
scattering rate between electron systems were expressed in
the susceptibilities of the systems.9,26–32 Although for further
calculations the Coulomb interaction was taken sometimes
beyond the random phase approximation �RPA�,33,34 in many
works the susceptibilities were calculated still in the gas
approximation.9,26–28,34,35 For the consideration of strong im-
purity scattering the susceptibilities were calculated in the
diffusion regime,29–32 which is also not valid when � /� is of
the order of the Fermi energy.

To circumvent this problem and to avoid uncontrollable
approximations we use a phenomenological approach. First
we obtain an expression for the scattering rate of channel
electrons by gate electrons in terms of the gate response
function with the help of the method of correlators.36 Then
we calculate the response function in terms of the bulk phe-
nomenological parameters—the conductivity and diffusion
coefficients—which are measurable experimentally. The re-
sult of this approach appeared to be rather successful. We
obtained the magnitude of the drag effect and its behavior
versus the channel concentration close to the experiment.

It is necessary to emphasize that good agreement between
the theory and experiment appeared in spite of some inaccu-
racy of the transport description in the gate. Inaccuracies are
unavoidable due to lack of the transport theory in polycrys-
talline Si. The grain boundary trapping model developed for
polycrystalline films contains adjustable parameters depend-
ing of details of the technology.37 Also this model reasonably
describes only dc mobility while for the calculation of
electron-electron scattering it is necessary to know also the
dispersion of the mobility when the transferred wave vector
changes from values larger than the inverse size of the grains
1/agr to values smaller than 1/agr. The development of an
adequate theory of the polycrystalline films is beyond the
scope of the present work, and in our calculation we intro-
duced mobility dispersion phenomenologically.

The paper is organized in the following way. In the next
section we calculate the plasmon spectrum in a simplified
model of a field-effect transistor �FET� and show that it is
quite different in the cases of free and strongly scattered
electrons in the gate. In Sec. III we calculate the scattering
rate of channel electrons by the gate, and in Sec. IV we
compare the theoretical and experimental results.

II. PLASMA SPECTRUM IN FIELD EFFECT
TRANSISTORS

In this section we calculate the plasma spectrum in a sim-
plified model of the field-effect transistor. Our purpose is to
study the dependence of the spectrum on the separation be-
tween the channel and gate and modification of the spectrum
when electron scattering in the gate becomes strong.

We consider a system that consists of a two-dimensional
conducting layer z=a �channel� and a conducting half-space
z
0 �gate� separated by an insulator. For simplicity we as-
sume �in this section only� that the dielectric constant � is the
same in all conductors and insulators �0
z
a and z�a�.
We are interested in the long-wavelength part of the spec-
trum and use the hydrodynamic approximation. That is, the
dynamics of the 2D electron gas is described by the equa-
tions

�N

�t
+ N0��V = 0, �2.1a�

m
�V

�t
= − ���e�r�,a� +

d�c

dN0
N� , �2.1b�

where N0 and N are the equilibrium and nonequilibrium
sheet electron concentrations, V is the electron velocity, �c is
the chemical potential, �r� ,z� is the electric potential, m is
the electron mass, and r� is the in-plane coordinate.

For any gate model its response can be presented by the
boundary conditions for the potential at the interface be-
tween the gate and insulator. After the Fourier transformation
with respect to time and r� this condition has the form

	dq

dz
	

z=0
= q
1 + ���,q��q�0� . �2.2�

Here ��� ,q� is the response of the gate electron system that
depends on the frequency � and wave vector q. If the gate is
insulating, then ��� ,q�=0.

The electric potential satisfies the Laplace equations in the
regions 0
z
a and z�a. It is continuous at z=a but its
derivatives with respect to z satisfy the condition

	dq

dz
	

z=a+0
− 	dq

dz
	

z=a−0
= −

4�e

�
Nq. �2.3�

The solution of Eqs. �2.1�–�2.3� together with the Laplace
equation leads to the dispersion relation

��2 − gq −
gq2

qs
�
2 + ���,q�� = − gq���,q�e−2qa,

�2.4�

where

g =
2�e2N0

�m
, qs =

2�e2

�

dN0

d�c
. �2.5�

If the plasmon wavelength is much shorter than the sepa-
ration between the channel and gate, qa�1, then Eq. �2.4�
breaks down into the dispersion relation for surface waves
and gate waves,

�2 = gq +
gq2

qs
, �2.6a�

���,q� = − 2. �2.6b�

For longer wavelengths, qa	1, the surface and gate
waves are strongly intermixed and to study the spectrum in
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this case we consider two different models of the gate.

