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We analyze the local level occupation of a spinless, interacting two-level quantum dot coupled to two leads
by means of Wilson’s numerical renormalization group method. A gate voltage sweep, causing a rearrangement
of the charge such that the system’s energy is minimized, leads to oscillations, and sometimes even inversions,
in the level occupations. We find that these oscillations, qualitatively understandable by a simple Hartree
analysis, are generic and occur in a wide range of system parameters. By allowing a relative sign in one
tunneling matrix element between dot and leads, we extend our findings to more generic models. Experimental
applications and the qualitative effect of spin are discussed.
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I. INTRODUCTION

The Coulomb blockade1 �CB� is one of the most basic and
fundamental phenomena in quantum dot �QD� physics: ac-
cording to the standard single-electron tunneling picture for
transport through small QD’s, electrons can only pass
through the dot one by one if the Coulomb charging energy
U is the dominant energy scale. Likewise, if the gate voltage
�applied to a plunger gate near the QD� is changed, resulting
in a rigid shift of the single-particle spectrum of the QD
relative to the Fermi energy of the leads, the single-particle
levels of the QD are naively expected to be filled “one by
one.” Many basic single-electron devices and QD-based qu-
bit proposals2 are based on this simple picture.

In this paper we point out that under quite generic condi-
tions, the charging process is actually more complicated, and
the occupation functions for the single-particle levels can
show some rather complex, nonmonotonic behavior as a
function of gate voltage, deviating considerably from the
standard CB picture �one-by-one filling�. This complex be-
havior turns out to be rather generic for a QD coupled to
leads that can supply the QD with electrons, and originates
from the competition between the QD-leads coupling �, and
the intrinsic energy scales of the QD, namely, its charging
energy U and levels spacing �.

In order to study this competition, it suffices to consider a
very simple model: a spinless interacting two-level Anderson
model �2LAM�, consisting of a lower and an upper QD level
��� ,�u� with level spacing3 ���u−��. Analyzing this model
using both the numerical renormalization group11 �NRG� and
a self-consistent Hartree approximation, we study in detail
the evolution of the occupation of the single-particle levels
as a function of gate voltage at T=0 for various values of the
QD parameters �� ,� ,U�. The generic picture of the charging
process emerging from this analysis is the following. For any
finite coupling to the leads � ����, sweeping the levels to-
ward the Fermi level of the leads �by tuning the gate voltage�
causes the occupations of both the lower and the upper level

to increase at comparable rates. This process continues until
one level takes over and becomes more occupied than the
other. At this point the electron that occupies this level elec-
trostatically repels the other level, pushing up its energy and
thereby emptying it. As a result the occupation of the other
level performs an oscillation as the gate voltage is swept.
The naive QD charging scheme, in which every step of the
CB staircase is associated with the filling of only one single-
particle level in the QD, is achieved only when these charge
oscillations are small, i.e., for ���. Below, we discuss in
detail the physics of charge oscillations and the dependence
of their amplitude and form on the system parameters. In
particular, we discuss under which conditions the amplitude
of these oscillations can be made so large as to cause a sig-
nificant occupation inversion, i.e., a situation for which the
occupation of the lower level is smaller than that of the up-
per level. It is important to mention that more general mod-
els, e.g., those including spin, show effects similar to those
described above.

The rest of the paper is organized as follows. In Sec. II we
describe in detail the model we consider. In Sec. III, we
present the result of the NRG calculation for the evolution of
the occupation of the two levels as a function of gate voltage
�Sec. III A�, and a simple and qualitative understanding of
the emerging picture in terms of an Hartree approach �Sec.
III B�. In Sec. IV, we present a detailed analysis of the phe-
nomenon of occupation inversions, by studying the 2LAM in
the case where the two levels are unequally coupled to the
leads. Finally, in Sec. V we summarize our conclusions, and
discuss the robustness of the effects obtained when including
spin, and possible experimental tests for our predictions.

