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We have used the empirical tight-binding method within the antibonding orbital model to compute the
self-consistent potential profile and Fermi level position in n-type �-doped Si. This model describes the six
valleys in the Si conduction band adequately. We include exchange-correlation effects under the local density
approximation. The comparison of our results to empirical pseudopotential calculations shows very good
agreement, while effective mass approximation calculations agree only in the low doping regime. At ultra high
densities, an oscillatory behavior of the Fermi-level position as a function of the doping concentration is
predicted.
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I. INTRODUCTION

Nowadays, �-doping layers are widely used in elec-
tronic devices. Apart from their role as suppliers of carriers
for two-dimensional electron gases �2DEGs�,1 or two-
dimensional hole gases �2DHGs�,2 they can also be em-
ployed both as contact and channel in a field effect
transistor,3 as a barrier in double barrier resonant tunneling
devices,4 as contacts in an interband tunnel diode,5 as well as
improve the characteristics of a heterojunction bipolar
transistor.6

With the recent achievement of very high P concentration
in �-doped Si and its proposed use for quantum comp-
utation7,8 and epitaxial circuitry,9 the theoretical study of
these ultra-high concentration layers in Si has become more
important.

Because of its ease of implementation and low computa-
tional requirements, most of previous theoretical studies of
�-doping layers in Si have used the effective mass approxi-
mation. Eisele10 and Li et al.11 computed the n-type potential
profile of a single layer with a simple model. Scolfaro et al.12

have studied the electronic structure of superlattices with a
multivalley effective mass approximation formalism. One
drawback of the effective mass approximation is that it fails
to describe properly the intervalley couplings introduced by
the self-consistent confining potential, although this can be
remedied to some extent with the introduction of further
parameters.12 On the other hand, an atomistic method such as
empirical tight binding13 will take into account automatically
the effect of the reduced symmetry, but until present it has
only been applied to p-type �-doped semiconductors.14

In this work we present a self-consistent tight binding
calculation of the electronic structure of a n-type �-doped Si.
It is found that at ultra-high doping concentrations, the Fermi
level as a function of the doping density has an oscillatory
behavior. The understanding of such an oscillatory behavior
is important for the design of ultra-high density epitaxial
circuitry and quantum information devices. The paper is or-
ganized as follows. In Sect. II we present the antibonding
orbital model �ABOM� used and the computational methods
we employ. Then, in Sec. III we show and analyze our re-
sults, comparing them with effective mass approximation
and empirical pseudopotential calculations. Finally, we show
our conclusions in Sec. IV.

II. METHODS

The results presented here are obtained with the empirical
tight binding method.13 We chose a basis composed of
��s� , �px� , �py� , �pz�� antibonding �conduction band� states lo-
cated on a fcc lattice, following the antibonding orbital
model �ABOM� by Chang et al.15 This basis describes the
bands that originate from the conduction band �2� and �15
states16 at the zone center. Since this is a full zone model, it
will include in the formalism the effects caused by the inter-
valley mixing arising from the reduced D2d symmetry of the
� layer. Second-neighbor couplings are kept to describe
properly the � line valleys. The reduced dimensionality of
the ABOM basis allows for faster calculations with respect to
atomic orbital-type tight binding calculations.17

The matrix elements of the Hamiltonian H are given by
the following set of parameters:

�R0,s�H�R0,s� = Es �R0,px�H�R0,px� = Ep

�R0,s�H�R1,s� = Ess �R0,s�H�R2,s� = Vss

�R0,s�H�R1,px� = Esx �R0,s�H�R2,px� = Vsx

�R0,px�H�R1,px� = Exx �R0,pz�H�R1,pz� = Ezz

�R0,px�H�R1,py� = Exy �R0,py�H�R2,py� = V2

�R0,px�H�R2,px� = V1 + V2, �1�

and the rest of the matrix elements can be obtained by appli-
cation of the corresponding symmetry operations.

The parameters for our calculations are obtained from
Ref. 15. Since we are ready to sacrifice full zone accuracy in
favor of more precision in the description of the bands near
the conduction band �CB� edge, where the occupied states
will lay, we choose the parameter set labeled with Si �II�.
For completeness, we include the employed parameters in
Table I.