A. Free electron gas

In this case the hydrodynamic approximation leads to the
equations

�2 = −
4�e

�
n , �2.7a�

�n

�t
+ n0 � v = 0, �2.7b�

m
�v
�t

= − ��e +
d�g

dn0
n� , �2.7c�

with the boundary condition

vz�r�,0� = 0. �2.8�

Here n0 is the equilibrium electron concentrations, n is the
deviation of the concentration from n0, v is the electron ve-
locity, and �g is the chemical potential. The solution of these
equations results in

���,q� =
�1 + RD

2 q2 − �2/�p
2�1/2 − qRD

qRD − ��2/�p
2��1 + RD

2 q2 − �2/�p
2�1/2 , �2.9�

where

RD = � �

4�e2

d�g

dn0
�1/2

, �p = �4�e2n0

�m
�1/2

�2.10�

are the Debye screening radius and bulk plasma frequency,
respectively.

For small values of the wave vector, qRD�1 and gq
��p

2, Eqs. �2.4� and �2.9� lead to the following two branches
of spectrum:

�2 =
�p

2

2
+ gqe−2qa, �2.11a�

�2 = gq�1 − e−2qa +
q

qs
� . �2.11b�

The first branch is the gate wave with the limit frequency
�p /�2. The second branch behaves as an acoustic wave,
�=q�2ga�1+1/2aqs�, when the wavelength is larger than
the separation between the gate and channel, qa�1, and
becomes the channel surface wave, �=�gq�1+q /qs�, in the
opposite case qa�1. This spectrum has been obtained by
Fischetti.18

B. Strong electron scattering

In the case of strong scattering the electron transport in
the gate can be described phenomenologically,

�2 = −
4�e

�
n , �2.12a�

e
�n

�t
+ �j = 0, �2.12b�

j = − � � � +
1

e

d�

dn0
n� , �2.12c�

where � is the conductivity and electric current j satisfies the
boundary condition

jz�r�,0� = 0. �2.13�

The solution of Eqs. �2.12� and �2.13� results in

���,q� =
�1 + q2RD

2 − i��M − qRD

qRD − i��M
�1 + q2RD

2 − i��M

, �2.14�

where

�M =
�

4��
�2.15�

is the Maxwell relaxation time.
The spectrum is a complicated mixture of bulk waves and

surface waves. Nonzero Im ��� ,q� leads to a decay of all
plasma waves. The decay of surface waves is suppressed
only at the short-wavelength part of the spectrum, qa�1,
when the interaction between 2D gas and bulk electrons be-
comes small; see Eq. �2.6�.

To make the picture more clear in the other case we con-
sider wave vectors so small that qRD�1 and q /qs�1. Then
Eqs. �2.4� and �2.14� give

��2 − gq��2 +
i

��M
� +

igq

��M
e−2qa = 0. �2.16�

One of the branches of this spectrum is the charge spreading
in the gate. The corresponding frequency �=−i /2�M at very
small q�gq�1� and very large q�qa�1�, and it has a small
dispersion in intermediate q. The other branch becomes the
surface wave when qa�1 and decaying acoustic wave when
qa�1. When q goes to zero—i.e., qa�1 and ��M �1—its
dispersion relation becomes

� = ��2ga − g2�M
2 − ig�M�q . �2.17�

In general, the decay of this branch depends on a few
parameters and we estimate it for parameters relevant to the
drag effect. For gate doping ng=1019 cm−3 and dielectric
constant �=11.9 the Maxwell time �M =8�10−15 s. The rel-
evant frequency is determined by the energy transfer in
electron-electron scattering—i.e., temperature. At room tem-
perature ��4�1013 s−1 and ��M �0.3. The relevant wave
vector q is around the transferred wave vector that is of the
order of the channel thermal wave vector �at room tempera-
ture the electron degeneracy in the channel is very weak even
at high sheet concentration�. The electron mass in the chan-
nel is the light electron mass mel=0.19, which gives q
�3.7�106 cm−1. That is, at a�2–3 nm, qa�1 and
Im � /Re ���M

�g /a. At N0=1012 cm−2 we have g=7
�1020 cm/s2, which leads to Im � /Re ��0.4. At higher
channel concentration this ratio is larger.
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That is, we come to the conclusion that it is hardly pos-
sible to expect the plasmon enhancement of the drag effect in
silicon MOSFET’s at room temperature.

III. DRAG IN SILICON MOSFET’s

To develop the theory of the drag effect we consider the
situation when an external source supports an electric current
in the gate and a secondary drag current is induced in the
channel. Then the drag current is controlled by the electron
momentum relaxation time in the channel due to the interac-
tion with the gate, �cg, and the main purpose of this section is
to derive an expression for this relaxation time. In Sec. III A
we obtain an expression for �cg in terms of the linear re-
sponse of the system that comprise the barrier and gate. The
dielectric constants of the barrier and gate are strongly dif-
ferent, which complicates the solution of the electrostatic
problem necessary for the calculation of the response func-
tion. In Sec. III B we present the results of this solution,
which gives an expression of the linear response function in
the polarizability of the channel and gate. With the help of
these expressions we obtain the final expression for the
channel-gate momentum relaxation rate in Sec. III C.

