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We have evaluated hyperfine-induced electron spin dynamics for two electrons confined to a double quan-
tum dot. Our quantum solution accounts for decay of a singlet-triplet correlator even in the presence of a fully
static nuclear spin system, with no ensemble averaging over initial conditions. In contrast to an earlier semi-
classical calculation, which neglects the exchange interaction, we find that the singlet-triplet correlator shows
a long-time saturation value that differs from 1

2 , even in the presence of a strong magnetic field. Furthermore,
we find that the form of the long-time decay undergoes a transition from a rapid Gaussian to a slow power law
��1/ t3/2� when the exchange interaction becomes nonzero and the singlet-triplet correlator acquires a phase
shift given by a universal �parameter independent� value of 3� /4 at long times. The oscillation frequency and
time-dependent phase shift of the singlet-triplet correlator can be used to perform a precision measurement of
the exchange interaction and Overhauser field fluctuations in an experimentally accessible system. We also
address the effect of orbital dephasing on singlet-triplet decoherence and find that there is an optimal operating
point where orbital dephasing becomes negligible.
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I. INTRODUCTION

Decoherence due to the coupling of a qubit to its environ-
ment is widely regarded as the major obstacle to quantum
computing and quantum information processing in solid-
state systems. Electron spins confined in semiconductor
quantum dots1 couple to their environments primarily
through the spin-orbit interaction and hyperfine interaction
with nuclear spins in the surrounding lattice.2,3 To reach the
next step in coherent electron spin state manipulation, the
strongest decoherence effects in this system must be under-
stood and reduced, if possible.

The effects of spin-orbit interaction are reduced in con-
fined quantum dots at low temperatures.4 Indeed, recent ex-
periments give longitudinal relaxation times T1 for quantum-
dot-confined electrons that reach T1�20 ms �Ref. 5� in self-
assembled dots and T1�0.85 ms in gated dots,6 in
agreement with theory.7 These times suggest that the spin-
orbit interaction is a relatively weak source of decoherence
in these structures since theory predicts that the transverse
spin decay time T2 due to spin-orbit interaction alone �ne-
glecting other sources of decoherence� would be given by
T2=2T1.7 Other strategies for reducing the effects of spin-
orbit interaction may include using hole �instead of electron�
spin, where a recent study has found that T2=2T1 also ap-
plies, and the hole spin relaxation time can be made even
longer than that for the electron spin.8

Unlike the spin-orbit interaction, the hyperfine interaction
of a single electron spin with a random nuclear spin environ-
ment can lead to pure dephasing, giving a transverse spin
decay time on the order of 5 ns,9–11 six orders of magnitude
shorter than the measured longitudinal decay times T1. To
minimize errors during qubit gating operations in these pro-
posed devices, this decay must be fully understood. The hy-
perfine interaction in a single quantum dot is described by a
Hamiltonian H=h ·S, where S is the electron spin operator
and h is a collective quantum nuclear spin operator, which
we will refer to as the “Overhauser operator.” A common

assumption in the literature is to replace the Overhauser op-
erator by a classical effective magnetic field h→BN.9,10,12–22

Since a classical magnetic field only induces precession �not
decoherence�, the classical-field picture necessitates an en-
semble of nuclear spin configurations to induce decay of the
electron spin expectation value.9,10 For experiments per-
formed on a large bulk sample of electron spins, or experi-
ments performed over time scales that are longer than the
typical time scale for variation of BN, the source of the en-
semble averaging is clear. However, one conclusion of this
model is that single-electron-spin experiments performed
over a time scale shorter than the nuclear spin correlation
time should show no decay. This conclusion is contradicted
by numerical23,24 and analytical11,25 results, which show that
the quantum nature of the Overhauser operator can lead to
rapid decay of a single electron spin, even for a fully static
nuclear spin system. This rapid decay is, however, reversible
with a standard Hahn spin-echo sequence in an applied mag-
netic field and the time scale of the decay can be increased
by squeezing the nuclear spin state.11

Another potential solution to the hyperfine decoherence
problem is to polarize the nuclear spins. Polarizing the
nuclear spin system in zero applied magnetic field reduces
the longitudinal spin-flip probability by the factor 1 / p2N,
where p is the nuclear spin polarization and N is the number
of nuclear spins within the quantum dot.2,11 The effect on the
transverse components of electron spin is different. Unless
the nuclear spin state is squeezed or a spin-echo sequence is
performed, the transverse components of electron spin will
decay to zero in a time tc�5 ns in a typical GaAs quantum
dot. Polarizing the nuclear spin system increases tc by reduc-
ing the phase-space available for fluctuations in the Over-
hauser operator, resulting in tc�5 ns/�1− p2.11 Recent ex-
periments show that the nuclear spin system can be polarized
by as much as 60%.16 However, to achieve an order-of-
magnitude increase in tc, the polarization degree would have
to be on the order of 99%,3 for which more ambitious polar-
ization schemes have been proposed.26
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If electron spins in quantum dots are to be used as quan-
tum information processors, the two-electron states of double
quantum dots must also be coherent during rapid two-qubit
switching times.48 Measurements of singlet-triplet relaxation
times tST in vertical double dots �tST�200 �s�,27 gated lat-
eral double dots �tST�70 �s �Ref. 28� to 10 ms �Ref. 35��,
and single dots �tST�2.58 ms�29 suggest that these states
may be very long lived. Recent experiments have now
probed the decoherence time of such states, which is be-
lieved to be limited by the hyperfine interaction with sur-
rounding nuclear spins.20 The dramatic effect of the hyper-
fine interaction on two-electron states in a double quantum
dot has previously been illustrated in experiments that show
slow time-dependent current oscillations in transport current
through a double dot in the spin blockade regime.30

It may be possible to circumvent some of the complica-
tions associated with single-spin decoherence by considering
an encoded qubit, composed of the two-dimensional sub-
space of states with total z-projection of spin equal to zero
for two electrons in a double quantum dot.19 One potential
advantage of such a setup is that it may be possible to reduce
the strength of hyperfine coupling to the encoded state space
for a symmetric double dot �see Appendix A�. A potential
disadvantage of this scheme is that coupling to the orbital
�charge� degree of freedom can then lead to additional deco-
herence, but we find that orbital dephasing can be made neg-
ligible under appropriate conditions �see Sec. IV�. To achieve
control of the singlet-triplet subspace, however, the decoher-
ence process for the two-electron system should be under-
stood in detail.