II. MODEL

We consider a spinless 2LAM with Hamiltonian Ĥ
=Ĥd+Ĥl+Ĥld. �The spinful case will be considered briefly
in Sec. V.� Two leads, identical, noninteracting, and in equi-
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librium, are described by Ĥl=�ka�kacka
† cka, where cka

† creates
an electron with energy �k in lead a=L ,R. The isolated QD is
described by

Ĥd = �
i=u,�

�idi
†di + Un̂�n̂u, �1�

where di
† creates an electron in the QD in level �i �i=� ,u�,

measured with respect to the Fermi level defined by the
leads, n̂i=di

†di is the number operator, and U is the charging
energy, which we fix at U=0.2D throughout this paper, 2D
being the bandwidth. Finally, the tunneling between the QD

and the leads is described by Ĥld=�kia�Vkiacka
† di+H.c.�. We

consider k-independent tunneling matrix elements Vkia=Via,
which are L-R symmetric in magnitude,4 VuL=VuR=Vu
and V�L=sV�R=V�, but with a possible relative phase
s=exp�i�� between the L and R matrix elements of the lower
level.5–8 Time-reversal symmetry implies �=0,� �hence
s= ±1�. The corresponding bare level widths are �i=2�	Vi

2,
where 	 is the density of states in the leads.

The two possible choices for s= ±1 lead to two distinct
models �see Fig. 1�: �i� for s= +1, both local levels couple to
the same channel, namely, the symmetric linear combination
of the left and the right leads �ckL+ckR�, while the antisym-
metric combination �ckL−ckR� decouples completely; �ii� for
s=−1, the upper and lower local levels couple to different
channels, namely, to the symmetric or antisymmetric combi-
nation, respectively.9

We shall denote the ground-state expectation value of the
occupation of level i by ni= �n̂i�, and parametrize the gate
voltage by the average bare level position �����+�u� /2. For
��=�u=�, this parametrization reveals particle-hole
symmetry10 around �*=−U /2, namely, nu��+�*�
=1−n���*−��, independent of � and �. If ����u, this sym-
metry is broken for both s= ±1.

III. CHARGE OSCILLATIONS

In this section, we study the evolution of ni �i=1,2� as a
function of the gate voltage �, and discuss the physical origin
of nonmonotonic occupation of the two levels. We shall first
present the results of our NRG calculations11 for ni, and then

use a simple Hartree analysis to gain some insight into the
NRG results.

A. NRG calculations

We start our analysis by considering equally coupled lev-
els ��=�u=�, and use the NRG to calculate the � depen-
dence of ni.

11 Naively one may expect that if the QD is
initially empty, the QD levels get occupied monotonically
one by one as � is decreased, the usual CB behavior. In other
words, first the occupation of the lower level would be ex-
pected to increase monotonically as �� crosses the Fermi
level, and subsequently nu would increase as �u+U ap-
proaches it. However, our NRG results �Fig. 2� show that this
intuitive picture is valid only if the coupling to the leads is
much smaller than the dot level spacing, ���. In particular,
when �
�, n� and nu show a nonmonotonic � dependence,
characterized by charge oscillations of nu �or n�� when the
lower �or upper� level crosses the Fermi level.12 The oscilla-
tion in nu occurs because as soon as the lower level begins to
be occupied significantly, the system can gain charging en-
ergy by additionally filling the lower level and emptying the
upper level �an analogous argument works for n��.

To explore how strongly these charge oscillations vary
with � and � and how they are affected by the sign of s, we
show in Fig. 2 the behavior of ni��� for variable � and
s= ±1, keeping � fixed �at 0.2U�. In the limit � /��1 level
� becomes occupied rather suddenly �curve 1�� when it
crosses the Fermi level at �=� /2, and similarly for the upper
level at �=−U−� /2 �curve 1�. In addition to this typical CB
behavior, we observe, even for the smallest � considered
��=0.1��, a tiny nonmonotonicity or charge oscillation in nu

�n�� roughly at that � where the occupation of the lower
�upper� level increases sharply from 0 to 1. A gradual in-
crease of � toward � /��1 results in a strengthening of
these charge oscillations. In the limit � /��1, Figs. 3�c� and
3�d�, the monotonic increase in the occupation is recovered,
though the actual dependence of ni on � depends strongly on
the sign of s.