A. Momentum relaxation time in the channel

The conduction band of Si consists of six strongly aniso-
tropic valleys that are characterized by heavy electron mass
meh=0.98 and light electron mass mel=0.19. For two valleys
the axis with the heavy electron mass is directed normally to
the Si/SiO2 interface, and for the other four valleys the mass
in the direction normal to the Si/SiO2 interface is mel. Due to
size quantization in the channel, the valleys with in-plane
heavy electron masses are shifted in energy above the other
two valleys by �E. The acceptor concentration in the sub-
strate in the experiment was nA=4�1017 cm−3. For this nA
and channel concentration nc=1012 cm−2 the variational
calculation38 gives �E=71 meV. For such a high-energy
separation the occupation of the higher valleys is small in
spite of a large density of states there, and we neglect this
occupation. Because of the inaccuracy of the transport de-
scription in the polycrystalline gate that we mentioned in the
Introduction, the corrections coming from the higher valley
occupation are beyond the precision of our calculation. The
in-plane spectrum of the two occupied valleys is isotropic
with effective mass mel.

The electron momentum relaxation time in the channel
due to the interaction with the gate is defined by the relation

�dPc

dt
�

gc
= −

1

�cg
Pc, �3.1�

where

Pc = 4� kfk
dk

�2��2 �3.2�

is the density of the electron momentum in the channel. The
extra factor of 2 in Eq. �3.2� comes from two equivalent
valleys contributing to the total momentum.

The left-hand side of Eq. �3.1� can be calculated with the
help of the collision integral,

� �fk

�t
�

cg
= 
Wk�→kfk��1 − fk� − Wk→k�fk�1 − fk���

dk�

�2��2 ,

�3.3�

Here intervalley transitions are neglected because they re-
quire the transferred wave vector q���2/a0�8
�107 cm−1 where a0=5.43 Å is the Si lattice constant. It is
well known that the momentum transfer between the channel
and gate is suppressed by the factor e−qa in the transition
probability, where a is the thickness of the oxide layer sepa-
rating the gate and channel 
see Refs. 22–25, 28, and 29 and
Eqs. �3.19�, �3.20�, and �3.24� below�. For a�1 nm this fac-
tor is smaller than 3�10−4.

The electron transition probability per unit time from the
state with wave vector k to the state with wave vector k�
meets the detail balance condition

Wk�→k = e�Ek�−Ek�/TWk→k�. �3.4�

Hereafter we assume that the electrons in the gate and chan-
nel have the same temperature T. After the substitution of
Eqs. �3.2� and �3.3� on the left-hand side of Eq. �3.1�, a
couple of substitutions k�k�, and the help of Eq. �3.4� it is
reduced to the form

�dPc

dt
�

gc
= 4 dk

�2��2

dk�

�2��2 �k� − k�fk�1 − fk��Wk→k�.

�3.5�

The distribution function in the channel can be taken in
the drift approximation,

fk = f0�Ek − �kV� � f0�Ek� − �kVf0��Ek� , �3.6�

where f0�E� is the Fermi function. The drift approximation is
justified because a rough estimate for the electron-electron
relaxation time in the channel gives 10−13 s, which is shorter
than the relaxation time due to other scattering mechanisms.
The substitution of Eq. �3.6� into Eq. �3.2� gives

P = ncmelV . �3.7�

The substitution of Eq. �3.6� into Eq. �3.5� leads to

�dPc

dt
�

gc
=

2�2

T
 dk

�2��2

dk�

�2��2 �k� − k�
�kV� − �k�V��f0�Ek�

�
1 − f0�Ek���Wk→k�. �3.8�

Due to the isotropy of the in-plane spectrum, Wk→k� depends
only on k ,k� and the angle between k and k�. Then Eq. �3.8�
can be reduced to the form �3.1� �see the Appendix� where

1

�cg
=

�2

Tmelnc
 dk

�2��2

dk�

�2��2 �k� − k�2f0�Ek�

�
1 − f0�Ek���Wk→k�. �3.9�

Now it is necessary to find the transition probability
Wk→k�.
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There are two main mechanisms of the interaction be-
tween electrons in the channel and electrons in the gate, Cou-
lomb interaction,12,13,22–24,26 and exchange by virtual
phonons.3,26,39 The coupling constant of the phonon ex-
change is smaller, and this mechanism is important in the
cases when the Coulomb interaction is suppressed—e.g., at
the very thick insulator between the channel and gate �the
Coulomb interaction falls off with distance much faster than
the phonon exchange�.26,39 In Si MOS devices with thin ox-
ide layers there is no reason for the suppression of the Cou-
lomb interaction and an estimate made with the help of Ref.
39 shows that the phonon exchange is smaller than the Cou-
lomb interaction by more than two orders of magnitude.

