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This paper presents results of ab initio accuracy thousand atom calculations of colloidal quantum dots and
wires using the charge patching method. We have used density functional theory under local density approxi-
mation �LDA�, and we have corrected the LDA bulk band structures by modifying the nonlocal pseudopoten-
tials, so that their effective masses agree with experimental values. We have systematically studied the elec-
tronic states of group III-V �GaAs, InAs, InP, GaN, AlN, and InN� and group II-VI �CdSe, CdS, CdTe, ZnSe,
ZnS, ZnTe, and ZnO� systems. We have also calculated the electron-hole Coulomb interactions in these
systems. We report the exciton energies as functions of the quantum dot sizes and quantum wire diameters for
all the above materials. We found generally good agreements between our calculated results and experimental
measurements. For CdSe and InP, the currently calculated results agree well with the previously calculated
results using semiempirical pseudopotentials. The ratios of band-gap-increases between quantum wires and
dots are material-dependent, but a majority of them are close to 0.586, as predicted by the simple effective-
mass model. Finally, the size dependence of 1Se-1Pe transition energies of CdSe quantum dots agrees well with
the experiment. Our results can be used as benchmarks for future experiments and calculations.
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I. INTRODUCTION

During the past 20 years, various semiconductor nano-
crystals have been synthesized and it has been found that
their electrical and optical properties are dramatically differ-
ent from their bulk counterparts.1–13 A typical semiconductor
nanocrystal with 1–10 nm diameter consists of about 100–
10000 atoms. These small colloidal nanocrystals as promis-
ing advanced functional materials can be found in many dif-
ferent applications, ranging from lasers,14–16 solar cells,17 to
single-electron transistors.18 One example of these nanocrys-
tal applications is to incorporate them into biological
systems.19–22 CdSe quantum dots �QDs� permit in vivo can-
cer cell targeting and imaging in living mice.23 Many of
these applications are related to the size-dependence of the
nanocrystal optical properties. In a semiconductor, the opti-
cal properties are related to the edge transitions of the elec-
tronic band gaps. Thus, studying the size dependence of the
electron band gap and the related exciton energy is one of the
most important topics in semiconductor nanocrystal research.

Following different manufacturing processes, the nano-
crystals can be grown in different matrices, such as poly-
mers; cavities of zeoliths, glasses, and solutions; and organic
molecules or biomolecules. In many cases, the surface dan-
gling bond electronic states have been removed by the ma-
trices. In these cases, their electronic and optical properties
become the intrinsic features of the nanosystem, independent
of the enclosure matrices and surface passivations. Thus, one
of the main tasks in QD research is to study the dependencies
of these intrinsic properties to the sizes of the QDs. Besides
the change in size, change in shape also leads to different
electronic states and energy band gaps in nanocrystals.24

With rapid developments in chemical synthesis, the control
of nanocrystal size, shape, and dimensionality25–31 have be-
come possible. The shape effects can be very useful in light-

emission applications. For example, a recent experiment32,33

has found that the lack of a large overlap between absorption
and emission spectra in CdSe quantum rods �QRs� can im-
prove the efficiency of light-emitting diodes �LEDs� due to
the reduction in reabsorption. Spherical-shaped QDs, which
have quantum confinements in all three dimensions, have
been studied extensively. But the study in QRs and quantum
wires �QWs� are just beginning. As the length of a QR in-
creases, it becomes a QW, which is confined in two dimen-
sions. In this work, we will focus on the electronic structures
of semiconductor QDs and QWs.

There have been many theoretical works about the elec-
tronic structures of QDs and QWs. Several theoretical ap-
proaches have been used in these studies. One is the con-
tinuum k · p effective-mass method. This is the most widely
used method,34–43 borrowed from bulk quantum well and
exciton studies. However, this method has several shortcom-
ings, especially for small colloidal nanocrystals. For ex-
ample, the small sizes of the QD might be beyond the valid
range of the continuum k · p model in reciprocal space, and
there is an ambiguity for the k · p boundary condition. The
second widely used method in nanostructure calculation is
the tight-binding model.44–49 The tight-binding model can be
used to study thousand-atom systems easily, and it has been
proved to be highly successful. However, it is sometimes
difficult to fit the conduction band band structure. In addi-
tion, there is no information about the atomic features of the
wave functions. The third method for nanocrystal study is the
empirical pseudopotential method �EPM�. The original EPM
was developed in the 1960s to describe the bulk band struc-
tures of semiconductors; it uses a sum of non-self-consistent
screened pseudopotentials to represent the total potential of a
system, and it also uses a variationally flexible plane wave
basis to describe the electron wave function. Recently, EPM
has been adapted to calculate nanocrystals. It has also been
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improved by �1� fitting it to the ab initio bulk potentials; �2�
adding local environment-dependent prefactors to describe
the deformation potentials; and �3� rescaling the kinetic en-
ergy operator to mimic the effects of nonlocal potentials.
These improvements have allowed us to describe the elec-
tronic structure of nanosystems accurately.50–57 Despite the
success of the EPM method, there are still problems that
need to be resolved. One problem of the EPM calculation for
free-standing colloidal systems is the surface passivation.
While it is easy to fit a bulk EPM, it is often difficult to find
the corresponding surface passivation potentials. As a result,
the EPM method and its improved version, semiempirical
pseudopotential method �SEPM�, have been limited to a few
semiconductor materials �e.g., Si, Ge, InAs, InP, CdSe� for
colloidal nanocrystal studies. The fourth method to calculate
the electronic structure of a nanocrystal is to use ab initio
methods,58–63 such as the density functional theory �DFT�.
This method is more reliable than the EPM approach and can
be used for almost any materials. One disadvantage of this
method is the large computational time required for thousand
atom nanostructure calculations. Besides, if the DFT method
with the local density approximation �LDA� is used, there is
often a band gap problem that needs to be addressed.

