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We calculate the Coulomb interaction induced density, temperature and magnetization-dependent many-
body band-gap renormalization in a typical diluted magnetic semiconductor Ga1−xMnxAs in the optimally
doped metallic regime as a function of carrier density and temperature. We find a large ��0.1 eV� band-gap
renormalization which is enhanced by the ferromagnetic transition. We also calculate the impurity scattering
effect on the gap narrowing. We suggest that the temperature, magnetization, and density dependent band-gap
renormalization could be used as an experimental probe to determine the valence band or the impurity band
nature of carrier ferromagnetism.
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I. INTRODUCTION

A central open question1 in the physics of carrier-
mediated ferromagnetism in diluted magnetic semiconduc-
tors �DMS� is the nature of the semiconductor carriers me-
diating the ferromagnetic interaction, in particular, whether
the carriers �i.e., the holes in the well-studied Ga1−xMnxAs
system� are itinerant band carriers �i.e., holes in the GaAs
valence band for Ga1−xMnxAs� residing in the �valence� band
of the parent semiconductor or impurity band carriers resid-
ing in a narrow impurity band within the band gap of the
semiconductor. This issue is of fundamental significance2

since the valence band3 or impurity band4 competing pictures
respectively imply competing RKKY-Zener5 or double
exchange6 mechanisms for DMS ferromagnetism. In spite of
intense experimental and theoretical activity in Ga1−xMnxAs
over the last ten years, the key issue of valence band versus
impurity band carriers mediating the DMS ferromagnetism
has remained controversial even in the optimally doped, �x
�0.05� nominally metallic, high-Tc �Tc�150–200 K, the
ferromagnetic transition temperature or the Curie tempera-
ture� Ga1−xMnxAs material. For example, ab initio first prin-
ciples band structure calculations7 typically indicate a strong-
coupling narrow impurity band behavior whereas the
extensively used phenomenological mean-field description,
parameterized by a single effective impurity moment-carrier
spin �“pd”� exchange interaction,1,3,4,8 leads to reasonable
quantitative agreement with experimental results in the me-
tallic �x�0.05� Ga1−xMnxAs requiring a relatively weak ex-
change coupling �and therefore, a weak perturbation of the
GaAs valence band� between the Mn moments and the va-
lence band holes. Similarly, optical absorption spectroscopic
data in GaMnAs were first interpreted9 using an impurity
band theoretic description,10 but later it was shown11 that the
same data could also be explained as arising from the va-
lence band picture. Given the great complexity of many
competing interaction and disorder effects in the DMS
Hamiltonian, it is increasingly clear that this important ques-
tion cannot be settled purely by theoretical means, and an
unambiguous experimental test is warranted.

In this paper we propose an experimental �optical� mea-
surement of the carrier-induced many-body band-gap renor-

malization �BGR� in Ga1−xMnxAs for the definitive resolu-
tion of this controversy; in particular, we establish
theoretically that the BGR in Ga1−xMnxAs should be
extremely large ��0.1 eV� and a strong function of hole
density if the carriers are indeed GaAs valence band holes,
allowing for a clear distinction between the �valence band�
RKKY-Zener and the �impurity band� double exchange
mechanisms for DMS ferromagnetism. In addition, we cal-
culate the temperature �as well as density� and hole spin-
polarization dependent BGR in Ga1−xMnxAs, finding a strong
quantitative dependence of the BGR on the magnetic
properties—in particular, the calculated BGR depends
strongly on whether the system is ferromagnetic or paramag-
netic with the ferromagnetic Ga1−xMnxAs typically having a
factor of 1.5 to 2 higher BGR than the corresponding para-
magnetic system at the same density �and temperature�. Our
predicted density, temperature, and spin-polarization �i.e.,
ferromagnetic being fully spin polarized and paramagnetic
being spin unpolarized� dependence of BGR in Ga1−xMnxAs
�provided the carriers are the usual GaAs valence band
holes� should enable a clear distinction between the valence
band and the impurity band picture of DMS ferromagnetism
through a careful analysis of experimental optical absorption
data.12 We want to emphasize that our work is not only about
studying BGR in the Ga1−xMnxAs system. Our main purpose
is to propose a technique for distinguishing whether the
GaMnAs carriers are in the valence band or the impurity
band, which is a subject of considerable importance and con-
troversy in the DMS community as exemplified by many
published works on the topic. Temperature and magnetiza-
tion dependence of the BGR are crucial to the experimental
observation of BGR.