FIG. 1. �Color online� Schematic depiction of the model. The
sign s between the tunneling amplitudes V�R and V�L determines
whether the two dot levels couple to the same �symmetric� channel
�s= +1, upper mapping�, or to two different channels �s=−1, lower

mapping�, with strength Ṽi=�2Vi, i=� ,u. FIG. 2. �Color online� NRG results for the occupation of the
lower 	n�, �curves 1�–3��
 and the upper 	nu, �curves 1–3�
 level for
fixed � and different values of �, for s= +1�a� +1 and �b� s=−1.
The dotted lines indicate level where the lower or upper level
crosses the Fermi level, at �=� /2 and −U−� /2.
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B. Hartree approach

A simple and qualitative understanding of the charge os-
cillations observed in our NRG results can be obtained in the
framework of a self-consistent Hartree approximation
�SCHA�, by studying the evolution of the Hartree levels as
function of �. This scheme accounts for the interaction by
replacing the bare levels �i of the noninteracting problem,
with the corresponding Hartree levels

�i → �i
H = �i + Unī, �2�

where ī=� /u if i=u /�. By integrating out the leads, we ob-
tain the effective noninteracting dot Hamiltonian

Hd
eff = � �u

H − i�u �− i��u�� ��s,+1

�− i��u�� ��s,+1 ��
H − i��

� . �3�

The corresponding retarded dot Green’s function, defined as
Gij

R�t��−i
�t��
di�t� ,dj
†�0���, can be obtained exactly for both

values of s, by solving the matrix equation GR���
= ��−Heff�−1. To finally obtain the Hartree approximation for
the interacting Green’s function, one has to self-consistently
calculate the average level occupation ni���, using the T=0
relation

ni��� = −
1

�
�

−�

0

d� Im Gii
R��,�� . �4�

Since the self-consistent Hartree equation �4� may have
more than one solution, a criterion is needed to pick the
correct one. To this end, we note that, for given �, the system
adjusts its local level occupations nu and n� such that its total
free energy Fs�nu ,n�� is minimized. Within the SCHA ap-

proach, Fs can be obtained by integrating Eq. �4�, so that the
conditions for Fs to be extremal, �Fs /�ni=0, reproduce Eq.
�4�; we should then pick that solution of Eq. �4� for which
the extremum is a global minimum of Fs. In the case of two
nearly degenerate minima, the SCHA neglects the possibility
of tunneling between them, and a different approach has to
be considered. Nevertheless we find, somewhat unexpect-
edly, that in the case of exactly degenerate minima, e.g.,
�=0, an average over the minima reproduces the NRG re-
sults rather accurately 	see � /�=� curve in Fig. 3�d�
.

For simplicity we implemented this strategy explicitly for
s=−1, but not for s= +1, since for the latter Hd

eff is not
diagonal, which makes the determination of F+1 very
tedious. For s=−1, Eq. �4� yields the condition ni���
=1/2− �1/��arctan	��i+Unī� /�i
, and the corresponding
free energy has the form

F−1 = Un�nu + �
i=u,�

��ini −
�i

�
ln�sin �ni�� . �5�

Figure 3 compares NRG with the corresponding SCHA re-
sults for ni���. For s=−1, we minimized F−1 	Eq. �5�
 and
find remarkably good agreement between the NRG and
SCHA results. For s= +1, for which we did not determine
F+1, we show the results of a “naive SCHA,” obtained by
simply plotting a numerical solution of Eq. �4� and “hoping”
�without checking� that it is the correct one. Clearly, the re-
sults so obtained cannot be trusted on their own merit; we
present the naive SCHA results nevertheless, to illustrate pre-
cisely this point: indeed, in Figs. 3�a� and 3�c� 	for
� /��1
 they do not agree well with NRG results.