One recent development in nanoscience and technology is
the synthesis of myriad types of nanocrystals by various
chemical methods. It may seem that nanosized QDs and
QWs can be synthesized for almost any given binary semi-
conductor compounds, for both group II-VI and group III-V.
However, the EPM method that we have been using is lim-
ited to a few semiconductor materials due to the difficulty in
getting good surface passivations. In the EPM approach,
without a good surface passivation, the interior band edge
states cannot be calculated. In this paper, we will use the
newly developed charge patching method to calculate QDs
and QWs for various semiconductor materials. This is essen-
tially an ab initio DFT method, but without the computa-
tional cost of a direct DFT calculation. We will use partially
charged pseudohydrogen atoms to passivate the surface. As
will be explained in Sec. II, this represents a simple but ideal
passivation that removes the surface dangling bond states.
The charge patching method reproduces the LDA charge
densities without doing direct LDA calculations for the
whole system. We have also modified the LDA band struc-
ture, so the effective mass �which is critical to the quantum
confinement effect� is corrected when compared to experi-
mental values. Combining these methods, we have a com-
plete approach to calculate the electronic structures and op-
tical properties of QDs and QWs for any given
semiconductor materials. The purpose of this paper is to
present the results of such calculations, and to compare these
results with known experimental measurements. For systems
there are still no good experimental measurements, our re-
sults can serve as predictions to guide future experiments.
Our results can also be used as benchmarks for future theo-
retical works, since for many of these systems, this is the first
time the ab initio results have been calculated.

We would like to compare with a few types of experimen-
tal measurements in this paper.

�1� Photoluminescence (PL) measurements of the quan-
tum confinement effects. The most direct way to detect the

quantum confinement effect is to measure the photolumines-
cence of the nanocrystals.62–65 The PL measures the lowest
exciton energy of the system. However, the exciton energy
includes the single particle band gap energy and the electron-
hole Coulomb interaction energy. Thus, in order to compare
with the experimental measurements, we also need to calcu-
late the Coulomb interaction energies, along with single par-
ticle eigenenergies.

�2� High energy excitation in quantum dots or rods. Re-
cently, there have been many experiments to investigate and
assign the excited states of QDs or QRs �Refs. 34 and 66–
69� by the size-selective technique of photoluminescence ex-
citation �PLE�. The energy spacings of a series of the higher
excited states can vary with the size of QDs. This has in-
spired many theoretical investigations into this
problem.34,70–73 In this work, we will calculate the PLE of
CdS QDs.

�3� Ratio of confinement-energies between quantum wires
and dots. Recently, high-quality semiconductor QWs have
been fabricated by solution-liquid-solid approaches.12,64,65

The diameters of the quantum wires synthesized in this way
are small enough to show strong quantum confinement ef-
fects just as in colloidal quantum dots. This provides an op-
portunity to study the dimensionality dependence of the
quantum confinement effects. According to a simple
effective-mass approximation model,73–75 the band gap in-
creases of QDs and QWs from the bulk value are

�Eg =
2�2�2

m*D2 ,

where

1

m* =
1

me
* +

1

mh
*

me
* and mh

* are electron’s and hole’s effective masses, respec-
tively, and D is the QD and QW diameter. For spherical
QDs, �=� is the zero point of the spherical Bessel function,
while for cylindrical QWs, �=2.4048 is the zero point of
the cylindrical Bessel function. Thus the ratio of band gap
increases between the QWs and QDs with the same size D
should be �Eg

wire /�Eg
dot=0.586. The interesting question is,

How close are our results to this ratio compared to the
simple effective mass result?

�4� Conduction band S and P state splitting. Besides the
PLE experiment, which can be used to measure the high
excited states, the conduction band intraband splitting can be
measured more directly using n-type doping and the corre-
sponding infrared absorption.76–78 Compared with PLE,
which measures the exciton energies, the intraband transition
measurement is more direct, and involves only conduction
band states. We will report the results of 1Se-1Pe transition
energy for CdSe QDs.

II. CALCULATION METHOD

A. LDA calculations for bulk materials

We first calculate the band structures of bulk materials via
a self-consistent plane-wave pseudopotential �PWP� method,
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based on LDA of the DFT. The single-particle wave function
�i and its eigenenergy �i are solved by Schrödinger’s �Kohn-
Sham� equation,

�− 1
2�2 + Vnonlocal

ps �r� + VLDA�r���i = �i�i, �1�

where Vnonlocal
ps �r� is the nonlocal part of the ionic pseudopo-

tential, which is angular momentum dependent. VLDA�r�
=Vlocal

ps �r�+VHXC�r� contains the local ionic pseudopotential
Vlocal

ps �r� and the electron Coulomb and LDA exchange cor-
relation potential VHXC�r�. Throughout all of our calcula-
tions, we have used the norm-conserving pseudopotentials.
We have included the d electron in the valence electrons for
Zn atoms, but only kept s and p electrons for other elements.
We have used a plane wave cutoff energy of 25–35 Ryd for
most systems, except for system containing Zn or the first
row elements N and O, where a 65 Ryd cutoff is used. We
have used the PEtot �Ref. 79� plane wave pseudopotential
package for our calculations. We have ignored the spin-orbit
coupling for the valence bands.

B. Surface passivations

The surface of an unpassivated nanocrystal consists of
dangling bonds, which will introduce band gap states. The
purpose of a good passivation is to remove these band gap
states. One way to do so is to pair the unbonded dangling
bond electron with other electrons. If a surface atom has m
valence electrons, this atom will provide m /4 electrons to
each of its four bonds in a tetrahedral crystal. To pair these
m /4 electrons in each dangling bond, a passivating agent
should provide �8−m� /4 additional electrons. To keep the
system locally neutral, there must be a positive �8−m� /4
nuclear charge nearby. Thus, the simplest passivation agent
can be a hydrogenlike atom with �8−m� /4 electrons and a

nuclear charge Z= �8−m� /4. For IV-IV group materials like
Si, this means Z=1 �hydrogen atoms�. For III-V and II-VI
systems, the resulting atoms have a noninteger Z, thus a
pseudohydrogen atom. These artificial pseudohydrogen at-
oms do describe the essence of a good passivation agent, and
thus can serve as simplified models for the real passivation
situations.