For the derivation of the transition probability we make
use of method of correlators36 that have been applied to the
drag problem by Maslov.24 Channel electrons are scattered
by fluctuations of the electric potential produced by the gate
electrons, and the transition probability can be expressed in
the correlation function of the electric potential,

K�r�1 − r�2,z1,z2,t1 − t2� = Tr
�̂̂�r�1,z1,t1�̂�r�2,z2,t2�� ,

�3.10�

where �̂ is the density matrix, ̂�r� ,z , t� is the operator of the
electric potential, z is the coordinate in the direction normal
to Si/SiO2 interface, and r� is the in-plane coordinate. The
transition probability is connected to the correlation function
by the relation

Wk→k� =
e2

�2K„k� − k,�Ek� − Ek�/�… , �3.11�

where

K�q,�� = dz1 dz2�2�z1��2�z2�

�
−�

�

ei�tdt e−iqr�K�r�,z1,z2,t� , �3.12�

and ��z� is the wave function of the channel electrons.
According to the fluctuation-dissipation theorem, the cor-

relation function of the potential is expressed in the linear
response function that describes the electric potential in-
duced by a perturbation of the electron concentration,

K�q,�� = −
2�

e��/T − 1
Im D��,q� . �3.13�

Substitution of Eqs. �3.11� and �3.13� into Eq. �3.9� leads to

1

�cg
= −

2�e2

Tmelnc
 dk

�2��2

dq

�2��2q2f0�Ek�

�
1 − f0�E�k+q���
Im D��,q�
e��/T − 1

, �3.14�

where ��=E�k+q�−Ek.

B. Linear response function

We consider the geometry when the polysilicon gate oc-
cupies the region z
0, the channel is formed in the crystal-
line Si in the region z�a, and the region 0
z
a is occu-
pied by a SiO2 barrier. The dielectric constant of the Si
substrate �z�a� and gate, �=11.9, is different from the di-
electric constant of the barrier, �1. The linear response func-
tion of the channel in the presence of the gate has to be found
from the solution to the electrostatic problem that includes
the polarizaion of the channel and gate electrons. Following
standard notation we write it in the form

D��,q� =
D0�q�
���,q�

, �3.15�

where D0�q� is the linear response in the channel without
screening by the channel and gate electrons and ��� ,q� is the
dielectric function that comes from the polarizability of the
channel electrons,

F��,q� = −
8�e2

�q
 f0�Ep� − f0�E�p−q��

�� − E�p−q� + Ep + i�

d2p

�2��2 ,

�3.16�

and the gate electrons. The polarizability of the gate is intro-
duced with the help of a boundary condition similar to Eq.
�2.2�, which is modified due to different dielectric constants
in the barrier and gate,

	dq

dz
	

z=0
=

�

�1
q
1 + ���,q��q�0� . �3.17�

Electron scattering in the gate is very strong, and transport
there is described phenomenologically, Sec. II B, which
leads to Eq. �2.14� for ��� ,q�.

As a result,

D0�q� =
2�

�q
d1�q� , �3.18a�

���,q� =

1 + d1�q�F��,q� +
g0�q�
g�q�

�

�1
���,q� + d2�q�F��,q����,q�

1 +
d2�q�
d1�q�

���,q�
, �3.18b�
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where

d1�q� = H�q� + 2��2

�1
2 − 1��2�q�

g�q�
sinh qa , �3.19a�

d2�q� =
g0�q�
g�q�

�

�1
d1�q� − 2�2��q�

g�q�
�

�1
�2

�3.19b�

and

g�q� = �1 +
�

�1
�2

eqa − �1 −
�

�1
�2

e−qa, �3.20a�

g0�q� = �1 +
�

�1
�eqa + �1 −

�

�1
�e−qa. �3.20b�

To calculate the channel form factors H�q� and ��q� we
make use of the Fang-Howard variational function38,40

��z� =�b3

2
�z − a�e−b�z−a�/2, �3.21�

where b= �48�e2mhen
* /��2�1/3, n*=nd+11nc /32, nd=nAzd is

the sheet concentration of the depletion layer, zd

=��Eg /2�e2nA is the width of the depletion layer, and Eg
=1.1 eV is the Si band gap. This gives38