In this paper we give a fully quantum mechanical solution
for the spin dynamics of a two-electron system coupled to a
nuclear-spin environment via the hyperfine interaction in a
double quantum dot. Although we focus our attention here
on quantum dots, decoherence due to a spin bath is also an
important problem for, e.g., proposals to use molecular mag-
nets for quantum information processing.3,31–33 In fact, the
problem of a pair of electrons interacting with a bath of
nuclear spins via the contact hyperfine interaction has been
addressed long ago to describe spin-dependent reaction rates
in radicals.12,34 A semiclassical theory has been developed,12

in which electron spins in radicals experience a randomly
oriented effective classical magnetic field due to the contact
hyperfine interaction between electron and nuclear spins. In
this semiclassical theory, random hopping events of the elec-
trons were envisioned to induce a randomly fluctuating local
magnetic field at the site of the electron spin, resulting in
decay of a singlet-triplet correlator. Here, we solve a differ-
ent problem. Ensemble averaging over nuclear spin configu-
rations is natural for a large sample of �1023 radicals. In
contrast, we consider the coherent dynamics of two-electron
spin states within one double quantum dot. More impor-
tantly, the Heisenberg exchange interaction, which was
found to be negligible in Ref. 12, can be any value �large or
small� in our system of interest. We find that a nonzero ex-
change interaction can lead to a drastic change in the form
and time scale of decoherence. Moreover, this paper is of
direct relevance to very recent experiments20,21,35 related to
such double-dot systems.

The rest of this paper is organized as follows. In Sec. II
we solve the problem for electron spin dynamics in the sub-

space of total spin z-component Sz=0 with an exact solution
for the projected effective Hamiltonian. In Sec. III we show
that a perturbative solution is possible for electron spin dy-
namics in the subspace of singlet and Sz= +1 triplet states.
Section IV contains a discussion of the contributions to
singlet-triplet decoherence from orbital dephasing. In Sec. V
we review our most important results. Technical details are
given in Appendixes A–C.

II. DYNAMICS IN THE Sz=0 SUBSPACE

We consider two electrons confined to a double quantum
dot of the type considered, for example, in Refs. 20, 21, and
35. Each electron spin experiences a Zeeman splitting �z
=g�BB due to an applied magnetic field B= �0,0 ,B�, B�0,
defining the spin quantization axis z, which can be along or
perpendicular to the quantum dot axis. In addition, each elec-
tron interacts with an independent quantum nuclear field
hl , l=1,2, due to the contact hyperfine interaction with sur-
rounding nuclear spins. The nuclear field experienced by an
electron in orbital state l is hl=�kAk

l Ik, where Ik is the
nuclear spin operator for a nucleus of total spin I at lattice
site k, and the hyperfine coupling constants are given by Ak

l

=vA	�0
l �rk�	2, where v is the volume of a unit cell containing

one nuclear spin, A characterizes the hyperfine coupling
strength, and �0

l �rk� is the single-particle envelope wave
function for orbital state l, evaluated at site k. This problem
simplifies considerably in a moderately large magnetic
field �B�max
�	h�rms/g�B, �h�rms/g�B, where �O�rms

= ��I	O2	�I�1/2 is the root-mean-square expectation value of
the operator O with respect to the nuclear spin state 	�I�,
	h= 1

2 �h1−h2�, and h= 1
2 �h1+h2��. In a typical unpolarized

GaAs quantum dot, this condition is B� IA /�Ng�B
�10 mT �see Appendix A�. For this estimate, we have used
IA /g�B�5 T, based on a sum over all three nuclear spin
isotopes �all three hyperfine coupling constants� present in
GaAs �Ref. 36� and N�105 nuclei within each quantum dot.
In this section, we also require B�J /g�B, where J is the
Heisenberg exchange coupling between the two electron
spins. For definiteness we take J�0, but all results are valid
for either sign of J, with J replaced by its absolute value. In
the above limits, the electron Zeeman energy dominates all
other energy scales and the relevant spin Hamiltonian be-
comes block diagonal, with blocks labeled by the total spin
projection along the magnetic field Sz �see Appendix B�. In
the subspace of Sz=0 we write the projected two-electron
spin Hamiltonian in the subspace of singlet and Sz=0 triplet
states �	S� , 	T0�� to zeroth order in the inverse Zeeman split-
ting 1/�z as H0= �J /2�S ·S+	hz	Sz, where S=S1+S2 is the
total spin operator in the double dot and 	S=S1−S2 is the
spin difference operator. In terms of the vector of Pauli ma-
trices �= �
x ,
y ,
z�: 	S�→ 	
z=−1�, 	T0�→ 	
z= +1�, H0 can
be rewritten as

H0 =
J

2
�1 + 
z� + 	hz
x. �1�

Diagonalizing this two-dimensional Hamiltonian gives ei-
genvalues and eigenvectors
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En
± =

J

2
±

1

2
�J2 + 4�	hn

z�2, �2�

	En
±� =

	hn
z 	S� + En

±	T0�
��En

±�2 + �	hn
z�2

� 	n� , �3�

where 	n� is an eigenstate of the operator 	hz with eigenvalue
	hn

z . Since the eigenstates 	En
±� are simultaneous eigenstates

of the operator 	hz, we note that there will be no dynamics
induced in the nuclear system under the Hamiltonian H0. In
other words, the nuclear system remains static under the in-
fluence of H0 alone, and there is consequently no back action
on the electron spin due to nuclear dynamics.

We fix the electron system in the singlet state 	S� at time
t=0:

	��t = 0�� = 	S� � 	�I�, 	�I� = �
n

an	n� , �4�

where an is an arbitrary set of �normalized� coefficients
��n	an	2=1�. The initial nuclear spin state 	�I� is, in general,
not an eigenstate 	n�. The probability to find the electron
spins in the state 	T0� at t�0 is then given by the correlation
function �setting �=1�:

CT0
�t� = �

n

�I�n�	�n	 � �T0	e−iH0t	S� � 	n�	2, �5�

where �I�n�= 	an	2 gives the diagonal matrix elements of the
nuclear-spin density operator, which describes a pure �not
mixed� state of the nuclear system: �I= 	�I���I	=�n�I�n�	n�
�n	+�n�n�an

*an�	n���n	. CT0
�t� is the sum of a time-

independent piece Cn and an interference term CT0

int�t�:

CT0
�t� = Cn + CT0

int�t� , �6�

Cn =
2�	hn

z�2

J2 + 4�	hn
z�2 , �7�

CT0

int�t� = − Cn cos��En
+ − En

−�t� . �8�

Here, the overbar is defined by f�n�=�n�I�n�f�n�. Note that
Cn depends only on the exchange and Overhauser field inho-
mogeneity 	hn

z through the ratio 	hn
z /J.