This pseudohydrogen model has been used successfully in
our previous studies.63 Here, we will use it to passivate all of
our systems. Note, we have Z=1,0.75,0.5,1.25,1.5 for IV,
V, VI, III, and II row atoms, respectively. A half bulk bond
length is used as the pseudohydrogen atom-surface atom
bond length for all the systems. All the band gap states have

FIG. 1. Schematic configuration for Ga-terminated and
N-terminated surface. Dangling bonds passivated by H contain 1.25
and 0.75 electrons on the Ga-terminated and As-terminated ideal
surface, respectively. The surface charge-density motifs are gener-
ated for the group of atoms inside the dashed line square box. �a�
Ga-terminated surface passivated by one H atom. �b� N-terminated
surface passivated by one H atom. �c� Ga-terminated surface passi-
vated by two H atoms. �d� N-terminated surface passivated by two
H atoms.

FIG. 2. Pseudopotentials of �a� Ga and �b� As atoms in real
space. The nonlocal pseudopotentials are angular momentum de-
pendent. Vs and Vp are the s and p states of the valence wave
functions. The modified pseudopotentials are Vs+correct and Vp

+correct, respectively. Z is the pseudo core charge.

FIG. 3. Band structures of bulk GaAs of LDA self-consistent
calculation �solid curves� and of the modified nonlocal pseudopo-
tentials �dotted curves�.
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been removed, and because of that, our interior nanostructure
electron states do not depend sensitively on the details of the
surface passivations. One example of the pseudohydrogen
passivation for the GaN system is depicted in Fig. 1, where
Z=1.25 for Ga atom passivations, and Z=0.75 for N atom
passivations.

C. Correcting the bulk effective masses

One problem of the LDA calculation for the electronic
band structure is the severe underestimation of the electron
band gap. Related to this, and more significant for our pur-
pose, is the underestimation of the electron effective mass.
For example, for GaAs, we obtain Eg=0.656 eV and me

*

=0.04 under LDA calculation, both of which are much
smaller than the experimental results of Eg=1.633 eV and
me

*=0.067, respectively. To describe the quantum confine-
ment effects accurately, we have to correct the shape of the
bulk band structure �which is in part indicated by the effec-
tive mass�. Here, we have modified the nonlocal pseudopo-
tentials of the cations and anions to correct the band struc-
tures. Unfortunately, the band gap and the effective mass
cannot be corrected simultaneously using this simple poten-

tial modification. If the band gap is corrected, the effective
mass will be too large. For our purposes, it is more important
to correct the band structure shape �e.g., the effective mass�,
while the absolute band gap error can be corrected by uni-

FIG. 4. �Color online� The charge motifs used to generate the
charge densities of GaNP systems and GaPH quantum dots. One
charge density isosurface is plotted.

FIG. 5. Planar averaged atomic potentials of CdSe QDs with
zinc blende structure. The diameter of QDs is 1.99 nm. The hori-
zontal position axis is along the �100� direction. Potentials from
self-consistent LDA calculation and charge patching method are
shown by the solid curve and dotted curve, respectively.

FIG. 6. The single particle eigen energies of a 149 Si atom
quantum dot, comparison between the charge patching results, and
the direct self-consistent LDA results. Each verticle bar is an
eigenenergy.

FIG. 7. Wave function isosurfaces of CdSe QDs with 1.32 nm
diameter for �a� CBM and �b� VBM states. The bonding geometry
of CdSe QDs is a wurtzite structure. Isosurfaces are drawn at 20%
of maximum. The small isolated black spheres are the surface pas-
sivation pseudo-H atoms.
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formly shifting the results for all the QDs and QWs. We have
added � sin�r� /rc� /r �zero outside rc� to the s, p, and d
nonlocal pseudopotentials, with rc fixed at 0.8�1.2 Å, and
where � is a fitting parameter. We have fitted the effective
masses, plus the values of X1c−	1c, X3c−	1c, and L1c−	1c
energies, while the valence band maxima �VBM� are kept at
their original LDA values. The modifications of the nonlocal
pseudopotentials are relatively small, as shown in Fig. 2,
thus many features of the original LDA results �e.g., the de-
formation potentials� are kept intact. The modified band
structure of the bulk GaAs is shown in Fig. 3. The fitting
procedure is simple and straightforward. In practice, this is
significantly different from the EPM where different fittings
can yield dramatically different potentials. For the surface
pseudohydrogen atoms, no modification is needed to keep
the original good passivations. Note that both in the fitting
and in the following large-system calculations, the original
pseudopotentials are used in the self-consistent LDA calcu-
lations for the charge densities, and the modified nonlocal
pseudopotentials are used only in a post process to calculate
the electronic structures of the systems.

D. Charge patching method

For nanostructures over several hundred atoms, the direct
LDA calculation becomes very expensive. To solve this
problem, we have used our newly developed charge patching
method. In this method, it is assumed that the charge density

at a given point depends only on the local atomic environ-
ment around that point. As a result, we have generated
charge density motifs for different atoms from small proto-
type LDA calculations to represent different local atomic en-
vironments. These charge motifs can be reassembled to gen-
erate the charge density of a large nanosystem without an
explicit direct LDA calculation of that system. The details of
this method have been published elsewhere.80 Here, we only
give a brief description.