H�q� = 
a

�

e−q�z−z���2�z��2�z��dzdz� =
b�8b2 + 9bq + 3q2�

8�b + q�3 ,

�3.22a�

��q� = 
a

�

e−qz�2�z�dz =
b3

�b + q�3 . �3.22b�

C. Final expression for 1/�cg

In the substitution of Eq. �3.15� into Eq. �3.14� one has to
keep in mind that D0�q� is real and the imaginary part of
1 /��� ,q� comes from two sources: Im F�� ,q� and
Im ��� ,q�. Both Im F�� ,q� and Im ��� ,q� describe real

electron-electron collisions in the channel and gate, respec-
tively. Substitution of the part of Im
1/��� ,q�� proportional
to Im F�� ,q� in Eqs. �3.13� and �3.15� and then into Eqs.
�3.11� and �3.3� gives regular collision integral of the channel
electrons that conserves the total momentum. For this reason
the part of Im
1/��� ,q�� proportional to Im F�� ,q� has to
be omitted in the calculation of the channel momentum
relaxation.24 In the rest of Im
1/��� ,q�� the drift part of the
channel electron distribution function, Eq. �3.6�, can be ne-
glected. That is the part that describes channel-gate electron-
electron scattering is

�Im
1

���,q��cg

=
Un�q�Im ���,q�


1 + Ur��,q��2 + Ui
2��,q�

, �3.23�

where

Ur��,q� = d1�q�Re F��,q� +
g0�q�
g�q�

�

�1
Re ���,q� + d2�q�

�
Re F��,q�Re ���,q� − Im F��,q�Im ���,q�� ,

�3.24a�

Ui��,q� = d1�q�Im F��,q� +
g0�q�
g�q�

�

�1
Im ���,q� + d2�q�

�
Re F��,q�Im ���,q� + Im F��,q�Re ���,q�� ,

�3.24b�

Un�q� =
2

d1�q��2��q�
g�q�

�

�1
�2

. �3.24c�

Finally, with the help of the relation9,28,41

Im F��,q� =
8�2e2

�q
�1 − e−��/T� � f0�E�p−q��

�
1 − f0�Ep������ − Ep + E�p−q��
d2p

�2��2 ,

�3.25�

we come to the result

1

�cg
=

�2

16�2Tmelnc


0

�

q3dq
0

�

d�
d1�q�

sinh2���/2T�
Un��,q�


1 + Ur��,q��2 + Ui
2��,q�

� Im ���,q�Im F��,q� . �3.26�

IV. RESULTS AND DISCUSSION

First of all we calculate the dependence of the channel-
gate electron-electron scattering rate on the thickness of the
SiO2 barrier. To avoid all nonrelevant effects we assume that
the gate is crystalline. In Figs. 1�a� and 1�b� we present the
results for two different channel concentrations. We see a
regular decrease of the rate with the thickness that comes
from the limitation of the wave vector transferred in

electron-electron collisions by the inverse distance between
the gate and channel. There is no trace of any enhancement
induced by the plasma resonance. The magnitude of the drag
rate at aSiO2

=1 nm is about 1000 times smaller than that
calculated in Ref. 18 at the same channel and gate concen-
tration.

Experimentally, the drag effect is characterized by the ra-
tio of the current induced in the gate by the current in the
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channel, Agc
I . Making use of the momentum conservation this

ratio can be expressed in the mobility ratio19

AI =
�poly

�cg
, �4.1�

where �cg=e�cg /mel. In what follows we use the expression
of �cg obtained in Sec. III C for the calculation of AI and
compare the theoretical results with the experiment.

In the calculation of the drag rate 1 /�cg we keep in mind
that the gate voltage that controls the channel concentration
creates also a depletion layer in the gate. We approximate the
width of this layer as ag= �nc+nd� /ng, so that the total width
of the layer separating the gate and channel is a=aSiO2

+ag,
where aSiO2

is the width of the SiO2 barrier. The effective
dielectric constant �1 of this layer is estimated as that corre-
sponding to two capacitors �the SiO2 barrier and the gate
depletion layer� connected in series,

a

�1
=

aSiO2

�SiO2

+
ag

�
, �4.2�

where �SiO2
=11.9 and �=3.9.

Measurements were made on four types of samples that
differed by the gate doping. The main characteristics of the
samples are given in Table I. The gate mobility depended on
the channel concentration nc, and in the relevant region of
the concentration was approximated by a linear function. The
value of the diffusion coefficient in the gate, �� /e2�d� /dn0,

is not known, so we do not have an experimental value of the
screening radius. We calculated it with the help of its mean-
field expression, Eq. �2.10�.

The substitution of these data into the expression for �cg
gives results that differ from the experiment by about 50%–
100%. This means that that the main physical effects contrib-
uting to the drag are described correctly. We relate the re-
maining discrepancy to the polycrystalline structure of the
gate that has not been taking into account in the calculation
of �cg. As we already mentioned in the Introduction, the
transferred wave vector q changes from values larger than
the inverse size of the grains 1/agr to values smaller than
1/agr and this has to lead to a mobility dispersion from the
crystal mobility �cr at q�1/agr to �poly at q�1/agr. The
development of an adequate mobility theory in polycrystal-
line films is beyond the scope of the present work, and we
approximated the mobility dependence on the wave vector as

��q� = �cr −
�cr − �poly

1 + C�qagr�2 , �4.3�

where �cr is the single-crystal mobility, �poly is polycrystal
mobility, agr is the size of the grains, and C is an adjustable
parameter that depends on details of the technology.37

We compared the theoretical and experimental results
only for sample A, B, and C. The doping of sample D is so
high that the average distance between phosphorus donors,
1.8 nm, is of the order of the radius of its state, 1.2 nm.42

Under this condition the band structure is distorted and there
are no reliable values of the crystalline mobility and the
screening radius.