For a large number of nuclear spins N�1 in a superposi-
tion of 	hz eigenstates 	n�, we assume that �I�n� describes a
continuous Gaussian distribution of 	hn

z values, with mean
	hn

z =0 �for the case 	hn
z �0, see Sec. II A� and variance �0

2

= �	hn
z −	hn

z�2= �	hn
z�2 �i.e., �0= �	hz�rms�. The approach to a

Gaussian distribution in the limit of large N for a sufficiently
randomized nuclear system is guaranteed by the central limit
theorem.11 The assumption of a continuous distribution of
	hn

z precludes any possibility of recurrence in the correlator
we calculate.49 A lower bound for the Poincaré recurrence
time in this system is given by the inverse mean level spac-
ing for the fully polarized problem:9 tp�N2 /A. In a GaAs
double quantum dot containing N�105 nuclear spins, this
estimate gives trec�0.1 s. Moreover, by performing the con-
tinuum limit, we restrict ourselves to the free-induction sig-

nal �without spin-echo�. In fact, we remark that all decay in
the correlator given by �8� can be recovered with a suitable �
pulse, defined by the unitary operation U�	En

±�= 	En
��. This

statement follows directly from the sequence

e−iJt	En
±� = U�e−iH0tU�e−iH0t	En

±� . �9�

Thus, under the above sequence of echoes and free induc-
tion, all eigenstates are recovered up to a common phase
factor. Only higher-order corrections to the effective Hamil-
tonian H0 may induce completely irreversible decay. This
irreversible decay could be due, for example, to the variation
in hyperfine coupling constants, leading to decay on a time
scale t�N /A, as in the case of a single electron spin in Refs.
9 and 11. Another source of decay is orbital dephasing �see
Sec. IV�.

We perform the continuum limit for the average of an
arbitrary function f�n� according to the prescription

�
n

�I�n�f�n� →� dxP�;x̄�x�f„n�x�… , �10�

P�;x̄�x� =
1

�2��
exp�−

�x − x̄�2

2�2 � , �11�

with x̄=0, �2=x2, and here we take x=	hn
z , �=�0. Using

Cn = C�	hn
z� = C�x� =

2x2

J2 + 4x2 , �12�

we evaluate CT0

int�t�=Re�C̃T0

int�t��, where the complex interfer-
ence term is given by the integral

C̃T0

int�t� = − �
−�

�

dxC�x�P�0;0�x�eit�J2+4x2
. �13�

In general, the interference term given by Eq. �13� will
decay to zero after the singlet-triplet decoherence time. We
note that the interference term decays even for a purely static
nuclear spin configuration with no ensemble averaging per-
formed over initial conditions, as is the case for an isolated
electron spin.11,23,25 The total z component of the nuclear
spins will be essentially static in any experiment performed
over a time scale less than the nuclear spin diffusion time
�the diffusion time is several seconds for nuclei surrounding
donors in GaAs �Ref. 37��. We stress that the relevant time
scale in the present case is the spin diffusion time and not the
dipolar correlation time, since nonsecular corrections to the
dipole-dipole interaction are strongly suppressed by the
nuclear Zeeman energy in an applied magnetic field of a few
Gauss38 �as assumed here�. Without preparation of the initial
nuclear state or implementation of a spin-echo technique,
this decoherence process therefore cannot be eliminated with
fast measurement, and in general cannot be modeled by a
classical nuclear field moving due to slow internal dynamics;
a classical nuclear field that does not move cannot induce
decay.

At times longer than the singlet-triplet decoherence time
the interference term vanishes, leaving CT0

���=Cn, which
depends only on the ratio 	hn

z /J, and could therefore be used
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to trace-out the slow adiabatic dynamics 	hn
z�t� of the nuclear

spins, or to measure the exchange coupling J when the size
of the hyperfine field fluctuations is known. We evaluate
CT0

��� from

CT0
��� = Cn = �

−�

�

dxC�x�P�0;0�x� . �14�

In two limiting cases, we find the saturation value is given by
�see Appendix C�

CT0
��� � �

1

2
−��

2

J

4�0
, �0 � J ,

2��0

J
�2

, �0 � J .� �15�

We recover the semiclassical high-magnetic-field limit12

�CT0
���= 1

2� only when the exchange J is much smaller than
�0. Furthermore, due to the average over 	hn

z eigenstates, the
approach to the semiclassical value of 1

2 is a slowly varying
�linear� function of the ratio J /�0, in spite of the fact that
Cn� �J /	hn

z�2 as J→0. In Fig. 1 we plot the correlator satu-
ration value CT0

��� as a function of the ratio �	hz�rms/J for a
nuclear spin system described by a fixed eigenstate of 	hz

�i.e., �I= 	n��n	� and for a nuclear spin system that describes a
Gaussian distribution of 	hz eigenstates with variance �0

2

= �	hn
z�2= �	hz�rms

2 . We also show the asymptotic expression
for �0�J, as given in Eq. �15�.

Now we turn to the interference term CT0

int�t� given by Eq.
�13�, which can be evaluated explicitly in several interesting
limits. First, in the limiting case of vanishing exchange �J
=0�, we have C�x�= 1

2 from �12�. Direct integration of Eq.
�13� then gives

CT0

int�t� = −
1

2
exp�−

t2

2t0
2�, t0 =

1

2�0
, J = 0. �16�

For zero exchange interaction, the correlator decays purely
as a Gaussian, with decoherence time t0=1/2�0��N / IA for
a typical asymmetric double quantum dot �see Appendix A�.
However, for arbitrary nonzero exchange interaction J�0,
we find the asymptotic form of the correlator at long times is
given by �see Appendix C�

CT0

int�t� � −

cos�Jt +
3�

4
�

4�0
�Jt3/2

, �17�

t � max�1

J
,

1

2�0
,

J

4�0
2� . �18�

Thus, for arbitrarily small exchange interaction J, the
asymptotic decay law of the correlator is modified from the
Gaussian behavior of Eq. �16� to a �much slower� power law
��1/ t3/2�. We also note that the long-time correlator has a
universal phase shift of 3� /4, which is independent of any
microscopic parameters. Our calculation therefore provides
an example of interesting non-Markovian decay in an experi-
mentally accessible system. Furthermore, the slow down of
the asymptotic decay suggests that the exchange interaction
can be used to modify the form of decay, in addition to the
decoherence time, through a narrowing of the distribution of
eigenstates �see the discussion following Eq. �20� below�.
We have evaluated the full correlator CT0

�t� by numerical
integration of Eq. �13� and plotted the results in Fig. 2 along
with the analytical asymptotic forms from �17�.