A charge density motif is calculated as

mI

�r − R
� = �LDA�r�

w
��r − R
��

�R
�
w
���r − R
���

, �2�

where R
 is an atomic site of atom type 
; mI

�r−R
� is the

charge density motif that belongs to this atomic site; and
�LDA�r� is the self-consistently calculated charge density of a
prototype system. We have used the atomic charge density of
the atom 
 multiplied by an exponential decay function as
w
�r� in Eq. �2�. The calculated localized mI


�r−R
� is
stored in a numerical array. We have used a subscript I
 in
mI


to denote the atomic bonding environment of the atom 

at R
. This atomic bonding environment can be defined as
the nearest neighbore atomic types of atom 
.

To reconstruct the charge density of a given system, the
charge motifs for all the atoms are placed together as

FIG. 8. Same as Fig. 7, but the diameter of the QDs is
4.33 nm.

FIG. 9. Same as Fig. 7, but for CdSe QWs with 1.39 nm diam-
eter. We are looking down the QW in the wurtzite �0001� direction.
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�patch�r� = �
R


mI

�r − R
� . �3�

Here, the atomic bonding environment I
 should be the same
as in Eq. �2�.

After �patch�r� is obtained, the LDA formula can be used
to generate the total potential VLDA�r� in Eq. �1�, and the
modified nonlocal potential described in Sec. II C can be
used to construct the Hamiltonian of a given nanosystem.
After these, the linear scaling folded spectrum method
�FSM� �Ref. 50� is used to solve the band edge states of a
thousand-atom nanostructure.

In Fig. 4, we show the charge motifs used to construct
GaNP quantum dots. Although we discuss only binary com-
pounds throughout the rest of this paper, the charge patching
method can also be used to calculate ternary semiconductor
systems. In Fig. 5, we show the LDA local potential VLDA�r�
in a small CdSe quantum dot generated by the charge patch-
ing method and a direct LDA calculation. As we can see, the
difference is extremely small. In Fig. 6, we show single-
particle eigen energies of a small Si quantum dot, which
were calculated using the charge patching method and the
direct LDA method. The average eigen energy error is only
about 5 meV. From all these tests, we see that the charge
patching method is accurate enough to reproduce the ab ini-
tio LDA electronic structures for thousand-atom systems.

With the modification on the nonlocal pseudopotentials to
correct the LDA band structure, this approach can be used to
calculate accurately the electronic structures of thousand-
atom nanocrystals.

E. Screened electron-hole Coulomb interactions

In nanoscale QDs, the electrons and holes are confined in
a small physical space, leading to strong electron-hole Cou-
lomb interactions. To calculate the exciton energy or optical
absorption spectrum based on the single-particle states of
QDs, a simple approximation is to include the electron-hole

FIG. 10. Same as Fig. 9, but for CdSe QWs with 4.37 nm
diameter.

FIG. 11. Comparison of quantum confinement energies by
present “LDA+C” calculations �bulk effective-mass is corrected to
experiment� and previous “LDA” calculation �no correction on
LDA band structure� in CdSe QDs and QWs. The bond geometry of
QDs and QWs is zinc blende structure. No Coulomb energy is
considered in this figure.

FIG. 12. Comparison of the exciton energy shift �from its bulk
value� of CdSe QDs between experiment, “LDA+C” �present
work�, and SEPM calculations. Coulomb energies are considered in
this calculation. Experimental data is from Ref. 5.
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Coulomb interaction energy on top of the single-particle
band gap. In doing so, we have ignored the electron-hole
exchange interaction and possible correlation effects. How-
ever, in the strong confinement regime �which is true for
most colloidal nanosystems�, these effects are very small.
Under the above approximation, the exciton energy Eex can
be expressed as

Eex = � j − �i − Eij
C. �4�

Here, �i and � j are the single-particle valence state and con-
duction state eigen energies respectively, and Eij

C is the
electron-hole Coulomb energy calculated as

Eij
C =� � �� j�r1�2���i�r2�2�

��r1 − r2��r1 − r2�
dr1dr2, �5�

where � j�r1� and �i�r2� are the calculated electron and hole
wave functions, and ��r1−r2� is a distance dependent screen-
ing dielectric function. We have followed our previous work,
using a model dielectric function ��r1−r2�. More specifi-
cally, in the Fourier space, we have first separated the ionic
contribution from the electron contribution as �−1�k�
=�el

−1�k�+��ion
−1 �k�. Then, by using the Thomas-Fermi model

of Resta, these two terms have the analytical forms of

�el
−1�k� =

k2 + q2 sin�k��/��
dotk��

k2 + q2 , �6�

��ion
−1 �k� = 	 1

�0
dot −

1

�
dot
	 1/2

1 + �h
2k2 +

1/2

1 + �e
2k2
 . �7�

Here,

�h,e = 	 �

2mh,e
* �LO


1/2

,

�LO is the longitudinal optical-phonon frequency, and me
* and

mh
* are electron and hole effective masses, respectively. q

=2�−1/2�3�2n0�1/3 is the Thomas-Fermi wave vector �where
n0 is the bulk electron density�, and � is the solution of the
equation sinh�q�� / �q��=�

dot. The macroscopic high-
frequency and low-frequency dielectric constants of the QDs,
� and �0, are related to the polarizability of the QDs as a
whole. The high-frequency dielectric constant is obtained
from a modified Penn model where the effective mass band
gap is replaced by the ab initio charge patch method calcu-
lated band gap,

FIG. 13. Comparison of the quantum confinement energy gap of
CdSe QWs between experiment, “LDA+C” �present work�, and
SEPM calculations. Experimental data are from Ref. 65.

FIG. 14. Size dependence of exciton energies of CdS QDs. Ex-
perimental data are from Ref. 83.

FIG. 15. Size dependence of exciton energies of CdTe QDs.
Experimental data are from Ref. 86.