Figures 3�c� and 3�d� include a special situation, namely,
�u=�l�=�� and �=0, for which both ��=�u and ��

H=�u
H. This

causes a sudden jump for s= +1 in nu, but none for s=−1 	cf.
dashed lines in Figs. 3�c� and 3�d�, respectively
. To under-
stand why, note that for �=0 and s= +1 the odd local com-
bination �du−d�� decouples from the leads; thus, its width is
zero and hence its occupation increases abruptly when its
energy drops below zero. On the other hand, for s=−1 the
occupation increases gradually, since the width of the odd
combination is comparable to that of the even one �du+d��.
A similar argument explains why for small but nonzero � /�
�odd level almost decoupled for s= +1� as in Fig. 2, curves 3
and 3�, the charge oscillations are still observable for
s= +1 but not for s=−1.

IV. UNEQUAL COUPLING AMPLITUDES LEADING TO
OCCUPATION INVERSION

In addition to providing a simple way to compute physical
quantities, the SCHA, and in particular the concept of Har-
tree levels 	see insets of Figs. 3�b,d�
, may be used to quali-
tatively understand how the physics of the charge oscillations
depends on the various system parameters. Suppose that both
Hartree levels are swept downward, starting from � well
above the Fermi level. When the lower level comes within
�� of the Fermi level, it begins to fill up and the upper
Hartree level �u

H is pushed up by U, causing a charge oscil-
lation in nu. The latter will be stronger the larger nu was

FIG. 3. �Color online� Comparison of NRG and SCHA results
for nu���, for fixed � and variable � 	�a�,�b�
 or fixed � and variable
� 	�c�,�d�
. The naive SCHA used for s= +1 works well for
� /��1. Insets in �b� and �d�: Hartree levels ��

H �circles� and �u
H

�stars�, calculated via the SCHA from Eq. �2�, for � /�=0.1 in �b�
and 0.4 in �d�. For � /�=� the Hartree levels are degenerate �not
shown�. The arrow in inset �d� indicates the value of �0, the local
minimum of �u

H.
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before the oscillation, i.e., the larger the width ��u� of the
upper level, and the lower the value �u

H��0� of the upper
Hartree level at its local minimum, say �0 �cf. Fig. 3�. Indeed,
if �u

H��0���u, then the upper level achieves a rather signifi-
cant occupation before full occupation of the lower level
�and corresponding emptying of the upper one�, implying an
increase in the amplitude of the corresponding charge oscil-
lation. Moreover, since �u

H��0� is also lower the more sud-
denly the lower level gets filled, a smaller �� also strength-
ens the charge oscillations. Thus, strong charge oscillations
can be obtained quite generally by allowing ���u /���1.
The above argument implies that nu oscillations are enhanced
for ��1; by an analogous argument, with �↔u,
n�-oscillations are strengthened for ��1.

It appears that the oscillations are so strong that when
��1, the lower and the upper Hartree levels might actually
cross each other �see inset Fig. 5�, leading to an inverted
occupation �Figs. 4–6�.

Since the bare energy levels are separated by the level
spacing �, the conditions Un
� and max��� ,�u�
� must
be met to achieve such an occupation inversion. Figures 4–6
show how the asymmetry ���1� of the couplings affects the
occupation of level � and u �dashed and solid lines� for both
s= ±1, leading to an inversion of the occupation within a
certain range of �.

Our discussion of occupation inversion generalizes a re-
cent related study by Silvestrov and Imry.13 In an attempt to
understand the origin of repeated and abrupt phase lapses
observed in the transmission phase of a multilevel QD,14

they studied a multilevel model consisting of one level �say u
with coupling �u� strongly coupled to the leads and at least
one additional weakly coupled level �say � with coupling
���. Reference 13�a� considered the limiting case
�u�����→0 	Ref. 13�b� also studied finite but small ��

FIG. 4. �Color online� Allowing ���u /�� to be �1 results in
an inversion of the occupation for a certain range of �. The SCHA
results �nu, crosses; n�, boxes� for s=−1 �where F−1 is known�
agree well with NRG results �nu, solid; n�, dashed lines�. For
��1 the Hartree levels cross near the left CB peak, implying an
occupation inversion below the corresponding crossings.