Free carriers �e.g., holes in Ga1−xMnxAs� affect the band
gap of semiconductors in two essential ways. First, there is
the trivial single-particle effect of band filling �sometimes
called the Moss–Burstein shift� arising from a finite Fermi
level EF ��n2/3, where n is the free carrier density� in the
valence or the conduction band of the semiconductor as the
band is filled with a finite carrier density. The band filling
effect obviously increases the apparent band gap by an
amount EF which should be subtracted out from the mea-
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sured band-gap energy. In our results presented in this paper
we subtract out the trivial band filling Moss-Burstein shift in
order to avoid any confusion. The second effect, which is the
main subject of this work, is the self-energy correction of the
semiconductor band edge due to the many-body exchange-
correlation effect arising from finite carrier density. The
band-gap renormalization13,14 is a true many-body effect
arising from the hole–hole Coulomb interaction in the
Ga1−xMnxAs valence band, with the intrinsic �i.e., the zero
carrier density limit� band-gap being increasingly reduced
�i.e., renormalized� by the carrier-induced self-energy correc-
tion as the carrier density increases. This density dependent
many-body self-energy correction induced reduction or
renormalization of the semiconductor band gap, the BGR, in
Ga1−xMnxAs is the subject matter of our work.

The rest of the paper is structured as following: In Sec. II
we present the formalism of our BGR calculation as a func-
tion of temperature, carrier density, and spin degeneracy. In
Sec. III we describe the result of BGR for an optimally
doped metallic Ga1−xMnxAs DMS system. In Sec. IV we
discuss the implication of our BGR results how they might
serve as a probe to determine the valence band or impurity
band nature of carrier ferromagnetism, which is the purpose
of this paper. Especially, we discuss the effect of impurity
scattering on the Ga1−xMnxAs optical properties, and why in
spite of this complication, the many-body BGR effect can
still be experimentally observed.

II. FORMALISM

We calculate the BGR in the single-loop �Fig. 1� self-
energy theory which is the leading-order approximation in
the dynamically screened Coulomb interaction. This approxi-
mation, often referred to as the “GW approximation”15 in the
semiconductor literature,16 is known to be exact in the high
carrier density limit which happens to be the situation of
interest to us since Ga1−xMnxAs is an extremely heavily
hole-doped system with the hole density n�1020 cm−3. In
Ga1−xMnxAs the free carriers are holes, so we only consider
the self-energy correction to the band gap arising from the
quasihole self-energy correction to the valence band edge

within the GW-approximation �Fig. 1�, obtaining for the
finite-temperature Matsubara self-energy ��=kB=1 through-
out�:

��k,i�l� = −� d3q

�2��3T�
�n

vq

��q,i�n�
1

i�l + i�n − �q−k
, �1�

where vq=4�e2 /	q2 is the 3D bare Coulomb interaction
with 	 the lattice dielectric constant, i�l= i�2l+1��T and
i�n= i2n�T are the usual fermion/boson odd/even Matsubara
frequencies �l ,n integers�, �k=k2 / �2m�−
 with 
 the chemi-
cal potential and m the bare band mass, and ��k , i�n� is the
dynamical dielectric function, given by the infinite sum of
the polarization bubble diagrams:

��k,i�n� = 1 − vq��k,i�n� , �2�

with ��k , i�n� the 3D hole polarizability:

��k,i�n� = g� d2q

�2��2

nF��q� − nF��q−k�
�q − �q−k + i�n

, �3�

where nF�x�=1/ �ex/T+1� is the Fermi distribution function
and g the hole spin degeneracy factor.