FIG. 16. Comparison of the exciton energy shift �from its bulk
value� of InP QDs between experiment, “LDA+C” �present work�,
and SEPM calculations. Coulomb interactions are considered in this
calculations. Experimental data are from Refs. 87 and 88.
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�
dot�d� = 1 + ��

bulk − 1�
�Egap

bulk + �E�
�Egap

dot + �E�
, �8�

where d is the diameter of QDs; �
bulk is the bulk high-

frequency dielectric constant; Egap
bulk+�E is the energy of the

first pronounced peak in the bulk absorption spectrum; and
�E can be obtained from bulk by the Penn’s model and bulk
dielectric constant. The low-frequency dielectric constant is
obtained as �0

dot�d�=�
dot�d�+ ��0

bulk−�
bulk�.

III. RESULTS AND DISCUSSIONS

In this section, we will present our calculated results for
different semiconductor materials using the approach de-
scribed in Sec. II. We will compare our results to experimen-
tal measurements whenever possible. If the crystal structure
is zincblende, then the QW will be in the �111� direction; if
the crystal structure is wurtzite, the QW will be in the �0001�
direction. For the size dependence of the exciton energy, we
will fit our results with a general form of � /d
, where d is
the quantum dot or quantum wire diameter.

A. Quantum dots and wires

1. CdSe quantum dots and wires

We assume that CdSe QDs and QWs have a wurtzite crys-
tal structure. The following parameters were used in these
calculations: bulk lattice constants a=4.30 Å, c=7.011 Å;
�

bulk=6.2, �0
bulk=9.7.82 For the bulk calculation, we get Eg

=0.78 eV and me
*=0.069 by “LDA.” After the nonlocal

pseudopotential fitting �denoted as “LDA+C”�, we have Eg
=1.56 eV and me

*=0.13. The effective-mass by “LDA+C” is
in good agreement with experimental data.82

We have calculated the wave function charge densities of
conduction band minimum �CBM� and valence band maxi-
mum �VBM� states for d=1.32 nm and d=4.33 nm QDs �see
Fig. 7 and Fig. 8, respectively�, and d=1.39 nm and d
=4.37 nm QWs �see Fig. 9 and Fig. 10, respectively�. First,
we see that there is no surface state. This means that the
pseudo-hydrogen passivation works very well. We also see
that the wave functions in both QD and QW extend all the
way to the surfaces. As pointed out in previous studies,81 the
pseudopotential calculated wave functions are less confined
than what has been predicted by the simple effective mass
model that sets the wave funtion to be zero at the boundary
of the dot. In comparison to the QD and the QW CBM states,
although they look very different due to different viewing
perspectives, the QD CBM and QW CBM have the same
atomic characteristics. However, at the VBM state, due to the
crystal field splitting, the QD VBM and QW VBM have
different polarization.33 While the QW VBM has z direction
polarization, the QD VBM has a predominant xy polariza-
tion.

In Fig. 11, we have compared the quantum confinement
energy �the energy difference between the nanostructure and
the bulk� results between the “LDA+C” and the original
“LDA” calculations. We can see that the original LDA cal-

TABLE I. Calculated size-dependence of quantum confinement
energies of CdS QWs.

Diameter�nm� 1.33 1.86 2.33 3.48 4.18

�Eg �eV� 1.177 0.825 0.586 0.336 0.261

FIG. 17. Comparison of the quantum confinement energy gap of
InP QWs between experiment, “LDA+C” �present work�, and
SEPM calculations. Experimental data are from Refs. 12 and 64.

FIG. 18. Size dependence of exciton energies of InAs QDs.
Experimental data are from Refs. 96 and 97.

FIG. 19. Size dependence of exciton energies of ZnS QDs. Ex-
perimental data are from Refs. 100 and 101.
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culation overestimates the quantum confinement effect of the
band gap energy by about 0.25 eV in the QDs. While in the
CdSe QWs, this overestimation is about 0.18 eV.

The comparison between the experimental5,6,12,34,65–67 ex-
citon energies and our calculated results �after taking into
account the electron-hole Coulomb interactions� are pre-
sented in Fig. 12 for CdSe QDs, and in Fig. 13 for CdSe
QWs; these two figures also draw comparisons with our pre-
vious semiempirical pseudopotential results. All these results
agree well with each other. We have fitted our size dependent
results as � /d
 �d in units of nm and the resulting energy in
units of eV�. We see that in agreement with previous calcu-
lations, the 
 we got is significantly smaller than the simple
effective mass value of 2.

2. CdS quantum dots and wires

We assumed that CdS QDs and QWs have a wurtzite
crystal structure. The parameters used in this paper are as
follows: bulk lattice constants a=4.12 Å, c=6.73 Å; �

bulk

=5.5, �0
bulk=8.7.82 For bulk calculation, Eg=1.315 eV and

me
*=0.127 by “LDA;” Eg=2.115 eV and me

*=0.21 by
“LDA+C.”

The comparison with the experimental
measurement43,83–85 for QD are shown in Fig. 14, while the
calculated results for QWs are listed in Table I. We see an
excellent agreement between theory and experiment. For
CdS QD, experimentally there is a large Stokes shift.43 Pre-
viou k . p calculations have shown that this is due to a valence
state S-P transition related to spin-orbit coupling. However,
since we did not include spin-orbit coupling in our current
calculation, such effects cannot be seen in our results. Fur-
ther study is needed in this regard.

3. CdTe quantum dots and wires

We assumed that CdTe QDs and QWs have a zincblende
crystal structure. The parameters used in this paper are as
follows: bulk lattice constant a=6.48 Å; �

bulk=7.2, �0
bulk

=10.2.82 For bulk calculation, Eg=0.644 eV and me
*=0.054

by “LDA;” Eg=1.118 eV and me
*=0.09 by “LDA+C.” Com-

parisons with the experimental QD results86,89,90 are shown
in Fig. 15, while the calculated QW results are listed in Table
II. Experimental work for CdTe QDs is reported in Refs. 86,
89, and 90, and work for CdTe QWs is reported in Refs. 91
and 92.