Both theoretical and experimental values of the current
ratio for samples A, B, and C are shown in Figs. 2�a� and
2�b� for two different thicknesses of the SiO2 barrier. The
parameter C for the A, B, and C samples was 0.125, 0.0625,
and 0.025, respectively. The matching is reasonable and the
discrepancy is not surprising due to a rather rough descrip-
tion of the mobility dispersion in polycrystal.

To estimate how sensitive the results are to the exact
value of the parameter C we calculated the current ratio for
the chosen values of C for all the samples for the channel
concentration nc=3�1011 cm−2. The results are given in
Table II. One can see that the variation of C can change the
results by less than 40%. The difference between the cases of
weak and strong electron scattering in the gate is more than
two orders of magnitude, and the difference between the drag
in devices with amorphous and crystalline gate, Fig. 3, is a
few times. This confirms that our approach correctly de-
scribes the main features of the phenomena and the adjust-

FIG. 1. The relaxation rate of channel electrons by gate elec-
trons as a function of the oxide thickness for two different channel
concentrations.

TABLE I. Parameters of the samples.

ng

�cm−3�
EF

�meV�
kF

�106 cm−1�
RD

�nm�
�poly


cm2/ �V s��

A 1.2�1019 17.5 2.9–6.7 1.26 �2.7–0.15�nc

B 2.8�1019 40.2 4.5–10.2 0.89 �5.3–0.10�nc

C 5.6�1019 81.4 6.4–14.5 0.70 �5.1–0.08�nc

D 16�1019 227 10.6–24.1 0.54 �4.1–0.11�nc
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ment of C is only an attempt of a fine-tuning.
If the gate is crystalline, then the mobility becomes larger

and it is easier to involve the gate electrons in motion. That
is, one can expect an increase of the drag in devices with the
crystalline gate compared to those with the polycrystalline
gate. But the increase of the mobility leads also to a decrease
of the Maxwell time and therefore to a decrease of the gate
response Im ��� ,q�. This effect decreases the drag. As a
result the overall increase of the drag is significantly smaller
than the ratio of the crystal and polycrystal mobilities. This
can be seen from Fig. 3 where theoretical values of the cur-
rent ratio for FET’s with a crystalline gate and doping corre-

sponding to samples A, B, and C are presented. Compared to
the crystalline gate, Fig. 2�a�, the current ratio in devices
with a crystalline gate can increase from 2 times to the order
of magnitude, depending on the gate doping and channel
concentration. The increase is still not so big to reduce sub-
stantially the channel mobility. This is not surprising because
according to the estimate given in the Introduction electron
scattering for high doping is strong enough to suppress the
plasmon resonance even in the crystalline gate.

In Fig. 4 we show the dependence of the current ratio on
the thickness of SiO2 barrier. This dependence is nearly ex-
ponential, and the characteristic length insignificantly grows
with the gate concentration: it is approximately 2 nm,
1.7 nm, and 1.6 nm for samples A, B, and C, respectively.

In the last years there has been a lot of interest in mate-
rials with a high dielectric constant of the barrier that could
replace SiO2 as a barrier material and improve the perfor-

FIG. 2. �Color online� The ratio of the channel current to the
gate current as function of the channel concentration for samples A,
B, and C.

TABLE II. The current ratio for different values of the param-
eter C. Bold font marks the values for which C has been adjusted to
fit better the experimental data. The channel concentration in all
cases is nc=3�1011 cm−2.

C=0.125 C=0.0625 C=0.025

A 1.74�10−4 1.85�10−4 1.94�10−4

B 3.79�10−4 4.35�10−4 4.89�10−4

C 2.91�10−4 3.58�10−4 4.31�10−4

FIG. 3. Theoretical values of the current ratio for devices with
crystalline gate. The increase of the current ratio compared to the
polycrystalline gate is significantly smaller than the increase of the
gate mobility.

FIG. 4. The dependence of the current ratio on the thickness of
the barrier. Reduction of the barrier thickness leads to an increase of
the current ratio, but the ratio is saturated when the thickness be-
comes close or smaller than the electron wavelength.
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mance of the device �see, e.g., Wilk et al.43�. To meet such an
interest we demonstrate in Fig. 5 the dependence of the cur-
rent ratio on the dielectric constant of the barrier material for
two different thicknesses of the barrier. The drag effect
grows with the dielectric constant of the barrier and saturates
when this dielectric constant becomes larger than the dielec-
tric constant in the channel and gate.