We now investigate the relevant singlet-triplet correlator
CT0

�t� in the limit of large exchange J. In this case, we have
x��0�J for the typical x contributing to the integral in Eq.
�13�. Thus, we can expand the prefactor C�x� and frequency
term in the integrand:

FIG. 1. �Color online� Saturation value of the triplet occupation
probability CT0

���=Cn vs. �	hz�rms/J when the nuclear spin system
has been squeezed into an eigenstate of 	hz �dashed line� and when
the state of the nuclear spin system describes a Gaussian distribu-
tion of eigenvalues 	hn

z , with mean 	hn
z =0 and variance �0

2

= �	hn
z�2 �solid line�. We also show the analytical asymptotics for

�0�J, given by Eq. �15� �dotted line� and the semiclassical value
�CT0

���=1/2� �dash-dotted line�.

FIG. 2. �Color online� Decay of the correlator CT0
�t� evaluated

by numerical integration of Eq. �13� for three ratios of �0 /J: �0 /J
=2 �dashed-dotted line�, �0 /J=1 �dashed line�, and �0 /J=1/2
�solid line�. The analytical long-time asymptotic expressions from
Eq. �17� are shown as dotted lines.
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C�x� � 2
x2

J2 , �19�

�J2 + 4x2 � J + 2
x2

J
. �20�

From Eq. �20� it is evident that the range of frequencies that
contribute to the correlator is suppressed by �0 /J �increasing
the exchange narrows the distribution of eigenenergies that
can contribute to decay�. This narrowing of the linewidth
will increase the decoherence time. Moreover, the leading-
order x2 dependence in �20� collaborates with the Gaussian
distribution of 	hz eigenstates to induce a power-law decay.
With the approximations in Eqs. �19� and �20�, we find an
expression for the correlator that is valid for all times in the
limit of large exchange J by direct evaluation of the integral
in Eq. �13�:

CT0

int�t� = − 2��0

J
�2cos�Jt +

3

2
arctan� t

t0�
��

�1 + � t

t0�
�2�3/4 , �21�

t0� =
J

4�0
2 , J � �0. �22�

There is a new time scale �t0�=J /4�0
2� that appears for large J

due to dynamical narrowing; increasing the exchange J re-
sults in rapid precession of the pseudospin � about the z axis,
which makes transverse fluctuations along 
x due to 	hz pro-
gressively unimportant. Explicitly, we have t0��JN /4A2

��N /A for J��0�A /�N.
Equation �21� provides a potentially useful means of ex-

tracting the relevant microscopic parameters from an experi-
ment. J and �0 can be determined independent of each other
exclusively from a measurement of the oscillation frequency
and phase shift of CT0

int�t�. In particular, any loss of oscillation
amplitude �visibility� due to systematic error in the experi-
ment can be ignored for the purposes of finding �0 and J.
The loss in visibility can then be quantified by comparison
with the amplitude expected from Eq. �21�. We illustrate the
two types of decay that occur for large and small J in Fig. 3.

A. Inhomogeneous polarization, �hn
z Å0

It is possible that a nonequilibrium inhomogeneous aver-
age polarization could be generated in the nuclear spin sys-
tem, in which case 	hn

z �0. Pumping of nuclear spin polar-
ization occurs naturally, for example, at donor impurities in
GaAs during electron spin resonance �ESR�, resulting in a
shift of the ESR resonance condition.39 It is therefore impor-
tant to investigate the effects of a nonzero average Over-
hauser field inhomogeneity on the decay law and time scale
of the singlet-triplet correlator. In this subsection we gener-
alize our previous results for the case 	hn

z �0.
We set the mean Overhauser field inhomogeneity to 	hn

z

=x0, in which case the complex singlet-triplet interference
term is given by

C̃T0

int�t� = − �
−�

�

dxC�x�P�0;x0
�x�eit�J2+4x2

. �23�

When the mean value of the Overhauser field inhomogeneity
x0 is much larger than the fluctuations �0 �x0��0�, we
approximate C�x��C�x0� and expand the frequency
term �J2+4x2=�0+ �4x0 /�0��x−x0�+ �2J2 /�0

3��x−x0�2+¯,
where �0=�J2+4x0

2. We retain only linear order in x−x0 for
the frequency term, which is strictly valid for times t� �J2

+4x0
2�3/2 /2J2�0

2. This time estimate is found by replacing
�x−x0�2��0

2 in the quadratic term and demanding that the
quadratic term multiplied by time be much less than one. In
this limit, the correlator and range of validity are then

CT0

int�t� = −
2x0

2

�0
2 exp�−

1

2
� t

t0�
�2�cos��0t� , �24�

t0� =
�0

4x0�0
, �0 = �J2 + 4x0

2, �25�

x0 � �0, t �
�J2 + 4x0

2�3/2

2J2�0
2 . �26�

This expression is valid for any value of the exchange J, up
to the time scale indicated.

In contrast with the previous result for x0=0, from Eq.
�24� we find that the long-time saturation value of the cor-
relator deviates from the semiclassical result �CT0

���
=−CT0

int�0�= 1
2� by an amount that is quadratic in the exchange

J for J�x0:

CT0
��� = − CT0

int�0� � �
1

2
−

1

8
� J

x0
�2

, J � x0,

2� x0

J
�2

, J � x0.�x0 � �0.