4. InP quantum dots and wires

We assumed that the InP QDs and QWs have a zinc
blende crystal structure. The parameters used in this paper
are as following: bulk lattice constants a=5.87 Å; �

bulk

=10.9, �0
bulk=12.5.82 For bulk calculation, Eg=0.543 eV and

me
*=0.045 by “LDA;” Eg=1.130 eV and me

*=0.09 by
“LDA+C,” with the effective mass fitted to the experimental
data.82 The calculated InP QD and QW results from LDA
+C and the previous SEPM methods are shown in Fig. 16
and Fig. 17, respectively, together with experimental
measurements.64,87,88 We see that, in the QD case, the LDA
+C results are slightly higher than the SEPM and experimen-
tal values �by about 80 meV�.

5. GaAs quantum dots and wires

We assumed that the GaAs QDs and QWs have a zinc
blende crystal structure. The parameters used in this paper
are as follows: bulk lattice constant a=5.65 Å; �

bulk=10.9,
�0

bulk=12.53.82 For bulk calculation, Eg=0.656 eV and me
*

=0.04 by “LDA;” Eg=1.132 eV and me
*=0.067 by

“LDA+C.” The calculated GaAs QDs and QWs results are

TABLE II. Calculated size-dependence of quantum confinement
energies of CdTe QWs.

Diameter�nm� 1.21 2.06 2.56 3.92 4.67

�Eg �eV� 1.61 0.857 0.649 0.361 0.28

TABLE III. Calculated size-dependence of quantum confinement energies of GaAs QDs and QWs. The first line of QDs does not include
the Coulomb energies, while the second line of QDs includes the Coulomb energies.

Diameter�nm� 1.85 2.33 3.01 3.48 3.85

QDs �no� �Eg �eV� 1.849 1.454 1.091 0.961 0.85

QDs �Eg �eV� 1.571 1.253 0.951 0.833 0.738

Diameter�nm� 1.06 1.80 2.23 3.42 4.08

QWs �Eg �eV� 1.704 1.079 0.901 0.527 0.416

FIG. 20. Size dependence of exciton energies of ZnSe QDs.
Experimental data are from Ref. 104.
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listed in Table III. Experimental work for GaAs QDs was
reported in Refs. 93 and 94; for GaAs QWs, in Refs. 12, 13,
and 95.

6. InAs quantum dots and wires

We assumed that the InAs QDs and QWs have a zinc
blende crystal structure. The parameters used in this paper
are as follows: bulk lattice constant a=6.06 Å; �

bulk=12.25,
�0

bulk=15.15.82 For bulk calculation, Eg=−0.203 eV and me
*

=0.006 by “LDA;” Eg=0.268 eV and me
*=0.024 by “LDA

+C.” The InAs QD results are shown in Fig. 18, together
with the experimental measurements.96,97 We see that while
our calculated exciton energies are somewhat smaller than
the scanning tunneling microscopy experimental results,96

especially for large quantum dots, the agreement with the PL
measurement97 is very good. The calculated InAs QW results
are listed in Table IV. Experimental work for InAs QDs was
reported in Refs. 96–99, while InAs QWs was reported in
Refs. 12, 13, and 29.

7. ZnS quantum dots and wires

We assumed that the ZnS QDs and QWs have a wurtzite
crystal structure. The parameters used in this paper are as
follows: bulk lattice constants a=3.83 Å, c=6.25 Å; �

bulk

=5.7, �0
bulk=9.6.82 For bulk calculation, Eg=1.838 eV and

me
*=0.155 by “LDA;” Eg=2.367 eV and me

*=0.27 by
“LDA+C.” The calculated ZnS QD results are shown in Fig.
19, together with experimental data.100–103 The calculated
ZnS QW results are listed in Table V.

8. ZnSe quantum dots and wires

We assumed that the ZnSe QDs and QWs have a zinc
blende crystal structure. The parameters used in this paper
are as follows: bulk lattice constant a=5.67 Å; �

bulk=5.7,
�0

bulk=8.6.82 For bulk calculation, Eg=1.092 eV and me
*

=0.083 by “LDA;” Eg=1.574 eV and me
*=0.17 by “LDA

+C.” The calculated ZnSe QD results are shown in Fig. 20,
together with experimental values.104–106 The calculated
ZnSe QW results are listed in Table VI.

9. ZnTe quantum dots and wires

We assumed that the ZnTe QDs and QWs have a zinc
blende crystal structure. The parameters used in this paper

are as follows: bulk lattice constant a=6.1 Å; �
bulk=7.28,

�0
bulk=10.3.82 For bulk calculation, Eg=1.092 eV and me

*

=0.083 by “LDA;” Eg=1.785 eV and me
*=0.13 by “LDA

+C.” The calculated ZnTe QD and QW results are listed in
Table VII.

TABLE IV. Calculated size-dependence of quantum confine-
ment energies of InAs QWs.

Diameter�nm� 1.13 1.93 2.39 3.66 4.37

�Eg �eV� 2.103 1.221 0.972 0.661 0.504

TABLE V. Calculated size-dependence of quantum confinement
energies of ZnS QWs.

Diameter�nm� 1.24 1.73 2.16 3.24 3.88

�Eg �eV� 0.934 0.712 0.539 0.289 0.215

FIG. 21. Size dependence of exciton energies of ZnO QDs �a�
and QWs �b�.

FIG. 22. Size dependence of exciton energies of GaN QDs �a�
and QWs �b�.
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10. ZnO quantum dots and wires

We assumed that the ZnO QDs and QWs have a wurtzite
crystal structure. The parameters used in this paper are as
follows: bulk lattice constants a=3.25 Å, c=5.31 Å; �

bulk

=3.7, �0
bulk=7.8.82 For bulk calculation, Eg=1.838 eV and

me
*=0.155 by “LDA;” Eg=2.367 eV and me

*=0.27 by
“LDA+C.”