In Ga1−xMnxAs the valence band structure is complicated
with spin–split light and heavy holes both being important.
Fortunately, our calculated results for BGR do not depend
strongly on the carrier effective mass, and change little if the
band mass is changed between 0.3 and 0.6me. We choose,
consistent with experiment, m=0.5me as the average band
mass in all of our calculations. The dielectric constant 	 in
the system is 10.9. The spin degeneracy g varies from 1 to 2
according to the magnetization of the DMS system. �g
=2�1� for the paramagnetic �ferromagnetic� case.� Spin-orbit
coupling effects, which are known to be important for GaAs
valence band, are neglected in our theory-spin-orbit coupling
is expected to lead to small quantitative corrections of our
calculated BGR.

To calculate the retarded self-energy ��k , i�l→�+ i0+�
	��k ,��, we perform a certain contour distortion to transfer
the real frequency integration into summations over imagi-
nary frequencies using the analytic properties of the dielec-
tric function. This technique is described in detail in Ref. 17.
To obtain quasihole self-energy with wave vector k, we sim-
ply put �=�k instead of solving the Dyson equation �=�k
+Re ��k ,��. This is known18 to be the correct approxima-
tion consistent with the Fermi liquid theory, within the
single-loop self-energy approximation of Eq. �1�. The quasi-
hole self-energy then becomes a function of wave vector
only:

��k� = −� d3q

�2��3vqnF��q−k� −� d3q

�2��3vq

�
 1

��q,�q−k − �k�
− 1� · �nB��q−k − �k� + nF��q−k��

−� d3q

�2��3T�
�n

vq
 1

��q,i�n�
− 1�

FIG. 1. Feynman diagrams for calculating the quasihole self-
energy. The solid line denotes the hole propagator: �a� one-loop
quasihole self-energy due to Coulomb interaction, with the wiggly
line denoting long-range Coulomb interaction; �b� quasihole self-
energy due to impurity scattering in the single-site approximation,
with the dashed line denoting short-range impurity interaction.
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�
1

i�n − ��q−k − �k�
. �4�

We directly calculate BGR from Eq. �4� for various hole
densities, temperatures, and spin polarizations by writing
BGR	�Re ��k=0��, the magnitude of the real part of band
edge self-energy.

III. RESULTS

Figure 2 we presents the calculated band-gap renormal-
ization as a function of hole-density n at different tempera-
tures. We note from Fig. 2 that the BGR reduces the band
gap approximately �but not precisely� as an n1/3 functional
dependence on hole density, and the effect can be as large as
a few hundred meVs. Although BGR itself increases in mag-
nitude with hole density, we note that the scaled BGR, i.e.,
BGR/EF, decreases in magnitude with increasing hole den-
sity since EF�n2/3. This is consistent with the fact that the
relative importance of interaction effects goes down in a
quantum Coulomb system with increasing density. Figure 2
shows that an increasing temperature also enhances BGR,
and this enhancement has a tendency to saturate at high tem-
peratures. The increasing BGR with temperature arises from
the weakening of screening with increasing temperature. The
temperature dependence we obtain is moderate but observ-
able. Even though the percentage correction to BGR due to
finite temperature is larger at lower densities, the absolute
finite temperature correction is approximately the same for
all densities within the range 1019–1021 cm−3.

IV. DISCUSSION

One of the important features of Fig. 2 is that the BGR
depends strongly on the magnetic properties of Ga1−xMnxAs
with the ferromagnetic spin-polarized hole g=1 situation
having larger, by a factor of 1.5–2 BGR, than the corre-
sponding spin-unpolarized �g=2� paramagnetic case. The
strong spin degeneracy dependence of BGR apparent in Fig.

2 is understandable on the basis of the fully spin-polarized
system having weaker screening since the density of states is
lower in magnitude in the polarized system �i.e., g=1 is the
spin-polarized system versus g=2 in the unpolarized system
in Eq. �3��. Also, BGR depends indirectly on the Fermi en-
ergy, and since the polarized system has a higher EF than the
unpolarized state at the same density, the BGR is higher in
the fully spin-polarized ferromagnetic system. Such a strong
dependence of BGR on the hole spin-polarization �by 50%–
100%� should be reasonably easy to detect experimentally by
measuring BGR in Ga1−xMnxAs well below and well above
the Curie temperature.