�27�

FIG. 3. �Color online� The correlator CT0
�t� /CT0

��� shows a
rapid Gaussian decay when J=0 �solid line, from Eq. �16��, but has
a much slower power-law decay �1/ t3/2 for large exchange J
=10�0��0 �dotted line, from Eq. �21��.
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In the limit of large exchange, J�max��0 ,x0�, we can
once again apply the approximations given in Eqs. �19� and
�20�. Using these approximations in Eq. �23� and integrating
then gives

C̃T0

int�t� = − 2��0

J
�2

�3�t��1 + � x0

a0
�2

�2�t��
exp�iJt −

x0
2

2�0
2 �1 − �2�t��� , �28�

��t� = �1 − i
t

t0�
�−1/2

, t0� =
J

4�0
2 , J � max�x0,�0� ,

t �
J3

2 max�x0
4,�0

4�
. �29�

We have found the limit on the time range of validity in Eq.
�29� using the same estimate that was used for Eqs.
�24�–�26�. At short times, t� t0�=J /4�0

2, we expand �2�t�
�1+ i�t / t0��− �t / t0��

2 and find that this function decays ini-
tially as a Gaussian with time scale t0��J /4x0�0:

CT0

int�t� � − 2
�0

2 + x0
2

J2 exp�−
1

2
� t

t0�
�2� cos��0�t� , �30�

t0� �
J

4x0�0
, �0� = J +

2x0
2

J
, �31�

t � t0� =
J

4�0
2 , J � max�x0,�0� . �32�

This agrees with the result in Eq. �24� when J�x0��0.
For sufficiently large exchange J, the expression given by

Eq. �28� is valid for times longer than the previous expres-
sion, given by Eq. �24�. We perform an asymptotic expansion
of Eq. �28� for long times using ��t� t0���ei�/4�t0� / t. This
gives

CT0

int�t� � −
e−x0

2/2�0
2

cos�Jt + 3�/4�
4�0

�Jt3/2
, �33�

t � t0� =
J

4�0
2 , J � max�x0,�0� . �34�

As in the case of x0=0, the long-time asymptotics of Eq. �28�
once again give a power law �1/ t3/2, although the amplitude
of the long-time decay is exponentially suppressed in the
ratio x0

2 /�0
2. When x0=0, Eq. �33� recovers the previous re-

sult, given in Eq. �17�.

B. Reducing decoherence

The results of this section suggest a general strategy for
increasing the amplitude of coherent oscillations between the
singlet 	S� and triplet 	T0� states, and for weakening the form
of decay. To avoid a rapid Gaussian decay with a time scale
t0�=J /4x0�0, the mean Overhauser field inhomogeneity

should be made smaller than the fluctuations �	hn
z =x0��0�

and the exchange J should be made larger than x0 and �0
�J�max�x0 ,�0��. Explicitly, the ideal condition for slow and
weak �power-law� decay can be written as

J � �0 � x0. �35�

The condition in Eq. �35� can be achieved equally well by
increasing the exchange coupling J for fixed hyperfine fluc-
tuations �0 or by reducing the fluctuations �0 through state
squeezing or by making the double-dot confining potential
more symmetric �see Appendix A�.

III. DYNAMICS IN THE SUBSPACE OF �S‹ AND �T+‹

We now consider the case when the Zeeman energy of the
Sz=1 triplet state approximately compensates the exchange
�	�	�J, where �=�z+J�. In addition, we assume the ex-
change is much larger than the nuclear field energy scales
J�max
�	h�rms , �h�rms. Under these conditions, we consider
the dynamics in a subspace formed by the singlet 	S�→ 	
z

=−1� and the Sz=1 triplet state 	T+�→ 	
z= +1�, governed by
the Hamiltonian �to zeroth order in 1/J, see Appendix B�:

H+ =
1

2
�� + hz��1 + 
z� −

1
�2

�	h−
+ + H.c.� . �36�

Here, 	h±=	hx± i	hy and 
±= 1
2 �
x± i
y�. The 	T+� probability

at time t�0 is

CT+
�t� = �

n,n�

�I�n�	�n�	 � �T+	e−iH+t	S� � 	n�	2. �37�

This case is essentially different from the previous one, since
the eigenstates of H+ are no longer simply product states of
electron and nuclear spin, implying a back-action of the elec-
tron on the nuclear system. Nevertheless, when �hz+��rms

� �	h±�rms, we can evaluate the correlator in standard time-
dependent perturbation theory to leading order in the term
V=−�1/�2��
+	h−+
−	h+�. Neglecting corrections of order
hn

z /��1, this gives

CT+

�2��t� �
�n

2

�2 �1 − cos�†�hz�n + �‡t�� , �38�

where �n=�n�	�n�		h−	n�	2, and 	n� is now an eigenstate of
the operator hz with eigenvalue �hz�n. To estimate the size of
�n, we assume identical completely decoupled dots and
nuclear polarization p�1, which gives �n

2� 1
2 I�I+1��kAk

2,
where Ak is the hyperfine coupling constant to the nuclear
spin at lattice site k �with total nuclear spin I� and the sum �k
runs over all lattice sites in one of the dots. We estimate the
typical size of �n with the replacements Ak→A /N ,�k→N,
which gives �n�� /�2=�I�I+1� /2NA, where N character-
izes the number of nuclear spins within the dot envelope
wave function. If we assume the nuclear spin state is de-
scribed by a continuous Gaussian distribution of hz eigen-
states with mean hn

z =0 and variance �+
2, we find
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CT+

�2��t� �
1

2
��

�
�2

�1 − e−t2/2t+
2

cos��t��, t+ =
1

2�+
. �39�

Thus, if we ignore any possibility for recurrence, the distri-
bution of hz eigenstates will lead to Gaussian decay of the
two-electron spin state, as is the case for a single
electron.11,23 However, as in the case of a single electron, this
decay can be reduced or eliminated altogether by narrowing
the distribution of hz eigenstates 	n� through measurement
�squeezing the nuclear spin state�.11 We show these two cases
�with and without squeezing of the nuclear state� in Fig. 4.

IV. SINGLET-TRIPLET DECOHERENCE DUE TO
ORBITAL DEPHASING

To this point we have neglected dephasing of the singlet
	S� and triplet 	Tj� �j=0, + � states due to coupling in the
orbital sector. The effective Hamiltonian description ignores
the different character of the orbital states for singlet and
triplet, and so it is tempting to assume that orbital dephasing
is unimportant where the effective Hamiltonian is valid.
However, the singlet and triplet do have different orbital
states which can, in general, couple differently to the envi-
ronment through the charge degree of freedom, and therefore
acquire different phases. Examples of such environmental
influences are charge fluctuators or measurement devices,
such as quantum point contacts used for charge readout.6,40

Here we briefly step away from the effective Hamiltonians
derived in Appendix B to give a physical picture of the ef-
fects of orbital dephasing in terms of the true double-dot
wave functions. We then return to the effective Hamiltonian
picture in order to give a more general estimate of the effects
of orbital dephasing on singlet-triplet decoherence for a two-
electron double dot.