The calculated ZnO QD and QW results are shown in Fig.
21�a� and Fig. 21�b�, respectively. We see that, for this ma-
terial, the quantum confinement effect is quite small. At a
diameter of 30 Å, the exciton energy increase is only about
200 meV. One reason for this is the relatively large electron
effective mass due to the large band gap of this material. In
addition, the electron-hole Coulomb interaction has reduced
the exciton confinement energy by half as shown in Fig.
21�a�. This is due in part to the small dielectric constant �

bulk

in this system, which is also related to the large band gap.
Thus, in short, a larger band gap binary semiconductor ma-
terial will have a smaller quantum confinement effect in QD
and QW. We find this trend is true across all the materials we
studied.

11. GaN quantum dots and wires

We assumed that the GaN QDs and QWs have a wurtzite
crystal structure. The parameters used in this paper are as
follows: bulk lattice constants a=3.19 Å, c=5.19 Å; �

bulk

=5.47, �0
bulk=10.4.82 For bulk calculation, Eg=2.016 eV and

me
*=0.179 by “LDA;” Eg=2.394 eV and me

*=0.22 by
“LDA+C.” The calculated GaN QD and QW results are
shown in Fig. 22�a� and Fig. 22�b�, respectively.

12. InN quantum dots and wires

We assumed that the InN QDs and QWs have a wurtzite
crystal structure. The parameters used in this paper are as
follows: bulk lattice constants a=3.53 Å, c=5.76 Å; �

bulk

=8.4, �0
bulk=15.3.82,107 For bulk calculation, Eg=−0.331 eV

and me
*=0.006 by “LDA;” Eg=0.597 eV and me

*=0.084 by
“LDA+C.” The calculated InN QD and QW results are

shown in Fig. 23�a� and Fig. 23�b�, respectively. Experimen-
tal work for InN QDs was reported in Ref. 108, while ex-
perimental work for InN QWs was reported in Refs. 109 and
110.

13. AlN quantum dots and wires

We assumed that the AlN QDs and QWs have a wurtzite
crystal structure. The parameters used in this paper are as
follows: bulk lattice constants a=3.11 Å, c=5.08 Å; �

bulk

=4.68, �0
bulk=9.14.82 For bulk calculation, Eg=4.092 eV and

me
*=0.31 by “LDA;” Eg=4.45 eV and me

*=0.34 by “LDA
+C.” The calculated AlN QD and QW results are listed in
Table VIII. Experimental work for InN QWs was reported in
Refs. 111 and 112.

B. Wurtzite vs zinc blende structure

There have been theoretical studies �e.g., see Refs. 113
and 114� comparing the QD and QW electronic structures of
wurtzite and zinc blende crystal structures. Here, we have
compared the energy gaps �without the electron-hole Cou-

FIG. 23. Size dependence of exciton energies of InN QDs �a�
and QWs �b�.

TABLE VI. Calculated size-dependence of quantum confine-
ment energies of ZnSe QWs.

Diameter�nm� 1.06 1.80 2.25 3.43 4.09

�Eg �eV� 1.648 0.869 0.647 0.345 0.260

TABLE VII. Calculated size-dependence of quantum confinement energies of ZnTe QDs and QWs. The first line of QDs does not include
the Coulomb energies, while the second line of QDs includes the Coulomb energies.

Diameter�nm� 2.00 2.51 3.25 3.76 4.35

QDs �no� �Eg �eV� 1.454 1.085 0.722 0.604 0.512

QDs �Eg �eV� 1.142 0.836 0.537 0.483 0.406

Diameter�nm� 1.14 1.94 2.41 3.69 4.40

QWs �Eg �eV� 1.433 0.805 0.616 0.336 0.258
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lomb interaction� of these two different crystal structures for
CdSe QDs and QWs. The results are shown in Fig. 24. As we
can see, although the wave function symmetry and the fine
structures of the energy spectrum might be different, the en-
ergy gaps for these two crystal structures are more or less the
same.

C. Absorption spectra of CdS quantum dots

The optical absorption spectrum intensity is obtained here
by summing over the dipole matrix elements coupling hole
state �i ,v� and electron state �j ,c�, i.e.,

I�E� = �
i,j

4e2

3m2c2 ���i,v�Pxyz�� j,c��2f�E − Eij� . �9�

Here, f�E−Eij� is a Gaussian broadening function, and Eij

is the energy difference of the valence i and conduction j
states including the Coulomb interaction as described in Eq.
�4�. Pxyz is the momentum operator with the subscript “xyz”
denoting polarizations.

Figure 25 shows the calculated absorption spectrum �sum
over all x ,y ,z polarizations� for different sized CdS QDs.
Following the peak’s movement with the size, we have as-
signed different peaks crossing different QDs. The peaks can
be placed into groups: �a, b�, �c, d, e, f�, �g, etc.�. Each group
corresponds to one degenerated �or almost degenerated� con-
duction band state. For example, �a, b� corresponds to the
transitions to the first conduction band s-like state CB1; �c, d,
e, f� correspond to the transitions to the three p-like conduc-
tion band states CB2,3,4; while �g, etc.� correspond to the
transitions to the five d-like conduction band states CB5-10.

FIG. 24. Size dependence of energy gaps for CdSe QDs �a� and
QWs �b�. Note, the electron-hole Coulomb interaction is not in-
cluded, thus �a� is different from Fig. 12.