We have also carried out calculations for the quasiparticle
effective mass and spin susceptibility �or equivalently the
Landau g factor� renormalization for the Ga1−xMnxAs
valence band holes induced by the hole–hole many-body
Coulomb interaction. Our results �not shown� indicate that
many-body hole effective mass and spin susceptibility renor-
malizations are rather small �10%–20%� at the hole densities
of interest in Ga1−xMnxAs. This rather small quasiparticle
Fermi liquid renormalization in Ga1−xMnxAs is consistent
with the weakly interacting high-density nature of
Ga1−xMnxAs. We have also calculated the hole self-energy
correction ��k� in Eq. �4� as a function of wave vector to
check for the nonparabolicity introduced by hole–hole inter-
action. We find that Re ��kF� to be slightly ��10%–20% �
larger in magnitude than Re ��k=0� at the hole densities of
interest, indicating the correlation-induced many-body modi-
fication of the hole energy dispersion to be rather small. We
have also calculated the imaginary part of the hole self-
energy, Im ��k=0�, to ensure that the quasiparticle image
does not completely break down at the band edge �k=0�. We
find �Im ��k=0�� /EF to be in the 0.2–0.05 range for n
=1019–1021 cm−3 hole density range of interest, indicating
that the quasiparticle band description remains experimen-
tally valid in Ga1−xMnxAs in the density range of our inter-
est.

Now we discuss the effect of impurity scattering on the
Ga1−xMnxAs optical properties, which is likely to complicate
the experimental observation of the many-body BGR correc-
tion predicted in this paper, particularly since Ga1−xMnxAs
samples, even in the optimally �x�0.05� doped metallic sys-
tem, tend to have rather large resistivity indicating strong
impurity scattering. Impurity scattering destroys momentum
conservation and consequently may strongly affect interband
optical absorption experiments which depend on wave vector
conservation. In particular, strong impurity scattering would
lead to two distinct effects on the optical absorption in
heavily doped Ga1−xMnxAs. First, there will be an upward
shift in the valence band edge �i.e., a band-gap narrowing�
arising from the real part of the self-energy �i associated
with the hole-impurity interaction. This impurity-induced
band-gap narrowing effect has the same practical effect as
BGR on the experimentally measured optical absorption gap,
and the net band-gap narrowing will be a sum of the hole-
hole self-energy �i.e., BGR� and the hole-impurity self en-
ergy. The hole-impurity self-energy is therefore significant
for the optical absorption experiments of interest to us. On
the other hand the imaginary part of the hole-impurity self-

FIG. 2. �Color online� Calculated band-gap renormalization
�narrowing� as a function of hole density at different temperatures
in a Ga1−xMnxAs system with spin degeneracy g=1 and 2. The
upper �lower� seven curves correspond to g=1�2� case. For each g
value, results for seven different temperatures are shown: 0, 1, 5,
10, 25, 100, 300 K. Note that BGR results for T=100 and 300 K are
almost identical, indicating a saturation temperature effect. EF

= �n /g�2/3�249.41 meV where n is in the unit of 1020 cm−3.
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energy, Im �i, leads to a broadening of the momentum eigen-
states and is therefore a measure of the level broadening in
the optical absorption spectra. This impurity induced level
broadening is, therefore, also an important consideration for
estimating BGR from the optical absorption spectrum since
this will control the broadening of the absorption spectra.