The expression of the Hamiltonian matrix elements with
nearest and second-nearest neighbors allows for a fast diago-
nalization of the Hamiltonian matrix, since it possesses a
high degree of sparseness. For large problems a sparse, itera-
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tive method of diagonalization requiring matrix-vector prod-
ucts only �e.g., ARPACK18� is preferred, specially as the physi-
cal model we employ leads to requesting only a few
�typically in the range 10–20� lowest eigenvalues of the
spectrum of the Hamiltonian. The iterative methods have the
added advantage of requiring very little storage because the
matrix-vector products can be straightforwardly expressed in
terms of the 19 �one on-site, 12 nearest-neighbors, six
second-nearest-neighbors� 4�4 coupling matrices.

The self-consistency cycle is started with the specification
of a guess to the sum of the Hartree potential VH�z� and a
local approximation VXC�z� to the exchange-correlation po-
tential. Then the Schrödinger equation

�H�k	� + VH�z� + VXC�z�
�n,k	
�z� = En�k	��n,k	

�z� �2�

is solved, where H�k	� is the bulk ABOM Hamiltonian and
En�k	� is the energy of the nth level �n�z� at the reciprocal
space point k	. VH�z� and VXC�z� are taken as diagonal in the
ABOM basis set. Then, the effective mass corresponding to
each level mn

� is calculated and the charge density is com-
puted using

��z� =
2

a�q2 � ��
n

mn
���n,0�z��2

En�0�

	

fFD�E;
,T�dE

+4�
n�

mn�
� ��n�,kmin

�z��2
En��kmin�

	

fFD�E;
,T�dE� ,

�3�

where a is the unit cell size, kmin is the position of one of the
four degenerate valleys in the kx−ky plane, fFD�E ;
 ,T� is the
Fermi-Dirac distribution for a chemical potential 
 and a
temperature T, and n , n� run through the levels with energies
less than 
+10kBT, with kB being the Boltzmann constant.
Note that we do not include a factor of two in front of the
contribution to the charge density from the zone center states
because the folding of the two valleys with kz�0 onto the
zone center and the coupling of these two valleys is auto-
matically included in our model. Then we solve the Poisson
equation to obtain VH�z� for the following iteration, and the

exchange-correlation potential in the local density approxi-
mation is computed from ��z� from the parametrization by
Perdew and Zunger.19 We stop the cycle when the maximum
relative change in VH�z�+VXC�z� between iterations is less
than 10−3. We find that using the Pulay mixing scheme20,21

convergence improves greatly with respect to linear mixing,
specially at medium and high charge densities.

The background charge is modeled by a Gaussian distri-
bution. The energy difference between the Fermi level and
the first bound state is set as an input parameter. Charge
neutrality is ensured at each iteration step by rescaling the
donor background concentration to match the electron con-
centration. This procedure avoids the trial of several Fermi
levels until achievement of charge neutrality.

Normally, we are interested in the position of the Fermi
level with respect to the conduction band edge �CBE� for a
series of concentrations. As previously mentioned, we sweep
the concentrations by changing the energy separation be-
tween the Fermi-level 
 and the first bound state E0. This
separation is defined as EF�
−E0. Figure 1 shows the
depth of the self-consistent potential as a function of dopant
density. It is found that the potential minimum decreases
monotonically as the density increases. Due to the approxi-
mate linearity seen in Fig. 1 we have found that, during a
ramp up of EF, the extrapolation of the two previous poten-
tial profiles yields a very good guess for the value of EF at
which calculations are being made, requiring only approxi-
mately ten iterations to reach convergence even for the high-
est density considered.

III. RESULTS

A. Exchange-correlation effects

In our calculations, the exchange-correlation effect is in-
cluded within the local density approximation �LDA�. As
shown in Fig. 2, the inclusion of the exchange-correlation
�XC� terms changes the results significantly with respect to
calculations with Hartree terms only. The observed changes

TABLE I. Parameters used for Si in the antibonding orbital
model.