FIG. 25. Theoretical optical absorption spectra of wurtzite struc-
ture CdS QDs. Coulomb interaction is taken into account in the
calculation. Eg is the ground exciton energy. The four quantum dots
from the top curve to the bottom curve are: Cd87S96, Cd217S220,
Cd443S432, and Cd750S765, respectively. The peak a corresponds to
VB1,2,3-CB1 transitions; peak b corresponds to VB7,8,9-CB1 tran-
sitions; peak c→ VB1,2,3-CB2,3,4; peak d→ VB4,5-CB2,3,4; peak
e→ VB10,11-CB2,3,4; peak g→ VB8,9-CB5,6,7,8,9,10.

FIG. 26. Theoretical optical absorption peaks of CdS QDs ex-
tracted from Fig. 25.

FIG. 27. Size dependence of 1Se1Pe transition energy of n-type
CdSe QDs.
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Each peak within one group corresponds to the transition
from different valence band states �or degenerated valence
band states�. For example, peak a corresponds to the transi-
tion from VB1,2,3 to CB1, while b corresponds to the
VB7,8,9 to CB1 transition. More assignments are given in
the caption of Fig. 25. The peak energies of Fig. 25 are
plotted as functions of the lowest exciton energy in Fig. 26.
We see that although the energy distances between different
groups increase significantly when the size of the dot de-
creases, the distances between the peaks within a group stay
almost the same. This is because the confinement effects for
the valence bands are small. Besides, the electron-hole Cou-
lomb interaction also plays a part in determining the absorp-
tion spectrum peak positions. Our calculated absorption
spectrum invites experimental verification.

D. Comparison of quantum confinement effects between
quantum wires and dots

In a previous study,62 we have investigated the ratio of
quantum confinements between QDs and QWs with the same
diameter for the same semiconductor materials. However, in
that study, the bulk LDA band structure �e.g., the effective
mass� is not corrected. Here, we have reinvestigated this is-
sue using the “LDA+C” results. In order to yield a constant
ratio between QW and QD confinements for different sizes d,
we first need to fit QW and QD results with the same 1/d


scaling. In the fitting reported above, the exponents 
 for
QDs and QWs are often slightly different. Here, we have
refitted all of our QD and QW results with the same expo-
nent for a given semiconductor material without Coulomb
energy. The resulting ratio between the QWs and QDs for all
the materials we have studied are listed in Table IX. We see
that the majority of them are close to the simple effective
mass result of 0.586, with a few exceptions. For AlN, this
ratio is 0.971, which means that the QW confinement is al-
most as large as the QD confinement. Similarly the ratio for
InN is also quite big: 0.676. On the other hand, the ratio for

CdTe and ZnTe are significantly smaller than the effective
mass result. Interestingly, from the systems we have investi-
gated, it appears that this ratio depends more sensitively on
the anion rather than the cation.

E. 1Se-1Pe transition energy of CdSe quantum dots

A colloidal quantum dot is much more difficult to be
doped as n-type material, compared to its bulk
counterpart.76–78 However, in Ref. 76, CdSe semiconductor
nanocrystals have been successfully doped as n-type mate-
rial, with electrons in quantum confined states. The n-type
doped QD provides an opportunity to conduct infrared ab-
sorption between the conduction band S state �1Se� to con-
duction band P state �1Pe�.76 This experimental 1Se-1Pe

transition energy is compared with our calculated results for
CdSe QD in Fig. 27. The agreement is excellent.

IV. CONCLUSIONS

In this work, we have performed ab initio calculations to
study the surface-passivated thousand atom semiconductor
quantum dots and wires. We have systematically calculated
the electronic states of group III-V �GaAs, InAs, InP, GaN,
AlN, and InN� and group II-VI �CdSe, CdS, CdTe, ZnSe,
ZnS, ZnTe, and ZnO� quantum dots and wires. The LDA
bulk band structure has been corrected to yield the experi-
mental effective mass by modifying the nonlocal pseudopo-
tentials. We have calculated exciton energies of quantum
dots including the screened Coulomb interactions. We have
found the following results: �1� In most cases, our calculated
exciton energies agree well with the experimental photolu-
minescence results. When there are no good experimental
measurements at the present �especially for quantum wires�,
our calculated results can be used as predictions and bench-
marks. �2� For CdSe and InP quantum dots, wires, and InAs
dots that have been studied previously using the semiempir-
ical pseudopotential method �SEPM� or the EPM method,

TABLE VIII. Calculated size-dependence of quantum confinement energies of AlN QDs and QWs. The first line of QDs does not include
the Coulomb energies, while the second line of QDs includes the Coulomb energies.

Diameter�nm� 0.96 1.55 2.07 2.61 3.13

QDs �no� �Eg �eV� 0.982 0.498 0.38 0.284 0.262

QDs �Eg �eV� 0.62 0.26 0.202 0.194 0.186

Diameter�nm� 1.41 1.76 2.63 3.16 4.01

QWs �Eg �eV� 0.61 0.455 0.305 0.247 0.185

TABLE IX. The ratios between the QWs quantum confinement and QDs quantum confinement for different semiconductor materials.

III–V GaAs InAs InP GaN AlN InN

QW/QD 0.532 0.546 0.538 0.597 0.971 0.676

II–VI CdSe CdS CdTe ZnSe ZnS ZnTe ZnO

QW/QD 0.596 0.589 0.495 0.561 0.598 0.512 0.599
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our current results agree well with the previous results. This
is an indication of the reliability and consistency of both
methods, but the current method provides a flexibility to
study any given semiconductor materials. �3� The ratios of
band-gap-increases between quantum wires and dots have
been investigated. Although there is a material dependence,
the majority of them are close to the simple effective mass
ratio of 0.586. One major exception is AlN, which has a large
ratio of 0.97. �4� The size-dependence of 1Se-1Pe transition
energies of CdSe quantum dots with a wurtzite structure
agrees well with the experimental measurement, and �5� the
calculated higher excited state energies for CdS quantum
dots are presented. �6� For wurtzite and zincblende CdSe, we

find very small differences in band gap energies for both
QDs and QWs.
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