We have obtained the impurity scattering effect on the
hole states of Ga1−xMnxAs by calculating the hole-impurity
self-energy �i�k� in the self-consistent single-site approxi-
mation shown in Fig. 1�b�. The self-consistent single-site ap-
proximation �Fig. 1�b��, which is a substantial improvement
on the leading-oder Born approximation, should be qualita-
tively valid in the metallic regime of Ga1−xMnxAs �as long as
the carrier are indeed valence band hole states�. The integral
equation represented by the self-consistent hole-impurity
scattering diagrams of Fig. 1�b� can be exactly solved for all
k in the strong impurity screening limit �assuming the impu-
rities to be random charge center of density ni in
Ga1−xMnxAs�, and the result for k=kF and k=0 are

�
i

�0� = V0ni�1 + 

rs�−1;

�
i

�kF� = V0ni�1 + 

rsf��
rs� + i�� , �5�

where

f�x� =
1

2
+ � x

8
−

1

2x
�ln� x + 2

x − 2
� , �6�

and 
= �6g /��1/3; �=22/33−1/3�−2/3g2/3; �=� /2; rs

= �9� /2g��aBkF�−1 with aB the effective hole Bohr radius in
GaAs; V0=4�e2 /	qTF

2 where qTF is the GaAs hole Thomas–
Fermi screening wave vector �and 	 the GaAs lattice dielec-
tric constant�. In Fig. 3 we show our calculated real and
imaginary parts of the hole-impurity self-energy assuming an
optimal Ga1−xMnxAs metallic system, of ni	n. It is impor-
tant to point out that our calculated Im � in Fig. 3 implies a

level broadening which is consistent with the measured re-
sistivity of Ga1−xMnxAs, providing support for our theoreti-
cal approximation. �The actual �i may be somewhat smaller
than that given in Fig. 3 due to impurity clustering effect
ignored in our theory.� We note that the impurity induced
level broadening, while being somewhat less in magnitude,
is of the same order as the BGR, which may complicate the
interpretation of the optical absorption data. �The net band-
gap shrinkage is given by the sum of BGR �Fig. 2� and the
real part of impurity-hole self-energy given in Fig. 3.� But,
we believe that it should still be possible to analyze the op-
tical absorption data to check whether the density dependent
optical absorption spectra are consistent with a density, tem-
perature, and spin polarization dependent BGR predicted in
our Fig. 2. Especially, the temperature dependence of the
impurity scattering effect is very small, and this enables us to
identity whether the band shrinking is indeed a many-body
BGR effect instead of impurity scattering by examining
whether this gap shrinking �if observed� possesses an obvi-
ous temperature dependence.

If such a many-body BGR is observed in the experimental
data, then that would be strong evidence supporting a va-
lence band RKKY-Zener mechanism for DMS ferromag-
netism in Ga1−xMnxAs. This is because if the holes are lo-
cated in the impurity band, the BGR effect should be very
small because of the large band mass associated with the
impurity band. �Note the impurity band BGR effect just men-
tioned should not be confused with impurity scattering effect
mentioned in the last paragraph.� We note that in addition to
optical data, STM measurements19 may also be helpful in the
observation of BGR. We emphasize that because of the large
defect and impurity content in GaMnAs, invariably present19

in the low-temperature MBE growth of DMS materials, the
observation of BGR will be complicated, but our calculated
density, temperature, and magnetization dependence results
should enable such a BGR observation of it is present. We
also note that at finite temperature electron–phonon
interaction20 would also contribute to the BGR, but the pho-
non effect is smaller in magnitude than the exchange-
correlation correction in the high hole density GaMnAs of
interest to us. Also, the phonon correction does not exhibit a
strong density or magnetization dependence.

In summary, we have developed a theory for hole–hole
�and hole–impurity� free carrier interaction induced many-
body effects on the optical absorption spectra of
Ga1−xMnxAs, finding �large� density and magnetization de-
pendent and �moderate� temperature dependent many-body
band-gap-renormalization corrections, which should be ob-
servable experimentally provided the holes in Ga1−xMnxAs
indeed reside in the GaAs valence band, and not in the im-
purity band.
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FIG. 3. �Color online� Contribution of impurity scattering to the
real and imaginary quasihole self-energy as a function of hole-
density at k=0, kF, and g=1 and 2 in a Ga1−xMnxAs system. We
assume ni=n.
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