Es 5.35359

Ep 10.29167

Ess 0.18938

Esx 0.1365792

Exx 0.1375

Ezz −2.873505

Exy 0.6049156

Vss −0.57935

Vsx 0.07792

V1 −0.713766

V2 0.808316 FIG. 1. Minimum of the self-consistent potential for a n-type �
layer. The full width half maximum �FWHM� of the donor distri-
bution is 16.0 Å. The inset illustrates several symbols used in the
text �all quantities are negative except for EF� for a potential profile
corresponding to a carrier concentration of 9.82�10−3 Å−2.
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in the positions of the energy levels and the Fermi level, of a
few tens of meV are in qualitative agreement with previous
density functional calculations in Si interfaces22 and recent
empirical pseudopotential results.23 Here we choose a full
width half maximum �FWHM� for the donor distribution of
16.0 Å, consistent with the experimental results of 15 Å in
Ref. 7. For this amount of spread, the Fermi level versus
doping concentration displays a minimum at doping density
�n� around 0.01 Å−2. Note that at low density limit, the
Fermi level approaches zero, consistent with previous
effective-mass model calculations. However, this is inconsis-
tent with the fact that at zero density limit the Fermi level
should coincide with the ground state energy of Si donor at
0 K, which is around −0.029 eV �Ref. 24� �no short range
effects/chemical species information about the donor are in-
cluded in our calculations�. This obvious discrepancy is
caused by the fact that the doping potential used in the cal-
culation is averaged over the in-plane coordinates �x and y�,
which is a good approximation only at the high density limit
when the average donor separation is smaller than the effec-
tive Bohr radius �around 25 Å for phosphorous donor in Si�.
To remove such discrepancy, one needs to replace the in-
plane uniform doping potential by a dilute two-dimensional
array of donors in the doping planes, which would require
formidable computational effort. Since our main interest is in
the high density limit, it suffices to study the model with an
in-plane averaged doping potential with the understanding
that at low doping densities the Fermi-level position should
approach the donor ground state rather than zero. With this in
mind, we see that the Fermi level calculated within Hartree
approximation �dotted line in Fig. 2� should start at around
−0.029 eV at zero density and gradually increase as the den-
sity increases. It then reaches a maximum at n around
0.024 Å−2, and then decrease again, showing an oscillatory
behavior. The increase of Fermi level with increasing density
can be understood in terms of the screening and band filling
effects. The turn-around at n�0.024 Å−2 �causing an oscil-
latory behavior� will be explained in Sec. III C. When the
exchange-correlation �XC� effect is included, it lowers the

subband energies and hence, the Fermi level. Consequently,
the Fermi level shows a minimum at n�0.01 Å−2. The XC
effect also pushes the turn-around point to higher density.

B. Dependence on the size of superlattice unit cell

Since we are using periodic boundary conditions to facili-
tate the calculation, we need to make sure that the superlat-
tice unit cell is large enough so that neighboring � layers are
decoupled. Figure 3 shows the position of the Fermi level 

as a function of the doping concentration for several spacer
thicknesses. The full width half maximum �FWHM� for the
donor distribution of 16.0 Å is assumed. We see that conver-
gence has been achieved for a separation of 80 ML �at
2.7155 Å/ML�, indicating an effective decoupling of the �
layers. This is in good agreement with Scolfaro et al.,12 who
found that the � layers are decoupled at �200 Å of separa-
tion.

FIG. 2. Position of 
 as a function of the doping for a FWHM
of the dopant distribution of 16.0 Å with �solid� and without
�dashed� exchange-correlation terms, at 0 K.

FIG. 3. Position of 
 as a function of the doping for structures
with different separation between the � layers.

FIG. 4. Position of 
 as a function of the doping for structures
with different FWHM of the dopant distribution.
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C. Effect of spreading of the �-layer doping

Figure 4 shows the Fermi-level position as a function of
doping density for different values of FWHM of the doping
distribution. The XC effect is included here. This could
model, for example, the effect of a longer annealing time
after dopant deposition or the effect of a higher growth tem-
perature.

We see that the position of the Fermi level is fairly sen-
sitive to the value of the FWHM. In particular, we see that at
lower and medium dopant concentrations, the Fermi level
gets lower as the FWHM decreases. This is because the con-
fining potential will be shallower for less concentrated dop-
ant distributions and, therefore, the energy levels will be
closer to the conduction band �CB� edge. Thus, the Fermi
level will also be closer to the CB edge.

Another important feature seen in Fig. 4 is the presence of
an oscillatory behavior in the Fermi level. This can be ex-
plained from the rates of change of the self-consistent energy
levels as the doping is increased. In the parabolic band ap-
proximation and at 0 K, the position of the Fermi level is
given by


 =
Cn + �i=0

N−1
mi

�Ei

�i=0

N−1
mi

�
, �4�

where Ei is the energy of the ith level, with i running through
the N occupied levels, n is the two-dimensional electron den-
sity, and C��q2 is a constant.

Taking the derivative of Eq. �4� with respect to the elec-
tron concentration—that is to say, with respect to the doping
amount—we obtain, assuming the effective masses do not
vary much when the concentration is changed

d


dn
�

C

�i=0

N−1
mi

�
+

�i=0

N−1
mi

�dEi/dn

�i=0

N−1
mi

�
. �5�

The first term will always be positive, while the second will
always be negative. This equation is easy to interpret when
only the first bound state is occupied. The rate at which the
energy separation between the Fermi level and the first
bound state EF will change is the inverse of the density of
states C /m0

�. Now, if E0 decreases faster �slower� than EF
grows when the charge density augments, 
 will decrease
�increase�. Equation �5� basically describes this same argu-
ment for the case where multiple bands are occupied. Thus,
the Fermi-level position as a function of doping density will
display either a kink or a turn-around when a new subband
begins to get filled.