We consider a double quantum dot containing a fixed
�quantized� number of electrons N. Within the far-field ap-
proximation, the double-dot charge distribution couples to

the environment first through a monopole, and then a dipole
term. Since the charge on the double dot is quantized, the
monopole term gives an equal contribution for both the sin-
glet and triplet wave functions. The leading interaction that
can distinguish singlet from triplet is the electric dipole term:

Vorb�t� � − pN · E�t� . �40�

Here, pN is the electric dipole moment operator for the
charge distribution in a double dot containing N electrons
and E�t� is a fluctuating electric field due to the surrounding
environment, which we model by a Gaussian random pro-
cess. For a double quantum dot with well-localized single-
particle eigenstates we denote the charge states by 	�n ,m��,
indicating that the double dot has n electrons in dot 1 and m
electrons in dot 2, where n+m=N. If the double dot contains
only a single electron �N=1�, the environment can distin-
guish the two localized states through the difference in the
dipole moment operator, which has the size 	�p1	
= 	��1,0�	p1	�1,0��− ��0,1�	p1	�0,1��	�2	e	a, where e is the
electron charge and 2a is the interdot spacing. When N=2,
for highly-localized states, only the states with double-
occupancy �	�0, 2�� and 	�2, 0��� contribute to the dipole mo-
ment. If the typical hyperfine energy scale is much smaller
than the detuning from resonance 	 of the 	�1, 1�� and 	�0, 2��
states �max��	h�rms , �h�rms��	�, only the 	�1, 1�� singlet state
�not the triplets� will mix with the doubly occupied states, so
the singlet and triplet states will be energetically distinguish-
able through 	�p2	= 	�S	p2	S�	�2	e	a	P�0,2�− P�2,0�	�2	e	aD,
where P�0,2� �P�2,0�� is the probability to find the singlet 	S� in
the 	�0, 2�� �	�2, 0��� state and D= P�0,2�+ P�2,0� is the double
occupancy. In this discussion, we assume that the exchange
is much larger than the hyperfine energy scales, J
�max��h�rms , �	h�rms�, so that the singlet and triplet states
are good approximates for the true two-electron eigenstates.

For weak coupling to the environment, and assuming the
environment correlation time is much less than the orbital
dephasing time t�

�N�, we can apply standard techniques to de-
termine the dephasing time for a two-level system described
by the Bloch equations.41 We find that the fluctuations in E�t�
lead to exponential dephasing with the rate 1 / t�

�N�

= 1
4 	�pN	2�−�

� dt�E�t�E�0��, where the scalar E�t� is the
component of E�t� along �pN and we assume
limt→��1/ t��0

t dt��E�t���=0. Assuming equivalent environ-
ments for the single-particle and two-particle cases, the ratio
of the single-particle to two-particle dephasing times is then

t�
�1�

t�
�2� = ��p2

�p1
�2

� D2. �41�

The single-electron orbital dephasing rate has been measured
to be t�

�1��1 ns �Ref. 42� and t�
�1��400 ps �Ref. 43� in dif-

ferent gated double quantum dots. If the hyperfine interaction
�which becomes important on the time scale t�5 ns� is to
provide the major source of decoherence in these two-
electron structures, we therefore require t�

�2�� t�
�1�. This con-

dition can be achieved by ensuring a small double occupancy
D�1 of the singlet state. When the interdot tunnel coupling
t12 is much less than the detuning from resonance 	 �t12�	

FIG. 4. �Color online� Decay of the correlator CT+
�t� in two

cases. A typical unprepared initial state, where the nuclear spin
system is in a superposition of hz eigenstates, results in a Gaussian
decay �solid line, from Eq. �39��. If the nuclear spin state is
squeezed into an hz eigenstate, there is no decay, only coherent
oscillations �dotted line, from Eq. �38��. For this plot we have used
�=5�.
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�U+U�, with on-site and nearest-neighbor charging ener-
gies U and U�, respectively—see Appendix B� we find the
double occupancy of 	S� in perturbation theory is

D � 2� t12

	
�2

� 1. �42�

Even in this regime, orbital dephasing may become the lim-
iting time scale for singlet-triplet decoherence after the re-
moval of hyperfine-induced decoherence by spin echo. A de-
tailed analysis of the double-occupancy and its relation to the
concurrence �an entanglement measure� for a symmetric
double dot can be found in Refs. 44 and 45.

With this physical picture in mind, we can generalize the
above results to the case when the electrons experience fluc-
tuations due to any time-dependent classical fields. In par-
ticular, if the separation in single-particle energy eigenstates
for N=1 is �+	��t�, where 	��t� fluctuates randomly with
amplitude 	�, and, similarly, if for N=2 the singlet and trip-
let levels are separated by an exchange J+	J�t�, where 	J�t�
has amplitude 	J, we find

t�
�1�

t�
�2� = �	J

	�
�2

. �43�

From this expression we conclude that the optimal operating
point of the double dot is where the slope of J vs. � vanishes,
i.e., 	J /	�=0. At this optimal point, t�

�2�→�, within the ap-
proximations we have made. Equation �43� is valid for weak
coupling to the environment �i.e., 	J�J and 	����, and
when the environment correlation time is small compared to
the dephasing times. If, for example, we take J�2t12

2 /	 for
U+U��	� t12 from Eq. �B11� and if 	� corresponds to fluc-
tuations in the single-particle charging energy difference
����Vg1−Vg2��	 from Eq. �B9��, we find t�

�1� / t�
�2�

�4t12
4 /	4, in agreement with Eqs. �41� and �42�. In particu-

lar, the hyperfine-dominated singlet-triplet decoherence be-
comes visible when t�

�2�� t0� , t0�� t0 , t+. This regime is achiev-
able by choosing 	� t12, but still J�2t12

2 /	��0, since t�
�2� is

a much stronger function of 	 than t0� , t0�. That is, the two-
particle dephasing time scales like t�

�2��	4, but the typical
hyperfine-induced decay times scale like t0� , t0��J�1/	.
On the other hand, when t12�	, we have 		J /	�	�O�1�,
which gives t�

�2�� t�
�1�, and thus a very short singlet-triplet

decoherence time ��1 ns�, which is dominated by orbital
dephasing.