V. CONCLUSION

Analysis of the plasma spectrum in silicon MOSFET’s
with large gate doping shows a significant damping of
plasma waves due to strong electron scattering in the gate.
This damping eliminates the enhancement of the drag effect
by plasma resonance that has been observed in other
devices.15,16 The correct estimate of the drag effect can be
made with the help of a phenomenological description of
electron transport in the gate. Such an approach results in a
good matching between theoretical and experimental results.

APPENDIX A: REDUCTION OF THE ANGULAR
INTEGRALS

Equation �3.9� contains two types of angular integrals:

I1�� = 
0

2�

dk
0

2�

dk�k�k�u
cos�k − k��� , �A1a�

I2�� = 
0

2�

dk
0

2�

dk�k�k��u
cos�k − k��� ,

�A1b�

where k and k� are the angles between the k and k� vec-
tors, respectively, and x axis. In the first integral it is conve-
nient first to integrate with respect to k�, and then the inte-
grand, except the factor k�k�, does not depend on the angle.
As a result,

I1�� = ���

k2

2


0

2�

dk
0

2�

dk�u
cos�k − k��� . �A2�

The components of the second integral have to be consid-
ered separately:

I2xx = kk�
0

2�

dk
0

2�

dk� cos k cos k�u
cos�k − k���

= �kk�
0

2�

d cos u�cos � , �A3a�

I2xy = kk�
0

2�

dk
0

2�

dk� cos k sin k�u
cos�k − k���

= − �kk�
0

2�

d sin u�cos � = 0, �A3b�

I2yy = kk�
0

2�

dk
0

2�

dk� sin k sin k�u
cos�k − k���

= �kk�
0

2�

d cos u�cos � . �A3c�

That is,

I2�� = ���

1

2


0

2�

dk
0

2�

dk�kk�u
cos�k − k��� .

�A4�

As a result, the complete angular integral in Eq. �3.9� is


0

2�

dk
0

2�

dk��k� − k����k� − k���u
cos�k − k���

= ���

1

2


0

2�

dk
0

2�

dk��k − k��2u
cos�k − k��� .

�A5�

1 P. M. Solomon, P. J. Price, D. J. Frank, and D. C. La Tulipe, Phys.
Rev. Lett. 63, 2508 �1989�.

2 T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer,
and K. W. West, Phys. Rev. Lett. 66, 1216 �1991�; Surf. Sci.

263, 446 �1992�.
3 T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer,

and K. W. West, Phys. Rev. B 47, 12957 �1993�.
4 H. Rubel, E. H. Linfield, D. A. Ritchie, K. M. Brown, M. Pepper,

FIG. 5. The dependence of the current ratio on the dielectric
constant of the barrier material. The gate is assumed to be
crystalline.

ELECTRON-DRAG EFFECT IN Si METAL-OXIDE-… PHYSICAL REVIEW B 72, 125338 �2005�

125338-9



and G. A. C. Jones, Semicond. Sci. Technol. 10, 1229 �1995�.
5 H. Noh, S. Zelakiewicz, T. J. Gramila, L. N. Pfeiffer, and K. W.

West, Phys. Rev. B 59, 13114 �1999�.
6 M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Solid

State Commun. 123, 515 �2002�.
7 C. Jörger, S. J. Cheng, H. Rubel, W. Dietsche, R. Gerhardts, P.

Specht, K. Eberl, and K. v. Klitzing, Phys. Rev. B 62, 1572
�2000�.

8 R. Pillarisetty, H. Noh, D. C. Tsui, E. P. De Poortere, E. Tutuc,
and M. Shayegan, Phys. Rev. Lett. 89, 016805 �2002�.

9 U. Sivan, P. M. Solomon, and H. Shtrikman, Phys. Rev. Lett. 68,
1196 �1992�.

10 R. Rubel, A. Fisher, W. Dietsche, C. Jörger, K. von Klitzing, and
K. Eberl, Physica E �Amsterdam� 1, 160 �1997�.

11 N. P. R. Hill, J. T. Nicholls, E. H. Linfield, M. Pepper, D. A.
Ritchie, A. R. Hamilton, and G. A. C. Jones, J. Phys.: Condens.
Matter 8, L557 �1996�; H. Rubel, A. Fischer, W. Dietsche, K.
von Klitzing, and K. Eberl, Phys. Rev. Lett. 78, 1763 �1997�; X.
G. Feng, S. Zelakiewicz, H. Noh, T. J. Ragucci, T. J. Gramila, L.
N. Pfeiffer, and K. W. West, ibid. 81, 3219 �1998�; C. Jörger, W.
Dietsche, W. Wegscheider, and K. von Klitzing, Physica E �Am-
sterdam� 6, 586 �2000�.