In the particular case shown in Fig. 4, the turn-around
occurs when a new set of states originating from the minima
along the �100� lines becomes low enough in energies to be
occupied.

D. Finite temperature effects

Next, we study the effect that finite temperatures have on
the position of the chemical potential 
. Figure 5 shows 
 as
a function of the doping concentration for several tempera-

tures. We find that the variations in 
 become less dramatic
as temperature increases, as expected due to the thermal
smearing of the occupation probabilities. The chemical po-
tential still shows an oscillatory behavior for FWHM
=19.2 Å at 77 K.

E. Intervalley mixing and nonparabolicity effects

Since ABOM is a full zone description, intervalley mixing
and band nonparabolicity are naturally included within the
model. However, this same embedding makes it difficult to
decouple these effects from the rest of the simulation. Thus,
we resort to comparison with effective mass approximation
�EMA� for this purpose.

In Fig. 6 we compare results obtained with ABOM to
EMA calculations. Label EMA1 refers to calculations with
the standard Si effective masses mt

�=0.19 and ml
�=0.92,

while EMA2 refers to calculations with mt
�=0.19 and ml

�

=1.2. The masses in EMA2 are chosen to match those ob-
tained from the ABOM bands. Note that for high doping

FIG. 5. Position of 
 as a function of the doping for different
temperatures and a FWHM of the dopant distribution of 19.2 Å.

FIG. 6. Position of 
 as a function of the doping for ABOM and
two implementations of EMA �see text for details�.
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concentrations, the band filling is so high that the band non-
parabolicity effect will be important. Since the bandwidth for
the conduction band structure along the �001
 axis obtained
in ABOM is in agreement with the empirical pseudopotential
model, the use of an enlarged value of ml

� as obtained in
ABOM can actually give a more reliable value for the den-
sity of states on the energy scale of interest here.

We see that the biggest effect on the results comes from
the use of different effective masses �EMA1 versus ABOM�.
The lighter the longitudinal mass, the lower the density of
states and the higher the energy of the confined states, which
both contribute to a higher Fermi level, as seen in the figure.
When the influence of different effective masses is factored
out �EMA2 versus ABOM�, the results provide a measure of
the effect of intervalley mixing and nonparabolicity. The
EMA2 and EBOM results are similar up to �5�10−3 Å−2,
showing the EMA calculations for this system lose validity at
the very high dopant concentrations that can be present in �
layers proposed for epitaxial circuitry.7,9

F. Comparison to empirical pseudopotential results

In order to validate our results, we compare the calculated
Fermi-level position for the case FWHM=0 Å to that ob-
tained with an empirical pseudopotential method �EPM� by
Qian et al.23 �see their Tables I and II�. Figure 7 shows an
excellent agreement when the short range �SR� Coulomb in-
teraction effects are not included in EPM �full squares�, as it
should be since SR terms are not included in our calculation,
either. The empty circle in Fig. 7 corresponds to the inclusion
of SR effects for 1 /4 ML doping concentration, which re-
duce the position of the Fermi level by about 10%. This
comparison shows that ABOM can be used reliably over the
full range of technologically important doping concentra-
tions, including the ultra-high concentration case.

IV. CONCLUSION

In conclusion, we have used an antibonding orbital model
�ABOM� to calculate self-consistently the Fermi-level posi-
tion for several n-type �-doping structures. The use of this
model has allowed us to compute the properties of �-doped
Si at ultra-high densities, of importance for possible use in
epitaxial circuitry, while including the intervalley mixing and
nonparabolicity effects, not available in simpler models. We
have found the appearance of an oscillatory behavior in the
Fermi level and related it to the behavior of the energy levels
as the doping amount varies. When the temperature is raised
from zero, these oscillations dampen and, in average, the
Fermi level lowers to avoid a too high number of occupied
bands. Such an oscillatory behavior may be of importance in
the design of ultra-high density epitaxial circuitry and quan-
tum information devices. We have shown that the exchange-
correlation effects are non-negligible. Our results show very
good agreement with empirical pseudopotential results while
keeping a low computational cost, demonstrating the suit-
ability of our approach for reduced dimensionality hetero-
structures.
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