V. CONCLUSIONS

We have shown that a fully quantum mechanical solution
is possible for the dynamics of a two-electron system inter-
acting with an environment of nuclear spins under an applied
magnetic field. Our solution shows that the singlet-triplet
correlators CT0

�t� and CT+
�t� will decay due to the quantum

distribution of the nuclear spin system, even for a nuclear
system that is static. We have found that the asymptotic be-
havior of CT0

�t� undergoes a transition from Gaussian to
power-law ��1/ t3/2� when the Heisenberg exchange cou-
pling J becomes nonzero, and acquires a universal phase

shift of 3� /4. The oscillation frequency and phase shift as a
function of time can be used to determine the exchange and
Overhauser field fluctuations. We have also investigated the
effects of an inhomogeneous polarization on CT0

�t�, and have
suggested a general strategy for reducing decoherence in this
system. Finally, we have discussed orbital dephasing and its
effect on singlet-triplet decoherence.
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APPENDIX A: ESTIMATING THE OVERHAUSER FIELD

In this appendix we estimate the size of the Overhauser
field inhomogeneity for a typical double quantum dot and
show that this quantity depends, in a sensitive way, on the
form of the orbital wave functions.

As in the main text, we take the average Overhauser field
and the Overhauser field inhomogeneity to be h= 1

2 �h1+h2�
and 	h= 1

2 �h1−h2� respectively, where hl=Av�k	�0
l �rk�	2Ik,

and �0
l �r� is orbital eigenstate l in the double quantum dot. In

the presence of tunneling �t12�max��	h�rms , �h�rms��, the
eigenstates of a symmetric double quantum dot will be well
described2,45 by the symmetric and antisymmetric linear
combination of dot-localized states �l�r� , l=1,2: �0

1,2�r�
= �1/�2���1�r�±�2�r��. In this case, we find

�	h�rms = Av��
k

Re��1
*�rk��2�rk��Ik�

rms

. �A1�

We take ��1/N��kIk�rms��I�I+1� /N to be the rms value for
a system of N nuclear spins with uniform polarization
p�1. Changing the sum to an integral according to
v�k→�d3r then gives

�	h�rms � ��I�I + 1�
N

A = �� , �A2�

where �=�d3r Re��1
*�r��2�r�� is the overlap of the localized

orbital dot states and we have introduced the energy scale
�=�I�I+1�A /�N. The result in Eq. �A2� suggests that the
Overhauser field inhomogeneity can be drastically reduced in
a symmetric double quantum dot simply by separating the
two dots, reducing the wave function overlap. If, however,
the double dot is sufficiently asymmetric, the correct orbital
eigenstates will be well described by localized states �0

l �r�
=�l�r� , l=1,2 �with overlap ��1�, in which case we find

�	h�rms ��I�I + 1�
N

A = � . �A3�

Thus, great care should be taken in determining �	h�rms

based on microscopic parameters. In particular, for a sym-

W. A. COISH AND D. LOSS PHYSICAL REVIEW B 72, 125337 �2005�

125337-8



metric double quantum dot, the overlap � must also be
known to determine �	h�rms based on N.

In contrast, for the total Overhauser operator h, in both of
the above cases (�0

1,2�r�= �1/�2���1�r�±�2�r�� or �0
l �r�

=�l�r� , l=1,2), we find

�h�rms ��I�I + 1�
N

A = � . �A4�

APPENDIX B: EFFECTIVE HAMILTONIANS FOR
TWO-ELECTRON STATES IN A DOUBLE QUANTUM DOT

In this appendix we derive effective Hamiltonians for a
two-electron system interacting with nuclear spins in a
double quantum dot via the contact hyperfine interaction.

We begin from the two-electron Hamiltonian in second-
quantized form,

H = HSP + HC + HT + HZ + Hhf, �B1�

where HSP describes the single-particle charging energy, HC
models the Coulomb interaction between electrons in the
double dot, HT describes tunneling between dot orbital states,
HZ gives the electron Zeeman energy �we neglect the nuclear
Zeeman energy, which is smaller by the ratio of nuclear to
Bohr magneton: �N /�B�10−3�, and Hhf describes the Fermi
contact hyperfine interaction between electrons on the double
dot and nuclei in the surrounding lattice. Explicitly, these
terms are given by

HSP = �
l�

Vglnl�, nl� = dl�
† dl�, �B2�

HC = U�
l

nl↑nl↓ + U��n1↑ + n1↓��n2↑ + n2↓� , �B3�

HT = t12�
�

�d1�
† d2� + d2�

† d1�� , �B4�

HZ =
�z

2 �
l

�nl↑ − nl↓� , �B5�

Hhf = �
l

Sl · hl, Sl =
1

2 �
���

dl�
† ����dl��. �B6�

Here, dl�
† creates an electron with spin � in orbital state

l �l=1,2� ,Vgl is the single-particle charging energy for or-
bital state l ,U is the two-particle charging energy for two
electrons in the same orbital state, and U� is the two-particle
charging energy when there is one electron in each orbital.
When the orbital eigenstates are localized states in quantum
dot l=1,2, Vgl is supplied by the back-gate voltage on dot l
and U �U�� is the on-site �nearest-neighbor� charging energy.
t12 is the hopping matrix element between the two orbital
states, �z is the electron Zeeman splitting, hl is the nuclear
field �Overhauser operator� for an electron in orbital l, and
���� gives the matrix elements of the vector of Pauli matri-
ces �= ��x ,�y ,�z�. In the subspace of two electrons occupy-

ing two orbital states, the spectrum of HSP+HC consists of
four degenerate “delocalized” states with one electron in
each orbital, all with unperturbed energy E�1,1� �a singlet
	S�1,1�� and three triplets: 	Tj�1,1��; j= ± ,0�, and two non-
degenerate “localized” singlet states 	S�2,0�� and 	S�0,2��,
with two electrons in orbital l=1 or l=2, having energy E�2,0�
and E�0,2�, respectively.

To derive an effective Hamiltonian Heff from a given
Hamiltonian H, which has a set of nearly degenerate levels

	i�, we use the standard procedure,46

Heff = PHP + PHQ
1

E − QHQ
QHP , �B7�

where P=�i	i��i	 is a projection operator onto the relevant
subspace and Q=1− P is its complement.