FIG. 5. �Color online� Same as Fig. 4, but for ��1. Now the
Hartree levels cross near the right CB peak 	see inset in �b� for
�=4
, implying an occupation inversion above the corresponding
crossings. Notice the differences in the shape of the occupation
curves between the s=1 and −1 cases.

FIG. 6. �Color online� �a� NRG results for the occupations with
s=1 and �=30. �b� A comparison between the SCHA results �nu

crosses, n� boxes� and for the NRG results �nu solid, n� dashed
lines�, for s=−1 �where F−1 is known� and �=30. The agreement
between the NRG and the Hartree approximation is remarkably
good and does not depend on �.

FIG. 7. �Color online� NRG results in the presence of spin �with
the relative sign s=−1�. The parameters are identical to those in Fig.
5. The occupation crossing persists in the spinful case. The addi-
tional oscillations in the occupations are observed due to the possi-
bility to put two electrons of opposite spin within each level.
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and spin
, and compared the energies of the configuration
�nu ,n��= �1,0� to that of �nu ,n��= �0,1� in second-order per-
turbation theory in the tunneling. Their results indicate that
the system is able to sustain an occupation inversion until
�u=−U / 	exp�2�� /�u�+1
�−U /2. Although we approach
this problem from a different angle, i.e., we either solve it
exactly by NRG or first solve the tunnel coupling exactly and
then treat the interaction self-consistently, the inversion
range found in Ref. 13 coincides with the results15 of this
article.

Our analysis indicates that the example of Ref. 13 for
occupation inversion is a very special case of a much more
general phenomenon whose strength depends on �: as � is
increased from 1 �where no occupation inversion occurs�, �i�
the range of gate voltages in which inversion occurs in-
creases, with the inversion point moving toward the middle
of the CB valley; and �ii� the maximal value reached by nu
right before the inversion increases gradually towards 1, i.e.,
the effect becomes more pronounced.

V. SUMMARY

In this paper, we have studied the gate voltage depen-
dence of the occupation of a spinless two-level Anderson
model for the generic case of a relative sign s in the tunnel-
ing amplitude. We found a nonmonotonic behavior in the
occupation of the local levels, due to charging effects be-
tween electrons within the QD, and explained this effect in
the framework of a self-consistent Hartree approximation.
Remarkably, the occupations of the upper and lower levels
can even be inverted if the level-to-lead couplings are suffi-
ciently asymmetric. Even though we focused on T=0
throughout this paper we expect the calculated behavior to
persist as long as T�min
� ,� ,U�.

The inclusion of spin in the 2LAM, though making the
problem more complex, does not change the qualitative re-
sults presented above in a large region of parameter space.
To illustrate this, we show in Fig. 7 the total occupation of
the upper and lower levels obtained by NRG for the spinful
model. The level crossing persists and additional oscillations
are observed due to the possibility to put two electrons of
opposite spin within each level.

Our predictions of the nonmonotonicity of the charging of
a 2LAM are experimentally relevant �in spirit, if not in de-
tail� for any quantum dot system containing orbital levels
that are “nearly degenerate,” in the sense that their spacing is
smaller than the level widths. One way of realizing the spe-
cific models studied here would be to use two capacitively
coupled quantum dots, each with large level spacings, asso-
ciating their topmost not-fully-occupied levels with �u and
��, and using a large magnetic field to lift the Zeeman de-
generacy of each. The way in which the charges on these
dots evolve with gate voltage, i.e., the evolution of ni���,
could then be measured experimentally using quantum point
contacts serving as extremely sensitive charge sensors 	see,
e.g., Fig. 1�a� of Ref. 16
. In addition, we expect that the
occupation of the levels will be reflected in other properties
of the system such as the transmission phase.14 We leave
that, however, for future studies.
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ī

†
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