12 M. B. Pogrebinskii, Fiz. Tekh. Poluprovodn. �S.-Peterburg� 11,
637 �1977� 
Sov. Phys. Semicond. 11, 372 �1977��.

13 P. J. Price, Physica B & C 117/118, 750 �1983�.
14 K. Flensberg and Ben Yu-Kuang Hu, Phys. Rev. Lett. 73, 3572

�1994�; Phys. Rev. B 52, 14796 �1995�.
15 N. P. R. Hill, J. T. Nicholls, E. H. Linfield, M. Pepper, D. A.

Ritchie, G. A. C. Jones, Ben Yu-Kuang Hu, and K. Flensberg,
Phys. Rev. Lett. 78, 2204 �1997�; N. P. R. Hill, J. T. Nicholls, E.
H. Linfield, M. Pepper, D. A. Ritchie, Ben Yu-Kuang Hu, and K.
Flensberg, Physica B 249–251, 868 �1998�.

16 H. Noh, S. Zelakiewicz, X. G. Feng, T. J. Gramila, L. N. Pfeiffer,
and K. W. West, Phys. Rev. B 58, 12621 �1998�.

17 M. V. Fischetti and S. E. Laux, J. Appl. Phys. 89, 1205 �2001�.
18 M. V. Fischetti, J. Appl. Phys. 89, 1232 �2001�.
19 P. M. Solomon and Min Yang, IEEE Electron Devices Meeting
20 S. M. Sze, Physics of Semiconductor Devices �Wiley, New York,

1981�.
21 Numerical Data and Functional Relationships in Science and

Technology, edited by O. Madelung, M. Schulz, and H. Weiss,
Landolt-Börnstein, New Series, Group III, Vol. 17, Pt. a
�Springer, New York, 1982�.

22 P. M. Solomon and B. Laikhtman, Superlattices Microstruct. 10,
89 �1991�.

23 B. Laikhtman and P. M. Solomon, Phys. Rev. B 41, 9921 �1990�;
A.-P. Jauho and H. Smith, ibid. 47, 4420 �1993�; A. Yurtsever,
V. Moldoveanu, and B. Tanatar, Solid State Commun. 125, 575
�2003�.

24 D. L. Maslov, Phys. Rev. B 45, 1911 �1992�.
25 M. Mosko, V. Cambel, and A. Moskova, Phys. Rev. B 46, 5012

�1992�; V. Cambel and M. Mosko, Semicond. Sci. Technol. 8,
364 �1993�.

26 H. C. Tso, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. Lett. 68,
2516 �1992�.

27 I. I. Boiko, P. Vasilopoulos, and Yu. M. Sirenko, Phys. Rev. B 45,
13538 �1992�.

28 A.-P. Jauho and H. Smith, Phys. Rev. B 47, 4420 �1993�.
29 L. Zheng and A. H. MacDonald, Phys. Rev. B 48, 8203 �1993�.
30 A. Kamenev and Y. Oreg, Phys. Rev. B 52, 7516 �1995�.
31 K. Flensberg, Ben Yu-Kuang Hu, A.-P. Jauho, and J. M. Kinaret,

Phys. Rev. B 52, 14761 �1995�.
32 H. C. Tso, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. Lett. 70,

2146 �1993�.
33 L. Swierkowski, J. Szymanski, and Z. W. Gortel, Phys. Rev. Lett.

74, 3245 �1995�; Phys. Rev. B 55, 2280 �1997�.
34 A. Yurtsever, V. Moldoveanu, and B. Tanatar, Solid State

Commun. 125, 575 �2003�.
35 H. L. Cui, X. L. Lei, and N. J. M. Horing, Superlattices

Microstruct. 13, 221 �1993�.
36 V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Met-

als and Semiconductors �North-Holland, Amsterdam, 1987�.
37 C. A. Neugebauer, J. Appl. Phys. 39, 3177 �1968�; T. I. Kamins,

ibid. 42, 4365 �1971�; J. Y. W. Seto, ibid. 46, 5247 �1975�; G.
Baccarani, B. Ricco, and G. Spadini, ibid. 49, 5565 �1978�; J.
Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G.
Este, and M. Rider, ibid. 53, 1193 �1982�.

38 T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437
�1982�.

39 M. Chr. Bonsager, K. Flensberg, Ben Yu-Kuang Hu, and A. H.
MacDonald, Phys. Rev. B 57, 7085 �1998�.

40 F. F. Fang and W. E. Howard, Phys. Rev. Lett. 16, 797 �1966�.
41 G. F. Giuliani and J. J. Quinn, Phys. Rev. B 26, 4421 �1982�.
42 S. T. Pantelides and C. T. Sah, Phys. Rev. B 10, 621 �1974�.
43 G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89,

5243 �2001�.

B. LAIKHTMAN AND P. M. SOLOMON PHYSICAL REVIEW B 72, 125338 �2005�

125338-10