We choose the arbitrary zero of energy such that E�1,1�
=Vg1+Vg2+U�=0 and introduce the detuning parameters

	1 = E�1,1� − E�2,0� = − 2Vg1 − U = − 	 − U − U�, �B8�

	2 = E�1,1� − E�0,2� = − 2Vg2 − U = 	 . �B9�

We then project onto the four-dimensional subspace formed
by the delocalized singlet 	S�1,1�� and three delocalized
triplet states 	Tj�1,1�� , j= ± ,0. That is, we choose Q
= 	S�0,2���S�0,2�	+ 	S�2,0���S�2,0�	 , P=1−Q. When 	1 ,	2

� t12, we have E�E�1,1�=0 in the denominator of Eq. �B7�.
This gives an effective spin Hamiltonian in the subspace of
one electron in each orbital state:

Heff = �z�
l

Sl
z + �

l

hl · Sl − J�1

4
− S1 · S2� , �B10�

J � − 2t12
2 �1

	
−

1

	 + U + U�
� . �B11�

This Hamiltonian is more conveniently rewritten in terms
of the sum and difference vectors of the electron spin and
Overhauser operators S=S1+S2 ,	S=S1−S2 and h= 1

2 �h1

+h2� ,	h= 1
2 �h1−h2�:

Heff = �zS
z + h · S + 	h · 	S +

J

2
S · S − J . �B12�

Neglecting the constant term, in the basis of singlet and three
triplet states, 
	S�1,1��= 	S� , 	Tj�1,1��= 	Tj� , j= ± ,0, the
Hamiltonian matrix for Heff takes the form

�
0 − 	h+/�2 	hz 	h−/�2

− 	h−/�2 J + �z + hz h−/�2 0

	hz h+/�2 J h−/�2

	h+/�2 0 h+/�2 J − �z − hz
� , �B13�

where 	h±=	hx± i	hy and h±=hx± ihy. We are interested in
this Hamiltonian in two limiting cases, where it becomes
block-diagonal in a two-dimensional subspace.
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1. Effective Hamiltonian in the �S‹− �T0‹ subspace

Projecting H onto the two-dimensional subspace spanned
by 	T0�→ 	
z= +1� and 	S�→ 	
z=−1�, we find

H0 = N0 + 1
2v0 · � , �B14�

where �= �
x ,
y ,
z� is a vector of Pauli matrices. The leading
and first subleading corrections to H0 in powers of 1 /�z are
�H0=H0

�0�+H0
�1�+ ¯ ,H0

�i�=N0
�i�+v0

�i��

N0
�0� =

J

2
, �B15�

v0
z�0� = J , �B16�

v0
+�0� = 2	hz, �B17�

N0
�1� =

1

4�z
��h−,h+� + �	h−,	h+�� , �B18�

v0
z�1� =

1

2�z
��h−,h+� − �	h−,	h+�� , �B19�

v0
+�1� =

1

�z
�	h+h− + 	h−h+� . �B20�

Here, NX= �NX
x ,NX

y ,NX
z �, vX= �vX

x ,vX
y ,vX

z �, NX
± =NX

x ± iNX
y , and

vX
± =vX

x ± ivX
y . For a typical unpolarized system, we estimate

the size of all subleading corrections from their rms expec-
tation values, taken with respect to an unpolarized nuclear
state. This gives

�H0
�1��rms = O��2

�z
� , �B21�

where � is given by �=�I�I+1�A /�N �for a GaAs quantum
dot containing N�105 nuclear spins, 1 /��5 ns�. We there-
fore expect dynamics calculated under H0

�0� to be valid up to
time scales on the order of �z /�2�1/�, when �z��.

2. Effective Hamiltonian in the �S‹− �T+‹ subspace

When the Zeeman energy of the 	T+� triplet state approxi-
mately compensates the exchange, max��h�rms , �	h�rms , 	�	�
�J �where �=�z+J�, we find an effective Hamiltonian in the
subspace 	T+�→ 	
z= +1� , 	S�→ 	
z=−1�:

H+ = N+ + 1
2v+ · � , �B22�

where the leading and subleading corrections in powers of
1 /J are

N+
�0� = 1

2 �� + hz� , �B23�

v+
z�0� = � + hz, �B24�

v+
+�0� = − �2	h+, �B25�

N+
�1� = −

1

2J
��	hz�2 +

1

4
	h−	h+ +

1

2
h−h+� , �B26�

v+
z�1� =

1

J
��	hz�2 +

1

4
	h−	h+ −

1

2
h−h+� , �B27�

v+
+�1� = − �2

	hzh+

J
. �B28�

Once again, we estimate the influence of the subleading cor-
rections from their rms values with respect to a nuclear spin
state of polarization p�1, giving

�H+
�1��rms = O��2

J
� . �B29�

We therefore expect the dynamics under H+
�0� to be valid up

to time scales on the order of t�J /�2�1/� for J��.

APPENDIX C: ASYMPTOTICS

1. CT0
„�… for Jš2�0 ,J™2�0

In the limit of J→0, we perform an asymptotic expansion
of the integral in Eq. �14� by separating the prefactor into a
constant piece and an unnormalized Lorentzian of width J /2:

C�x� =
1

2
�1 −

�J/2�2

�J/2�2 + x2� . �C1�

The Gaussian average over the constant term gives 1
2 and,

when J /2��0, the typical x contributing to the Lorentzian
part of Eq. �14� is x�J /2��0, so we approximate
exp�− 1

2x2 /�0
2��1 in the integrand of this term. Integrating

the Lorentzian then gives the result in Eq. �15� for J�2�0.
In the opposite limit of J�2�0, the Lorentzian is slowly
varying with respect to the Gaussian, and the prefactor can
be expanded within the integrand C�x��2x2 /J2. Performing
the remaining Gaussian integral gives the result in Eq. �15�
for J�2�0.

2. CT0

int
„t… for t\�

To evaluate the integral in Eq. �13� at long times when
J�0, we make the change of variables u=��2+ �x /�0�2

−� ,�=J /2�0 , t̃=2�0t, which gives

C̃T0

int�t̃/2�0� = −
1

�2�
�

0

�

du
�u�u + 2��

u + �

exp�−
1

2
�u2 + 2u�� + i�u + ��t̃� , �C2�

� = J/2�0, t̃ = 2�0t . �C3�
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At long times, the major contributions to this integral come
from a region near the lower limit, where u�1/ t̃. For
t̃�max�1/� ,1� �i.e., t�max�1/J ,1 /2�0��, we approximate
the integrand by its form for u�max�� ,1�, retaining the
exponential term as a cutoff. This gives

C̃T0

int�t̃/2�0� � −
ei�t̃

���
�

0

�

du�ue−��−it̃�u = −
ei�t̃

2���� − it̃�3/2
.

�C4�
When t̃�� �i.e., t�J /4�0

2�, we expand the denominator of
the above expression, which gives the result in Eq. �17�.
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